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We mean many things by  
“statistical post-processing” 

• Distribution fitting. 
• Perfect-prog methods. 
• Physically based statistical models (e.g. DeMaria’s 

LGEM). 
• Model output statistics (MOS; thanks Bob Glahn) 

– Implicitly, many methods, not just multiple linear 
regression. 

– Develop predictive relationships between past observed 
and forecast. 

– From this, estimate probability distribution of observed 
given today’s forecast. 

• Etc. 
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Identify forecast 
question. 

Gather forecasts & 
obs. or analyzed data. 

Identify potential 
predictors and 

model type.  

Build statistical model. 

Test & verify with 
independent data. 

are  
you happy with  

results? 

Implement and 
disseminate forecasts 

customers 
satisfied? 

NO YES 

YES NO 

The statistical  
model-building  

process 
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The quality and value to the 
customer of post-processed 
guidance can be limited by 
problems in any one of these 
steps.  Each one requires  
due diligence. 
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Identifying the forecast question 
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What are customers asking for? 
Increasingly, post-processed guidance for weather  

related to high-impact events. 
• Applications 

– Precipitation amount and type, and drought. 
– Cloud amount, type, ceiling, visibility, insolation (for solar energy). 
– Aviation: Icing, turbulence, winds en route, thunderstorm areal coverage. 
– Ship routing, wave height. 
– Wind, gustiness. 
– Wind power and its “ramps.” 
– Tropical cyclogenesis probabilities, TC intensity, location. 
– Tornadoes and severe weather. 
– Temperature, humidity. 

• Characteristics: 
– High-resolution (spatial & temporal). 
– Low-error deterministic and reliable & sharp probabilistic. 
– Probabilities of extremes. 
– Time scales: nowcast to decadal-centennial. 
– Spatial and temporal correlation structures (multi-variate). 

• And so forth. 
 Post-processing resources for development and  

maintenance are limited. How to choose? 8 
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Higher-resolution models, 
more models, run more  
frequently 
 
Improved assimilation methods 
 
Improved physics 
 
Frequent model updates & 
bug fixes 
 
More ensemble members 

High-quality reanalyses for 
initialization, statistical model 

development, verification 
 

Retrospective forecasts 
 

More stable models 
 

HPC funds to disk space  
for rapid access to  

past forecasts 

High- 
performance 

computing 

Gathering forecasts, observations, & analyzed data. 
 

Can we resolve  
this tension? 



NCEP/EMC plans for evolution 
of model implementation process 

(from 2014 Production Suite Review) 

• GFS: implementations yearly, with 2-3 years of 
reanalyses and reforecasts. 

• GEFS: implementations every other year, with 
reanalysis &reforecast from ~ 1999-present. 

• CFS:  implementations every 4th year, with modern-
era reanalysis reforecast. 

 

We are grateful to NCEP. 
Now we need spiffy new methods worthy of this rich data. 11 



Data set details to iron out. 

• Reanalyses. 
– Regular production for reforecast initialization; same model, same resolution, 

same assimilation methodology. 
– High-res., high-quality surface reanalyses for training, verification. 

• Reforecast  
– # members/cycle?  # cycles/day?  Frequency?  How far into the past?  

Structure satisfactory to all while being computationally tractable? [See NOAA 
white paper for a start] 

– ~ homogeneous forecast errors and bias over reforecast period. 

• Plentiful, non-proprietary observations (e.g., precipitation 
type, severe weather, stream flow, wind power) 

• Robust supporting infrastructure.  
– HPC for reanalysis, reforecast. 
– Large amount of rapid-access disk space. 
– Computer cycles for post-processing model development. 
– Bandwidth for dissemination of high-res. probabilistic products. 
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http://www.esrl.noaa.gov/psd/people/tom.hamill/White-paper-reforecast-configuration.pdf


Retrospective analyses: 
RTMA/URMA 

• NWS’s ~ 2.5 - 3 km mesoscale hourly surface analysis  
– covers N America, AK, HI, PR, Guam  

– temp, dewpoint, winds, visibility.  

– used for verification, training in prominent “National Blend” 
project. 

• Implementation soon: 3-km HRRR and 4-km NAM blend 
for first-guess forecasts. 

• Improving, but still concerns about analysis quality, esp. 
in mountainous terrain. 

