NEW AVN MOS GUIDANCE

J. Paul Dallavalle

CAFTI - FEBRUARY 3, 2000

http://www.nws.noaa.gov/tdl/synop/results.htm
http://www.nws.noaa.gov/tdl/synop/cafti.htm
AVN MOS GUIDANCE

A NEW LOOK

- Available for 1000+ Sites in CONUS, AK, HI, PR
- Predictands from Current Observing System
- Predictands to 72 h
- Model Predictors from 95.25 km Grid
- Model Predictors valid every 3 h to 72 h
- 0600 / 1800 UTC AVN MOS Packages
AVN MOS SEASONS

- WARM SEASON (APR. - SEPT.)
 » FINAL EQNS.:
 - APR. 1, 1997 - OCT. 15, 1997
 - MAR. 16, 1999 - OCT. 15, 1999

- COOL SEASON (OCT. - MAR.)
 » FINAL EQNS.:
 - SEPT. 16, 1997 - APR. 15, 1998
 - SEPT. 16, 1998 - APR. 15, 1999
AVN MOS SEASONS-TESTING

- WARM SEASON INDEPENDENT DATA
 - LAST 15 DAYS OF APR., MAY, JUNE, JULY, AUG., SEPT. 1998 (WINDS)
 - APR. 1999 - SEPT. 1999 (TEMP. / DEW PT.)

- COOL SEASON INDEPENDENT DATA
 - LAST 15 DAYS OF OCT., NOV., DEC. 1998; AND JAN., FEB., MARCH 1999
AVN-BASED MOS GUIDANCE

- Wind Speed/Direction
- Max/Min Temperature
- 2-M Temperature/Dew Point
u- and v-wind components, wind speed, 2-m temperature, 2-m dew point - valid every 3h from 6 to 72 h after 00 or 12 Z

Daytime max (0700-1900 LST): ~ 24, 48, 72h after 00 Z; ~ 36 and 60h after 12 Z

Nighttime min (1900-0800 LST): ~ 36, 60h after 00 Z; 24, 48, 72 h after 12 Z
AVN MOS TEMP/WIND PREDICTORS

- MODEL VARIABLES

- OBSERVATIONS AT 03 UTC OR 15 UTC
 - FOR WIND, TO 15H PROJECTION
 - FOR TEMP/DP, TO 39H PROJECTION

- GEOCLIMATIC VARIABLES
 - SINE/COSINE DAY OF YEAR & TWICE DAY OF YEAR
MOS TESTING STRATEGY

- Develop test equations
- Make forecasts on independent data
- Verify ~335 stations clustered by regions
VERIFICATION MEASURES

- WIND SPEED
 - MEAN ABSOLUTE ERROR, HEIDKE SKILL SCORE, PROBABILITY OF DETECTION

- WIND DIRECTION
 - MEAN ABSOLUTE ERROR, CUM. REL. FREQ. OF WIND DIR. ERRORS OF 30° OR LESS

- TEMPERATURE/DEW POINT
 - MEAN ABSOLUTE ERROR
CONCLUSIONS

- AVN MOS WIND GUIDANCE IS SUPERIOR TO NGM MOS
- AVN MOS TEMPERATURE GUIDANCE TENDS TO BE MORE ACCURATE AT ≥ 36H PROJ. IN COOL SEASON; NGM MOS TENDS TO BE MORE ACCURATE IN WARM SEASON AT ≤ 48H PROJECTION
- AVN MOS DEW PT GUIDANCE TENDS TO BE MORE ACCURATE THAN NGM MOS
- REGIONAL VARIATIONS EXIST
MOS GUIDANCE

Implementation Plans

- Apr. 2000 - AVN MOS Message (00Z / 12Z)
- Apr. 2000 - New MRF MOS Message
- Oct. 2000 - Complete AVN MOS (No Snow)
- Oct. 2000 - Complete MRF MOS (No Snow)
- Oct. 2000 - Partial AVN MOS (06 / 18Z)
- Oct. 2000 - Eta MOS Thunderstorm Guidance
- Apr. 2001 - NGM MOS Removed
<table>
<thead>
<tr>
<th>HQLB</th>
<th>RVN</th>
<th>MOS GUIDANCE</th>
<th>10/24/1999</th>
<th>0000 UTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT /OCT 24</td>
<td>/OCT 25</td>
<td>/OCT 26</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>HR</td>
<td>06</td>
<td>09</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>X/N</td>
<td>49</td>
<td>30</td>
<td>61</td>
<td>43</td>
</tr>
<tr>
<td>TMP</td>
<td>32</td>
<td>30</td>
<td>30</td>
<td>41</td>
</tr>
<tr>
<td>DPT</td>
<td>25</td>
<td>23</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>CLD</td>
<td>CL</td>
<td>CL</td>
<td>CL</td>
<td>CL</td>
</tr>
<tr>
<td>WDR</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>31</td>
</tr>
<tr>
<td>WSP</td>
<td>06</td>
<td>06</td>
<td>06</td>
<td>11</td>
</tr>
<tr>
<td>P06</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P12</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Q06</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Q12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T06</td>
<td>0/7</td>
<td>0/1</td>
<td>0/2</td>
<td>0/4</td>
</tr>
<tr>
<td>T12</td>
<td>0/7</td>
<td>0/3</td>
<td>4/2</td>
<td>14/4</td>
</tr>
<tr>
<td>TYP</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>P02</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>P03</td>
<td>64</td>
<td>2</td>
<td>0</td>
<td>95</td>
</tr>
<tr>
<td>3NU</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CIG</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>VIS</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>OBV</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>
FUTURE MOS EFFORTS

- Binary Forecast Products (BUFR)
- New Forecast Sites
- Additional Forecast Elements (new weather element definitions, 6/18Z cycles, Eta model)
- Increased Temporal Resolution in Forecasts
- Periodic Update of Forecast Equations
 - After initial implementation, equations will be updated seasonally
 - Seasonal update will be done if archived data indicate a need for the update