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ABSTRACT

The linearized two-dinensions! hydrodynamic equations are presented ina manner which displays the principal

a=sumptions involved.

Several approximations are developed for the partial derivatives, and houndary conditions
in fnite difference form and the associnted errors are diseussed.

The procedure for establishing a finite differenee

analog of the cquations of motion and boundary conditions is illustrated, and computational stability for the solution
of some simple problems is illustrated by means of examples.
The physieal and computational problems associated with the introduction of friction in the computational

model are dizeusscd.
sidered iy others,

1. INTRODUCTION

Tidal hydraulies is concerned with flow and the effects
of flow in shallow basins in which the flow is generally
dominated by long-period gravity waves, such as the
tides, generated in an adjacent =ea or ocean. Interest is
venerally centered in the vertical motion of the free
curface and the horizontal currents.  Sometimes it s
necessary 1o recognize a two-layered structure resulting
from salt water intrusion or a thermocline.  Sometimes
it is sufficient to consider only one space dimension.  The
horizontal boundaries of the basin may be very irregular
and may vary with time, but their existence is an essential
part of the problem. Energy may enter the basin through
the open portion of the boundary in the form of wave
motion, or through the free surface as wind stress. Energy
is presumed to be dissipated through bottom friction.

The equations which govern all tidal hydraulic flows
are too complex to permit a ready solution in any but the
most simple problem. Therefore, most investigations are
conducted with the aid of models in which one attempts
to include only those phenomena which he believes to be
most significant to the investigation. These models may
be analogous, such as the familiar hydraulic models and
the mechanical tide-predicting muchine; they may require
the digital or analytic solution of a set of differential
equations, or the statistical analy=is of observations.  For
maximum effectiveness, all models. phy=ical and statistieal
as well as dynamie, should be based on a mathematical
analvsis of the physical problem.  However, useful results
can be obtained from both hydraulic and statistical
models, even though this process is not fully developed.

The application of digital caleulation on an electronie
computer to the statistical analys=is of storm surge genera-

tion has been discussed by Harris [7], Harris and Angelo

T s coneluded that friction should be negleeted inomany problems but that it must be con-

[9]. and Pore [19]. A similar application of digital caleu-
Lations to the analvsis and prediction of tides is given by
Harris, Pore, and Cummings [10].

This paper is concerned primarily with the applieation
of divital ealeulations to the solution of the hydrodynamic
equations in two horizontal dimensions.  The mathema-
tical backeround will be discussed from the point of view
of showing both the weaknesses and strengths of digitul
caleulations as compared to other methods of solving
similar problems. No attempt is made at a rigorous
development of the ideas presented if these can be found
in a reasonably available reference. Examples of the
culenlations made by several of the computational models
for very simple basins are presented.

9. THE HYDRODYNAMIC EQUATIONS

Since interest is centered in the horizontal flow and
the motion of the free surface, it is natural that the
principal simplification should take the form of a vertical
integration of the primitive equations. This process can
be carried out with various degrees of rigor. Many
writers have derived the equations of motion and con-
tinuity directly in integrated form, but this procedure
does not show the approximations involved nearly so
clearly as the derivation based on the integration of the
primitive equations. The techniques of this integration
have been shown by Haurwitz [11], Welander [24], Fortak
(4], and Platzman [18].  Nearly all of the other derivations
can be obtained as special cases of that given by Fortak.

The two-dimensional hvdrodynamic equations may be
<tated 0 either of two equivalent forms.  Until the in-
troduction of digital computations with these equations,
(e form based on the mean current veloeities was generally
preferred. Sinee then the use ol the volutne tran=port
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The reazon for this will
A form of the volume trans-

veetor lus cained popualarity.
bhe viven inow later section.
port equantions which contains most of the terms used by
any worker m this Held and a few error terms that st
be discarded to obtain o solution are eiven below. This
form would be valid if (1) the fluid were homovenpou=: (2]
the pressure were given by the hvdrostatic equation; wd
(3) there (Surfuce waves, not
recognized I this model, will produce sienificant effecr=
on sea level in some regions (Harris [8]).)