• Will need RTMA run in past to cover the same period as 
reforecasts. 

http://www.mdl.nws.noaa.gov/~blend/blender.prototype.php 13 



http://www.mdl.nws.noaa.gov/~blend/blender.prototype.php (internal NOAA) 14 

Noticeable differences between mesoscale analyses 

http://www.mdl.nws.noaa.gov/~blend/blender.prototype.php
http://www.mdl.nws.noaa.gov/~blend/blender.prototype.php


Reforecast sample size: how many? 

a few are 
sufficient 

a very 
large 

number 
needed 

Short-range forecasts of surface temperature, dew point 
 
Short-range wind forecasts 
 
Forecasts of light precipitation events 
 
Wind-power “ramp” events and wind-error spatial 
correlations 
 
Extended-range temperature and precipitation, temperature 
extremes 
 
Forecasts of heavy precipitation events 
 
Tornado forecasts 
 
Space-time correlation structure of hydrologic forecast 
errors 

There is no one optimal reforecast configuration for all applications. 15 

Amount Post-processing application 
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This step can be time consuming. 
We need the exploratory data analysis and fast modeling tools of science fiction. 

“Majority Report” 
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Building a high-quality 
statistical model 

• Old problems are new problems 

– “ bias-variance tradeoff  ”  

– “ extrapolating the regression ” 

– “ curse of dimensionality ” 

• More modular, reusable software. 
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“Bias-variance tradeoff” 
Example: let’s demo NCEP/EMC’s “decaying average” filter used in NAEFS  

for estimating bias with simulated data 

Generate daily time series of truth, simulated observations (100x), and simulated forecasts 
(100x) under the condition of seasonally varying bias: 
 
Truth T = 0.0 (always) 
 
Bias:  The true (but unknown) forecast bias for julian day t:  Bt = cos (2πt/365) 
 
Analyzed for day t = truth + random obs error: 
 xt

A = T + et
A,   where et

A ~ N(0, 1/3), iid each day. 
 
Simulated biased forecasts for day t generated w. auto-correlated error via Markov Chain: 
 
 xt

f - Bt  = k(xt-1
f – Bt-1 ) + et

f ,     where et
f ~ N(0,1), iid each day;  k = 0.5 

 

EMC’s decaying-average bias correction: bias estimate Bt is 

 
 Bt = (1-α)Bt-1 + α(xt

f – xt
A) 

 

α is a user-defined parameter that indicates how much to weight most recent bias estimate; 
large α akin to overfitting in regression analysis. 21 



True Bias 

Estimated 

With small α,  
the bias 
estimates 
have smaller 
variance 
over the 100 
replications 
but lag the 
true bias. 
Akin to  
regression with 
few predictors. With large 

α, bias 
estimates 
have large 
variance 
but don’t  
much lag  
the true  
bias. Akin 
to regression 
with many 
predictors. (plots shown  

after 60-day  
spinup) 
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Minimizing the bias-variance tradeoff 

• Sometimes, change form of model and/or choice 
of predictors: 
Forecast = a + bfcst + ccos(2πt/365) + d*sin(2πt/365)  

• Increase the training sample size. 
– Overall increase (reforecasts). 
– Selective increase*: estimate some parameters with 

local data, others with regional or global data. 
– Example: precipitation forecast adjustment. 

• Parameters related to terrain-related bias: local data. 
• Parameters related to ubiquitous drizzle over-forecast: 

regional data. 

(* Stimulated by Scheuerer, & König, 2014: Gridded, locally calibrated, probabilistic  
temperature forecasts based on ensemble model output statistics.  QJRMS, 140, 2582-2590. 23 
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Extrapolating the regression 
(that is, getting accurate predictions at and beyond the fringes of training data) 

Data from grid point over Ithaca, NY,  
and 19 “supplemental” locations with 
similar climatologies, terrain features. 
 
Split GEFS reforecast and analyzed 
precipitation data over the  
2002-2013 period into 4 batches. 
 
Perform Dan Wilks’ “extended logistic  
regression” (ELR) on each (power- 
transformed) batch.   
 
The GEFS 36-48 h ensemble-mean  
forecast is the sole predictor, and 
the method produces PDFs or CDFs 
of predicted precipitation amount. 
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Predictive CDFs for the four batches 
(given GEFS mean forecasts of 5 mm, 25 mm) 

Despite the use of supplemental training data, there is great predictive uncertainty 
from ELR amongst the four batches when the forecast = 25 mm. 26 



Predictive CDFs for the four batches 
(given GEFS mean forecasts of 5 mm, 25 mm) 

Despite the use of supplemental training data, there is great predictive uncertainty 
from ELR amongst the four batches when the forecast = 25 mm. 27 

What is P(obs > 25 mm)?  
~ 25%? ~ 50%? 



Ameliorating predictive model uncertainty 
when forecasts are extreme 

• Some post-processing methods may be more 
sensitive than others, so test, test, test. 

• Again, increase sample size. 

– Data from supplemental locations.  

– Reforecasts and analyses spanning decades. 

