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We mean many things by
“statistical post-processing”

Distribution fitting.

Perfect-prog methods.

Physically based statistical models (e.g. DeMaria’s
LGEM).

Model output statistics (MOS; thanks Bob Glahn)

— Implicitly, many methods, not just multiple linear
regression.

— Develop predictive relationships between past observed
and forecast.

— From this, estimate probability distribution of observed
given today’s forecast.

Etc.
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What are customers asking for?

Increasingly, post-processed guidance for weather
related to high-impact events.

. Appllcatlons
Precipitation amount and type, and drought.
— Cloud amount, type, ceiling, visibility, insolation (for solar energy).
— Aviation: Icing, turbulence, winds en route, thunderstorm areal coverage.
— Ship routing, wave height.
— Wind, gustiness.
— Wind power and its “ramps.”
— Tropical cyclogenesis probabilities, TC intensity, location.
— Tornadoes and severe weather.
— Temperature, humidity.

e Characteristics:
— High-resolution (spatial & temporal).
— Low-error deterministic and reliable & sharp probabilistic.
— Probabilities of extremes.
— Time scales: nowcast to decadal-centennial.
— Spatial and temporal correlation structures (multi-variate).

* And so forth.
Post-processing resources for development and
maintenance are limited. How to choose?
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Gathering forecasts,

Higher-resolution models,
more models, run more
frequently

Improved assimilation methods

Improved physics

Frequent model updates &
bug fixes

More ensemble members

observations, & analyzed data.

High-
performance
computing

Can we resolve

High-quality reanalyses for
initialization, statistical model
development, verification

Retrospective forecasts
More stable models

HPC funds to disk space
for rapid access to
past forecasts

this tension?
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NCEP/EMC plans for evolution

of model implementation process
(from 2014 Production Suite Review)

* GFS: implementations yearly, with 2-3 years of
reanalyses and reforecasts.

* GEFS: implementations every other year, with
reanalysis &reforecast from ~ 1999-present.

* CFS: implementations every 4t year, with modern-
era reanalysis reforecast.

We are grateful to NCEP.
Now we need spiffy new methods worthy of this rich data.



Data set details to iron out.

Reanalyses.

— Regular production for reforecast initialization; same model, same resolution,
same assimilation methodology.

— High-res., high-quality surface reanalyses for training, verification.

Reforecast

— # members/cycle? # cycles/day? Frequency? How far into the past?
Structure satisfactory to all while being computationally tractable? [See NOAA
white paper for a start]

— ~ homogeneous forecast errors and bias over reforecast period.

Plentiful, non-proprietary observations (e.g., precipitation
type, severe weather, stream flow, wind power)

Robust supporting infrastructure.
— HPC for reanalysis, reforecast.
— Large amount of rapid-access disk space.
— Computer cycles for post-processing model development.
— Bandwidth for dissemination of high-res. probabilistic products.



http://www.esrl.noaa.gov/psd/people/tom.hamill/White-paper-reforecast-configuration.pdf

Retrospective analyses:
RTMA/URMA

e NWS’s~ 2.5 -3 km mesoscale hourly surface analysis
— covers N America, AK, HI, PR, Guam
— temp, dewpoint, winds, visibility.

— used for verification, training in prominent “National Blend”
project.

* Implementation soon: 3-km HRRR and 4-km NAM blend
for first-guess forecasts.

* Improving, but still concerns about analysis quality, esp.
In mountainous terrain.

 Will need RTMA run in past to cover the same period as
reforecasts.

http://www.mdl.nws.noaa.gov/~blend/blender.prototype.php



Noticeable differences between mesoscale analyses

O—B



http://www.mdl.nws.noaa.gov/~blend/blender.prototype.php
http://www.mdl.nws.noaa.gov/~blend/blender.prototype.php

Reforecast sample size: how many?