were 1o .‘wIII'[’:l('(_' wayes.

o + 1 ) ()p
o™ "“D

_]_ {53 SR . ) e ( )
p[ " tapl— V= Y D+h

T f)—|—ff)+a.{‘f (u')'de

a Hi T _
+5f_)‘§f—p (w)dz, (1)

ol”
Y -I-:;H( +5 )

ol oh 4E ap,l
ot atl (H_D a; ( +D
Liw. _w Pt o B Yy O il
T =" Real L D—I—h) +a:; D+ ia)
& et
| i) Ty o 5 Y2 D
TaJ.' X o (H L )'r"‘ i a Faw (E ) d") ‘\-,]
oh O? oV - [“" _ T il T
57 i OU =(); U 1 udz, 1 —-J_D vz (3)

u, v, components of horizontal motion

w'=u-— U/ (D+h)

' =e—TV/(D+h)

p=den=ity of water

Pe=ntmozpheric pressure

Wy W components of surfuee stress: Wr_,, We 4 com-
potents of bottom stress

D=depth of undisturbed fluid

h=disturbanee in the heieht of free surface

g=naceeleration of gravity

7=C'oriohs parameter

Sinee the atmospherie pressure and the surface stresses
are not sicnificantly affected by the water motions heine
it st be owssumed that
will be supplied from other sources,

con=tdered in this paper, they
Con=ideration of the
frictional dissipation terms will be deferred to the end of
the paper.

frietion

purtly from Inek of knowledze of the proper
faw, and partly to avold certain complications
that may arise in the dizcussion of computational stabilin

The

are also neclected for laels of infor-

o friction b= wiroduesd too carly, integrals in

caiations Chand (2)

nalion required to compute them.
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The boundary condition natural to the problem is no
flow seross a closed boundary.

The principal features of tidal hydraulics
can be better displayved in a linearized version of equations
(1)=(3). We may return to the initial set of equations for
correction terms as needed or to determine the nature of
the errors resulting from neglected terms. The linearized
equitions may be eiven in the form:

computations

c) 7o Gl gﬁ“— VKU D=—Dp™! a}" +afp (4)
B 2 S+ U+ KV [D=—Dp af}ww wlo (5)
ol i
3o oy (6)

3. FINITE DIFFERENCE EQUATIONS

To obtain a digital solution of the above equations it is
necessary to approximate the differential quotients by
finite differences at discrete points in time and space.
Suitable approximations can be derived from Taylor
Series expansions of the funetions as illustrated below:

F'(e-FAr) may be written as

;u_@ &F (2)

du

F(z+Az)=F (2)+ Azt (A5)2/2!

+‘Pf( D (axpsit ... (@)

[f only the first two terms of this series are considered, one
obtains
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where the error, ¢, is given by
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Equation (5) is ealled a two-point forward difference.
A better approximation for many purposes can be obtained
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where the error, e, is given by
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Fquation (11) is ealled a central difference form.  Other

approximations to the differential quotients can be con-

dructed as needed by extensions of this prineiple. A

three-point forward difference that will be needed later is

dF 1 S : . .
A . B (R - o AN Bl ARy e T
s s 31(x) +4F(r+Az) — Fr--2A2) e
A F() (Az)? o
AT T4 3 (13)

The dependence of F on both z and y can be considered
Ly means of a Taylor expansion of the function in two
dimensions. One such expansion which will be needed
luter is given by
OF(x, y) 1

or  (4a-2h)As
4 Fle+Ar, y—Ay)— Fla—Az, y—Ay) )
+b{ Fle+Az, y)— Fle—Az,y) 1]

[a{ F(z+Ar, y+Ay) —F(ze—Az, y+A7)

(14)
Ar=Ay=As
Equation (14) can be written in a more compact form as
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This form has been derived in a somewhat different
manner by Shuman [23] who sets a=1, b=2, and calls
this a “filter factor form”.  The reason for this name will
be viven Inter. Tt should be noted that if a=0 and b=1,
equation (15) reduces to (11). Lauwerier [13] used a
form of (15) in which a=1, b=0, and showed that this
fus severnl desirnble properties not possessed by (11).