• ID additional predictors with correlations to 
predictand. 
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Building a high-quality 
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The curse of dimensionality: 
a motivation 

30 

Reservoir 

Dam 

No problem 

Reservoir 

Dam a problem  
when marginal 

& joint probs.  
are not well  

forecast 

Hydrologists want  
to know not only the 
intensity of rainfall, 
but whether or not 
that intense rainfall 
will fall simultaneously 
in many nearby  
sub-basins. 
 
What is the “copula” 
structure, i.e., the joint 
probabilities? 

(thanks to conversations with John Schaake) 



Simulation study: 
observations & two forecasts 
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Suppose we want to know 
the probability that the 
obs > 4.0 | forecast 1 > 4.0 



Simulation study: 
observations & two forecasts 
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Suppose we want to know 
the probability that the 
obs > 4.0 | forecast 1 > 4.0. 
 
We can make some crude 
estimation from counting: 
 
# fcsts > 4.0  AND # obs > 4.0 
             # fcsts > 4.0 



Simulation study: 
observations & two forecasts 

33 

Suppose we want to know 
the probability that the 
obs > 4.0 | f1 AND f2 > 4.0. 
 
We can make some estimation 
from counting (grey dots): 
 
# f1 > 4.0  AND f2 > 4.0 AND # obs > 4.0 
 # f1 > 4.0  AND f2 > 4.0  



Simulation study: 
observations & two forecasts 
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Suppose we want to know 
the probability that the 
obs > 4.0 | f1 and f2 > 4.0. 
 
We can make some estimation 
from counting (grey dots): 
 
# f1 > 4.0  AND f2 > 4.0 AND # obs > 4.0 
 # f1 > 4.0  AND f2 > 4.0  

This under-sampling problem 
gets worse and worse with 
higher and higher dimension; 
the “curse of dimensionality.” 



Estimating joint probabilities and 
ameliorating curse of dimensionality. 

• More training samples. 
• Model them parametrically. 

– Suppose the joint probabilities depend on the spatial 
characteristics of weather forecast, e.g., scattered heavy 
rain vs. widespread heavy? 

– Then you could sub-divide your training data (scattered 
batch, widespread batch); must evaluate whether sub-
division improves the model more than the reduced 
sample size degrades it. 

• Exploit the joint probability information in the raw 
ensemble (“ensemble copula coupling”)? 

• Schefzik et al., Statistical Science 2013, 28, 616–640. 
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50 raw ECMWF ensemble 
forecasts of temperature 
and pressure at two  
locations. 

from Schefzik et al. , Statistical Science 2013, 28, 616–640 



from Schefzik et al. , Statistical Science 2013, 28, 616–640 
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Post-processing takes 
place independently for each 
variable using BMA following 
Fraley et al., MWR, 2010. 
 
50 discrete samples are 
regenerated independently 
for each variable from the 
BMA PDF. 
 
The correlative structure  
in the raw ensemble is lost. 



from Schefzik et al. , Statistical Science 2013, 28, 616–640 
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Ensemble copula coupling: 
rank-order statistics 
are used to restore the 
correlative structure of 
the raw data while  
preserving the bias and  
spread corrections  
produced by BMA. 
 
Q: were those correlations 
properly estimated by the 
forecast model? 
 
Wilks (2014; DOI:  
10.1002/qj.2414) provides 
an example of where the 
“Schaake Shuffle”  
(climatological covariances) 
are preferred. 
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Modular software and data library 
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It’s hard to determine 
whether someone has  
made an improvement  
when everyone tests  
with their own data set,  
or codes their own  
version of post-processing 
methods & verification 
methods. 
 
Building and supporting 
a reference library 
would help our field 
immensely. 
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42 

NOAA has lots 
of test beds. 
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Post-processing Testbed 

PPT supports development of  
improved decision support tools 
through the statistical post-processing 
of numerical weather guidance.   It 
works hand-in-hand with other  
testbeds. 

Is post-processing 
development 
handled best when  
it’s dispersed 
amongst many  
test beds, by 
application? 
 
Or is a standalone 
post-processing 
test bed with links 
to other test beds 
a preferred  
approach? 
 



Conclusions 

• Users increasingly seek more post-processed model 
guidance; they can’t wait for ensembles to become 
unbiased, perfectly reliable. 

• The end product (high quality post-processed 
guidance) depends on doing each of many steps (data 
gathering, model selection, evaluation, etc.) well. 

• Thorny old statistical challenges still underlie today’s 
impediments to improved forecasts. 

• Greater collaboration and sharing will accelerate 
progress. 

• Finally, thanks to Bob Glahn (and many others at MDL) 
for their pioneering work. 
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Supplementary slides 
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Conventional logistic regression 

46 from Dan Wilk’s article on extended logistic regression, Met Apps, 2009 



Wilks’ extended logistic regression 

47 
g(q) = SQRT(q);   square-root transformation applied to precipitation data as well. 