Amount

a few are
sufficient

a very
large
number
needed

Post-processing application

Short-range forecasts of surface temperature, dew point
Short-range wind forecasts
Forecasts of light precipitation events

Wind-power “ramp” events and wind-error spatial
correlations

Extended-range temperature and precipitation, temperature
extremes

Forecasts of heavy precipitation events
Tornado forecasts

Space-time correlation structure of hydrologic forecast
errors

There is no one optimal reforecast configuration for all applications. 15
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This step can be time consuming.
We need the exploratory data analysis and fast modeling tools of science fiction.
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— “ bias-variance tradeoff ”
— “ extrapolating the regression ”
— “ curse of dimensionality ”

 More modular, reusable software.
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“Bias-variance tradeoft”

Example: let’s demo NCEP/EMC’s “decaying average” filter used in NAEFS
for estimating bias with simulated data

Generate daily time series of truth, simulated observations (100x), and simulated forecasts
(100x) under the condition of seasonally varying bias:

Truth T = 0.0 (always)

Bias: The true (but unknown) forecast bias for julian day t: B, = cos (2mt/365)

Analyzed for day t = truth + random obs error: , N
x =T+eA, where e A~ N(0O, 1/3), iid each day.

Simulated biased forecasts for day t generated w. auto-correlated error via Markov Chain:
x/-B, =ke(x,/—B,,)+e/, where e/~ N(0,1), iid each day; k=0.5

EMC’s decaying-average bias correction: bias estimate B, is
B, = (1-a)-B, ; + a-(x/ — x*)

a is a user-defined parameter that indicates how much to weight most recent bias estimate;
large a akin to overfitting in regression analysis. 21



Bias-Variance Tradeoff for Decaying Average Filter
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Minimizing the bias-variance tradeoff

* Sometimes, change form of model and/or choice
of predictors:

Forecast = a + befcst + cecos(2mt/365) + d*sin(2mt/365)

* Increase the training sample size.
— Overall increase (reforecasts).

— Selective increase™*: estimate some parameters with
local data, others with regional or global data.

— Example: precipitation forecast adjustment.

e Parameters related to terrain-related bias: local data.

* Parameters related to ubiquitous drizzle over-forecast:
regional data.
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CCPA analyzed amount (mm)

CCPA analyzed amount (mm)

Extrapolating the regression

(that is, getting accurate predictions at and beyond the fringes of training data)

Ithaca, NY 2002-2013 Jun-Jul-Aug Precipitation, GEFS mean and CCPA analyzed
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Predictive CDFs for the four batches
(given GEFS mean forecasts of 5 mm, 25 mm)

Ilthaca, NY & supplemental locations, Jun-Jul-Aug
Extended Logistic Regressmn forecast =5, 25 mm
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Despite the use of supplemental training data, there is great predictive uncertainty
from ELR amongst the four batches when the forecast = 25 mm.



Predictive CDFs for the four batches
(given GEFS mean forecasts of 5 mm, 25 mm)

Ilthaca, NY & supplemental locations, Jun-Jul-Aug
Extended Logistic Regression, forecast = 5, 25 mm
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Despite the use of supplemental training data, there is great predictive uncertainty
from ELR amongst the four batches when the forecast = 25 mm.



Ameliorating predictive model uncertainty
when forecasts are extreme

 Some post-processing methods may be more
sensitive than others, so test, test, test.

* Again, increase sample size.
— Data from supplemental locations.

— Reforecasts and analyses spanning decades.

* |D additional predictors with correlations to
predictand.
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The curse of dimensionality:
a motivation

QAD Hydrologists want
to know not only the y >

/ intensity of rainfall,

/ / / \ but whether or not
that intense rainfall
will fall simultaneously
in many nearby
sub-basins.

a problem
when marginal
& joint probs.
are not well
forecast

What is the “copula”
structure, i.e., the joint
probabilities?

No problem

30
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Simulation study:
observations & two forecasts

Forecast 1 vs. Observed

g Suppose we want to know
the probability that the
obs > 4.0 | forecast 1 > 4.0.

We can make some crude
estimation from counting:

# fcsts > 4.0 AND # obs > 4.0
# fcsts > 4.0

Observed

Forecast 1



Simulation study:
observations & two forecasts
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Forecast 1 vs. Observed

Suppose we want to know
the probability that the
obs >4.0 | f1 AND f2 > 4.0.

We can make some estimation
from counting (grey dots):

#f1>4.0 ANDf2>4.0 AND # obs >4.0

Forecast 1

#f1>4.0 ANDf2>4.0

33



Observed

Simulation study:
observations & two forecasts

Forecast 1 vs. Observed
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This under-sampling problem
gets worse and worse with

higher and higher dimension;
the “curse of dimensionality.”



Estimating joint probabilities and
ameliorating curse of dimensionality.

More training samples.

Model them parametrically.

— Suppose the joint probabilities depend on the spatial
characteristics of weather forecast, e.g., scattered heavy
rain vs. widespread heavy?