Equation (11) is the most widely used approximation
for of /o in the digital solution of problems whose
solutions are expected to be some type of wave. It is
frequiently unaceeptable for the time derivative in dealing
with diffusion problems; however, tidal hydraulies 1%
wainly concerned with waves, and it appears that satis-
factory solutions tor many problems can be based on
eqition (11). By combining equation (11) with equa-
tions (4)-(6) and ignorine the bottom stress, the following
rpnations are oblained.,
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e 5 . .
Jr ;‘;:’{;‘—j\__.! po U AV =T (18)
Here the notation F7, means Flidr, jAy. mAt).  The

pressure gradient term has been combined with the sur-
face stress term to obtain a simpler equation because
both of these terms must be supplied and the pressure
term is not the source of any computational difficulties.
The deusity has been absorbed into the symbol 7 in
order to simplify the notation in the remainder of the
paper. This does not call for any numerical changes as
the constant density may be taken as one unit, but in
dimensional checks it must be remembered that r is
stress per unit mass.

An examination of equations (16)—(18) shows that the
caleulations of U and V for even time steps can be effected
by using A values for only odd time steps and vice versa.
Caleulation of U and V at points 4, j, in this manner does
not require a knowledgs of & at the same points. Like-
wise the calculation of A at 1, j does not require any knowl-
edee of U7 or V at i, 7. In short, this computational grid
consists of several interlocking sub-grids such that the
caleulation of & on one grid requires a knowledge of U, V'
ove time step removad on a different grid. This feature
has been discussed extensively by Platzman [17], [18],
and Welander [24]. Many workers take advantage of
this fact to reduce the machine time required for a com-
putation. Others prefer to compute on all available
interlocking grids, and to compare the semi-independent
solutions to obtain a measure of the error involved in the
caleulations.  In this study, the field values are computed
on each and every grid point including the boundaries
for every time interval. The calculations are staggered
neither in time nor space.

4. COMPUTATIONAL STABILITY

Any finite difference expression for differential quotients
cenerally involves both round-off and truncation errors,
since the ealeulations can be carried out only to a finite
number of decimal places, and because the approximation
for the derivative is based on an incomplete deseription
of the functions. It can be shown that the time depend-
ence of the error is approximated by functions of the type

e= A, e le=idlt (19)
If .1 med e ave both different from zero, the error will
crow with time until it ultimately exeeeds the true solu-
tion, amd the computation is said to be unstable.  Na
Ay =0,
Theorems have been developed Tor msuring that e will

method has been found for insuring that

vanish in certain eases. These theorems generally impose

a liniting valoe for A i the form
AL M (20)

where M ois o linear funetion of A and may depend on
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other parameters of the problem. The form of equation
(200 depends on the particular finite difference prediction
equations employved, and may be altered if any term is
climeed, or il any new terms are added.

It is rarely possible to establish the requirements for
computational stability for geophysieal  hydrodaynamic
problems in any rigcorous mamier.  Theory can be used as
a cnitde in the construction of finite difference systems
which may be sufliciently stable for practical problems
but the final proof of stability must come from test cal-
culations.  One of the prineipal symptoms of ecomputa-
tional instability is a growth or decay of energy in the
system, which does not result from those terms of the
equations which should add or subtract energy. Thus
an coffective test for instability can be constructed by
introdueing a disturbance into the numerieal model and
monitoring the total energy of the solution through several
oscillations of the primary mode when both forcing terms
and dissipating terms are omitted from the equations.

Since computational instability usually takes the form
of an unreasonable growth of energy in the system, it was
initially thought that the instability found in the solution
of practical problems resulted from using too low a value
for the frictional dissipation, and efforts were made to
control this instability by the introduction of larger fric-
tion coefficients for the additional dissipation terms.

One of the first thorough examinations of the computa-
tional stability of a tidal hydraulics problem was pub-
lished by Fischer [3]. He used forward time differences
for the transport terms 7 and 7, and backward time
differences for the heicht.  Central differences were used
for all space derivatives.  His stability analysis indicatad
that

AMSKIDE, £5#0, and A< Ar/\ g2 (21)
with the notation used in this paper. See Appendix 5.