— Then you could sub-divide your training data (scattered
batch, widespread batch); must evaluate whether sub-
division improves the model more than the reduced
sample size degrades it.

Exploit the joint probability information in the raw
ensemble (“ensemble copula coupling”)?

Schefzik et al., Statistical Science 2013, 28, 616—640.
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Statistical Science 2013, 28, 616—640
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(b) Individual BMA postprocessing

from Schefzik et al. , Statistical Science 2013, 28, 616—640
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Post-processing takes

place independently for each
variable using BMA following
Fraley et al., MWR, 2010.

50 discrete samples are
regenerated independently
for each variable from the
BMA PDF.

The correlative structure
in the raw ensemble is lost.

37



11

6 7 8 9

1008

1004

6 7 8 9 11 1004 1008
| I. L1 1 - I. | | |
Temperature Berlin ‘s Y e ‘e o * -
*eQ * . * \:‘ ’ o L,
e ] \ .’h.. b * , o
[ ] .c. .. : L .-. ..‘.. ° . .?
.
® e . .. o®
. ] ] .
.: o’ Temperature Hamburg : : ’o “ :.
¢ * 9 ® [ ) Q.
F
e & P a ""” ... ® ;e U‘o
° ° ° [ ] o L * 4 ° ™ \ * 1) ° .
e ® [ ] o ® L . . . . °
® ® L] [ ] L [}
~.o ™ o« % e ° ¢
° L .t .-
[] ® ‘ ®
.o.:. U 0.'.‘.‘ . Pressure Berlin :.:.%
Y - ™ % o° ‘e
- (Y 4 [ ] ’ ® ® '. ®
.‘ 4 ®e ';
) ™ . )
S ‘et ‘ o
e® 8 * e ®
\ ™ o™ * b S
® o ° * .
%, . ..l ® ...
- ’ By
o': g: . ‘e o’ ;., o o ':.:: Pressure Hamburg
e @ ® * o o 4
':.&P. . $° g ¢ M.
.. ® ’ ® ¢ L o ¢ ® :.
’. ’ L] ‘ L]
* o [ ] .. L .h ..'. . .
[ I .I I o° I * [ T I |
6 8 10 12 1002 1006 1010

(c) ECC postprocessed ensemble

from Schefzik et al. , Statistical Science 2013, 28, 616—640
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Ensemble copula coupling:
rank-order statistics

are used to restore the
correlative structure of
the raw data while
preserving the bias and
spread corrections
produced by BMA.

Q: were those correlations
properly estimated by the
forecast model?

Wilks (2014; DOI:
10.1002/qj.2414) provides
an example of where the
“Schaake Shuffle”
(climatological covariances)
are preferred.
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Modular software and data library

It’s hard to determine
whether someone has
made an improvement
when everyone tests

with their own data set,
post-processing methods or codes their own
version of post-processing
methods & verification
methods.
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Building and supporting
a reference library
would help our field
immensely.

standard test data sets

|/O routines
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AWT tests new science and technology
to produce better aviation weather
products and services.

Developm‘nil Testbed Center

T 5, 3%

DTC improves weather forecasts by
facilitating transition of the most
promising new NWP techniques from
research into operations. (Charter)

Hydrometeorology Testbed

HMT conducts research on precipitation
and weather conditions that can lead to
flooding, and fosters transition of
scientific advances and new tools into
forecasting operations. (Charter)

Operations Proving Ground

OPG serves as a framework to advance
NWS decision-support services and
science & technology for a
weather-ready nation. (Charter)

Climate Tegtbod

CTB accelerates transition of scientific
advances from the climate research
community to improved NOAA climate
forecast products and services. (Charter)

GOES-R Proving Gound

v

GRPG tests and evaluates simulated
GOES-R products before the GOES-R
satellite is launched into space. (Charter)

JCSDA accelerates and improves use of
research and operational satellite data in
weather, ocean, climate and
environmental analysis and prediction
systems. (Charter)

Space Weather Prediction Testbed |
\ . \ - 5

SWPT supports development and
transition of new space weather models,
products, and services. Infuses new
research to improve accuracy, lead-time
and value of products, forecasts, alerts,
watches, and warnings. (Charter)

Coastal & Ocean Modeling Testbed

NOAA has lots
of test beds.