Thus very short time intervals have to be used with
this svstem 1F the water 15 very deep, and ealeulations
near the equator would be impossible.

The form of equations (9) and (12) shows that the
truneation error is hichest in the higher-order harmonics
of the basin. A little reflection will show that this iz also
true of the round-off ervor. Thus one may expect to
reduee instability by introducing some process which will
remove all traces of the highest harmonte and will damp
the other high harmonies.
“smoothine.” It is especially important and
espectally diflicult to treat properly non-linear
terms ol the equations are being considered becanse of

This process is ealled “filter-
ing” or

wlien

the tendencey of non-linear terms fo divert energy from
the ]rl'i.‘uti]::li harmonies to tho=e with both hi;hvl' el
lower wave numbers,  Unfortunately, most [ilters which

remove the unwanted Ligher harmonies of the sy=tem also

el Lhe CHeTL conteat of other harmonies as w l'H. Al
oreal o care |||li.-~llhi' |'1-t|r|ir'|-s| 1 i'lJIl%li'Il:'!‘Iri;' fhors whiels
vetioy e the diffienbi-to-treat hieh harmontes  withom
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Exten-
sive dizcussions of the construction of numerieal filtering
functions have been viven by Shuman [22] and Holloway
[12].

It ean be shown by methods discussed by shuman and
Holloway, that the numerical filter,

seriously affecting the phenomena being studied.

F(_,J'_} : _IL [Fle—Ar)+2F(x)+ FlotAr))

will eliminate the harmonie with a wavelength of 2ar,
which is found to be the most troublesome, without intro-
ducing a phase shift or changing the mean value of F(z)
over any extended range. Extending the above filter
to two dimensions as in Appendix 4 justifies setting
a=1, b=2 in equation (15) and calling the resulting
central difference form the “filter factor form.” With
these values of ¢ and b, the filter factor form eliminates
wavelengths of 2Az in either the = or y directions.  Several
other types of smoothing can be used to improve the
computational stability. The selection of the best method
for a particular problem requires an understanding of the
physical processes which are important to the problem.
Some subjective judgment based in part on the solution
of identical problems with two or more different values of
A andd Af 18 nearly always necessary.

5. FACTORS FAVORING THE TRANSPORT FORM OF
THE INTEGRATED EQUATIONS

Continuity considerations require that the total trans-
port through a channel of variable cross section must be a
reasonably smooth function of distance.  Thus the mean
speed increases in restrieted passages and decreases in
more open recions,  Since the mean speed varies more
with position than the total transport, the higher har-
monics in a Fourler expansion of the speed have larger
amplitudes than the corresponding harmonies in a Fourier
expunsion of the total transport field. The increased
importance of the higher harmonies cuauses greater dis-
tortion of the true solution by smoothing or filtering
operators when mean veloeity terms ave used instead of
Neither of these deficiencies in the
nmean veloeity equations exists when analytic solutions of
the equations are obtained.  Thus they result only from
the application of finite dilference methods.

the transport terms.

6. FINITE DIFFERENCE REPRESENTATION OF THE
BOUNDARY CONDITIONS

Much of the present understanding of the compnta-
tiotal ~[111.l1|i[_\' and the use {!I‘hllllllllllilsj_" finetions in tidal
hyvdenulics problems <tems from the extensive studies of
numerieal weather prediction. The basie equations of
numerieal weather ||l‘l't“1"iii1| aed tudal }I‘\l!r':lll]il"k e
<t the Irl'iln'ij::” dilferences wre the

LG LeEpsbe

iportanes of the nen-linear terms in the et eorolovien |
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Coblem and the greater importance of variable coelficients
e tidal hydreaulies problem .
Howover, the situation with respect to boundary con-
ons is vastly different.  There are no natieal bhownd-
o in most meteorolozical problems.  Consequently,
meteorologist chooses artificial houndaries in recions
Lant from that of major interest so that the probability
*houndary error penetration into the rvegion of nijor

Corest i= at a minimum.  However, the meteorologist
o~ the advantage of many observations at many levels
onchont his region of interest every day. These ob-

_vations provide realistic initial values at frequent

(o torvals and partially offset the necessity of w orking with

< ther poorly stated boundary conditions.

In tidal hydraulies and oceanography, on the other
Lo, the boundaries are often well defined. Most of the
. formation which can be used in evaluating models comes
om the boundary, and observations from the interior of

(e (luid which could be used to provide initial condlitions

2 oesemr sy

al tirst approximations to the solution of many meteorological problems can be
1 with mindels which eliminate gravity waves, but retain the effects of the eurth's
g The grivity waves are essential to the tidal hivdranlies problem, but o first
sondination may often be obtained without eonsideration of the rotution of the eartli,
re are some problems in Bboth fields in which the conditions are the reverse of those
< tal above, and many problems in hoth fields in which hoth gravity and rotation are
cont, Thus this is not considered to be a fundamental differenee hetween the two

D. Lee Harris and Chester P. Jelesnianski
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Consequently the need for accurate state-
ments of the bowdary conditions is much greater than in
meteorology.  The simplest statement of the boundary
conditions is obtained for a closed rectangular resion ol
dimensions L
Lecome

are very rare.

117 in this ease the boundary conditions

() =ul{l)=0
r(0)=2(11)=0

A solution which is consistent with the true boundary
conditions and the central difference formulation of the
problem can be obtained from the caleulation illustrated
in figure la. Values supplied or computed for odd time
intorvals are shown above the computation point; values
computed for even time intervals are shown below the
line. Tf the Coriolis term must be included, a somewhat
less satisfactory procedure results, illustrated in the same
manner in ficure 1b.  Here the boundary must be thought
of ns moving a distance of As between time steps and the
entire procedure must be considered us a gross approxina-
tion. Real basins rarvely have straight line boundaries,
but if As is small relative to the basin, the true boundary
can be approximated by a short section of a zigzag
boundary constructed on the above principle. Caleula-

i Boundary conditions

u=0 at x=0, and
V=0 aty=0, cnd y=W

%=L

V=0 V=0 V=0 V=0 . V=0 A V=0 B
-— > - - d iy -
=0 u u u=0 u=0 U u u=a
L. . - - —_—— - i ——
A h h h V=0 h v=0 h
v v vV W n v n v
— - - —» — SEEE——- A
u=0 u u=g
|ou=0 u u u=0 u=0 U u=0
| - - —s - —
A h h h v Il h
|
W v v W n v h v
| —_— - —a - - ]
u=0 u u=0
u=0 u u u=0 u=0 ] u u=0
- . - e & -— -— — —a
h h h v=0 v=0
V=0 V=0 V=0 V=0 V=0 V=0
- L e — e - — e # —————®
a Vertical letters {(u) are odd times b
Slant letters (u) are even times
G 1—sehemadic illusteation of o stuple represeatation of the compritation sehoeme wnd honndary condition in the digital solution of

() without rotation, (bt with rotation.
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tions made with this type ol boundary show that the main
features of the flow ean be reproduced with reasonable
CHansen [3], (6] Welander [24]),  Nevertheless,

Heeurney

the many lictitions corner points introduced by this ziezaw
hotndary are souree points for amall-scale disturbances
not cernane to the problen, and the details of the solu-

1im| obtained with this system are of questionable value.

he svstem does not provide values of foat the coast where
they are most needed and where most of the verification
data are to be found.

An alternate system of approximating the true boundary
without the use ol false corner points has been developed
by Platzman [18]. e requires that the flow be parallel
to the seneralized coast at the constline, and applies the
continuity equation for a caleulation of the mean height
in each computation square of length As which is erossed
by the coastline,

A form of the boundary conditions which gives & at the
const and which we believe to be new is given below. This
forny presupposes that transport and height terms are
calealuted at each point of the grid system. If there is
no transport across the line 2=0, equation (4) reduces to
the lorm

oh

6D = =fV -y (24)

If 1735 eonstant, combining equations (24) and (13) eives
1 2As .