COMT accelerates transition of advances
from the coastal and ocean modeling
research community to improved
operational ocean products and services.
(Charter)

Hazardous Weather Testbed

HWT accelerates transition of new

meteorological insights and technologies
into advances in forecasting and warning
for hazardous weather events. (Charter)

Joint Hurricane Testbed

JHT is a competitive, peer-reviewed,
granting process to choose the best
mature research products for testing and
transitioning to operations. Includes
modeling, data gathering, and decision
support components. (Charter)
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AWT tests new science and technology
to produce better aviation weather
products and services.

Developm‘nil Testbed Center

T 5, 3%

DTC improves weather forecasts by
facilitating transition of the most
promising new NWP techniques from
research into operations. (Charter)

4

Hydrometeorology Testbed

HMT conducts research on precipitation
and weather conditions that can lead to
flooding, and fosters transition of
scientific advances and new tools into
forecasting operations. (Charter)

OPG serves as a framework to advance
NWS decision-support services and
science & technology for a
weather-ready nation. (Charter)

Climate Tegtbod

CTB accelerates transition of scientific
advances from the climate research
community to improved NOAA climate
forecast products and services. (Charter)

GOES-R Proving Gound

v

GRPG tests and evaluates simulated
GOES-R products before the GOES-R
satellite is launched into space. (Charter)

JCSDA accelerates and improves use of
research and operational satellite data in
weather, ocean, climate and
environmental analysis and prediction
systems. (Charter)

Space Weather Prediction Testbed |
\ : . '—\_ 5

SWPT supports development and
transition of new space weather models,
products, and services. Infuses new
research to improve accuracy, lead-time
and value of products, forecasts, alerts,
watches, and warnings. (Charter)

Coastal & Ocean Modeling Testbed

COMT accelerates transition of advances
from the coastal and ocean modeling
research community to improved
operational ocean products and services.
(Charter)

Hazardous Weather Testbed

HWT accelerates transition of new
meteorological insights and technologies
into advances in forecasting and warning
for hazardous weather events. (Charter)

Joint Hurricane Testbed

JHT is a competitive, peer-reviewed,
granting process to choose the best
mature research products for testing and
transitioning to operations. Includes
modeling, data gathering, and decision
support components. (Charter)

Post-processing Testbed

PPT supports development of
improved decision support tools

through the statistical post-processing

of numerical weather guidance. It
works hand-in-hand with other
testbeds.

Is post-processing
development
handled best when
it’s dispersed
amongst many
test beds, by
application?

Or is a standalone
post-processing
test bed with links
to other test beds
a preferred
approach?
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Conclusions

Users increasingly seek more post-processed model
guidance; they can’t wait for ensembles to become
unbiased, perfectly reliable.

The end product (high quality post-processed
guidance) depends on doing each of many steps (data
gathering, model selection, evaluation, etc.) well.

Thorny old statistical challenges still underlie today’s
impediments to improved forecasts.

Greater collaboration and sharing will accelerate
progress.

Finally, thanks to Bob Glahn (and many others at MDL)
for their pioneering work.
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Conventional logistic regression

Denoting as p the probability
being forecast, a logistic regression takes the form:

_ explf®)]
P T explf )]

where f(X) is a linear function of the predictor variables,
X,

(1)

fX) =bg+b1x1 +byxy+ -+ +bgxg (2)

The mathematical form of the logistic regression
equation yields ‘S-shaped’ prediction functions that are
strictly bounded on the unit interval (0 < p < 1). The
name logistic regression follows from the regression
equation being linear on the logistic, or log-odds scale:

ln[1 P ]=f(x) (3)
— P



Wilks” extended logistic regression

potentially promising approach is to
extend Equations (1) and (3) to include a nondecreasing
function g(g) of the threshold quantile g, unifying
equations for individual quantiles into a single equation
that pertains to any quantile:

explf (x) + g(q)]

— 5
PO = T explf )+ 8@) ®
or,
In [L‘”} = f&x) +g(q) ©6)
1—p(g)

One interpretation of Equation (6) is that it specifies
parallel functions of the predictors x, whose intercepts
bo*(q) increase monotonically with the threshold quan-
tile, g:

ln[ r(q)

] =bo+g(q) +bix1 +baxa+ -+ + bgxg
1 — p(q)

= by(q) + b1x1 + byxy + -+ + bgxg (7)

g(q) =SQRT(qg); square-root transformation applied to precipitation data as well.