= m ___hm Dl ,If ];,-'m Il_ff o 1]
3 l: 6Dy Ve, Bl
Tt 1) vanishes at the coast, equation (24) for oh/0z is in-

determinate. This possibility can be avoided by intro-
dueing the identity

k= (25)

Doh[dr=0(Dh)jor—hoD,or (26)

When this expression is combined with (24
obtuains

) and (13) one

“lfffl"{)ilj__ffg I)J )'_H_A_k fI‘n FF (D 0 b

ho. s~ 4D, ,--—I), g

(27)

The term, D), ; does not appear in this expression, so the
solution does not become indeterminate when ), ; van-
1shes at the shore.  However, it reduces to (25) when D
15 constant.  The acceptability of this expression when
Dy
:.whm\n below that this form does lead to an improvement
in the

=0 at the const has not been tested but it will be

caleulations for some cases of vartable but

noti-

vanishing depths at the shore.  Expressions for the

boundary conditions on the other boundaries ean be
developed inoa similar manner,

TS very convenient  when nl:l.-lirling' (uantitative

analvtic solutions and when diseussing most of the prob-
lems assoctted svith numerical solutions to consider onls

rectangular regions. However, this also presents problems

Vol. 92, No. 9

concerning the proper expressious for the variables at the
points which are common to both boundaries.
with aetual, e.o., curvilineay
and  the problem of corner points should
Henee this is not considered o Funda-
at the present stage of dev Ul{)p—

corner
The ideal solution should deal
houndaries,
ultimately vanish.
mental problem: however
ment 1t 18 esse ntial that corner |1nl||i- he eonstdered 1 1 a
mannver which will minimize errors.  Methods for doing
thiz are presented in Appendix 3.

7. POTENTIAL ADVANTAGES OF DIGITAL

SOLUTIONS

Inspite of the difficulties cited above, the digital method
of solving the tidal hydraulies problem offers eertain
advantages that cannot be obtained by other means.
The most obvious advantage is that the finite difference
formulation of the problem permits u much better approxi-
mation to the actual wind stress and atmospherie pressure
fields than can be obtained in any fluid model.

A second potential advantage of digital solutions in
this field is that once satisfactory numerical representa-
tions have been developed for a given class of phenomena
new basins can be constructed or old ones altered by the
preparation of a few punch cards. The effects of hori-
zontal and vertical gradients of density and of the rotation
of the earth can be added with much greater accuracy
and less cost than in hvdeaulic models.

8. TESTS OF SOME DIGITAL COMPUTATIONS
SCHEMES

Because digital solutions to the hydrodynamic equa-
tions have the potential ability of permitting the caleulu-
ton of the effects of wind stresses and pressure gradients
on the water level at the coast of an ocean or a large luke,
we believe that it is necessary to exploit this technique
in the study of storm surges.  We also believe that the
lvfhmquo when fully developed, should be very useful
inengineering design  studies. The development and
testing of such computational models suffer from several
difficulties not mentioned above. Chief among these is
thut obtained at the shore during
storms contain an unknown increment due to the effecis
of surface waves. This contribution is developed in a
strip less than one mile wide paralleling the coust (Dorre-
stein [1]; Fairchild [2]; Longuet-Higgins and Stewart
(H4]. [15]; Saville [21]). It is not governed by equations
(4)-(6) but it does appear in all of the water lovel obser-
vitions.

surge observations

Next in bnportance are the uncertainties con-
cerning the wind stress field.  Although a solution of the
equations for the wind=driven currents can provide mueh
useful mformation, the computational model cannot be
acdequately evaluated by direet compartson of observed
ard computed water levels,

A series of computational models has been developed
to test the aceeptability of the various finite difference

expressions discus=ed ahove.,  The stability of vach model
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b= heen !:--—Iml |:_\ i.!ih'i:ilm‘ilz;," HEN .'L]'.i_.‘h.'wl foree ol the

tvpe
‘7, =0 for all ¢
A e (<0
S il cos il U< <2y 0
e =T Pairst

Equilibrium conditions are assnmed to preval at -0,

The total enerey (kinetic | potentinly of the basin s
computed for cach time interval,  The details of this
culeulation are eiven in Appendix 1. Al are

closed with no transport uecross the houndarios,

busins
[Sach
basin i rectineular in shape and is 18IS orid steps in
exeept  where the
‘equations are linear the absolute value of the dimensions
has no bearing on the study. The pertinent facts for
each model are given in the figures.
the friction term has heen omitted to avoid any possible
concenlment of computational instability through  fric-
tional dissipation.

The first model tested was that of Fischer [3] deseribed
in Appendix
ficure 2. The oscillations are dia mainly to a phase
difference of (Af)/2 between the transport and  heizht
fields. The stability criterion without rotation  was
found to ba A< Asgl)j2. The free peri il wis approxi-
mately 2637 wnits.  The ceneral features of the heieht
and flow patterns were adequately reproduced in the maodel
without rotation. This could be determined by com-
parizon with an analytic solution.  In the model -
volving rotation the inertial period from the numerical
calculations was approximately 52t units or double
the free period without rotation. The model with
rotation was unstable as predicted in Fischer's theory.

The second model tested was identical to the first except
that central time differences were used after the initial
time step. Several methods of starting the solution
were tested. The solution was not very gensitive 1o
the starting method. The starting method adopted
is described in Appendix 2. The stability eriterion for
the central difference form is given as AM<AsK2 gD,
half of the value found in the previous case. The energy
curves are shown in figure 3. The improvement m
stability over Fischer’s model is clemrly evident. Tt
was necessary to enlarge the geale in order to
evidence of variation of energy with time.

The non-rotating model reproduced the analytic solu-
tion to a high order of accuracy. No analytic solution
in convenient form is known for the rotating model con-
sidered here.
between the inertial frequency and the natural frequency
of the basin mieht be developed if the natural period
In order to test this hypoth-

dimensions otherwise noted; sinee

Az explained nhove,

5. The eneregy calculations are shown in

show

It was suspected that a resonance coupling

were near the inertial period.
esis the previous basin was adjusted to provide a natural
period a little greater than 4541 units.  The resulting
enerey curves are shown in figure 4. The first results
showed computational instability. The ealeulations were
repeated with two smaller values of Af without obtaining
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for Tiseher’s eomputational

model, central spuaee differences, forward or backward 1ime dif-

Frorne 2.—Energy  computation

ferenees, constant depth.

Fiovne 3.—Energy computation for model using ventral differences
in time and space, constant depths natural period cquals one-half
the inertial period for rotating model.

FHERGY [COMVET

Fiotre 4.—Same as fignre 3, except that the natural period equals
0.864 of the inertial period.

any substantial improvement. It appears from these tests
st the eentral difference formulation of the problem is
nearly stable if the frequency of the motion is very differ-
ent from the inertial period, but quickly becomes unstable
i the natural and inertial periods are similar.  In the
eeneral storm surge problem, however, one cannot be

cure that the natural period or the foreing period will not
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Centrnl bme ditferences, Filter foctor spoce chiffererces

W= 1155 F = Notural fregaency

-3 KPP et e

Trovee 5o Same as fgoee 4, exeept that the fileer fuetor form is

used for space differences, &

Fioune 6—Schematie illustration of the variable depth basin nsed
in testing computational stability.

approach the inertial period, therefore the search for a
nmore stable computational system was continued.

The third model tested was identical to the last in its
physical characteristies.  However, the filter factor form
was used.  Several subtle changes in the numerical anal-
ysis ure vequired to obtain a consistent set of prediction
equations.  In order not to interrupt the present flow of
thoueht on the computational stability problem, a de-
tailed discussion of these changes is deferred to Appendix
4. The important consideration here is the improvement
in computational instability obtained with the filter fuctor
form, as shown by the energy curve in figure 5. Again it
became necessary to expand the seale to show any varia-
tion of energy. This form appears to be sulliciently
stuble, even when Coriolis terms are included.

In the fourth test, the constant depth was replaced by
the depth Taw

MONTHLY WEATHER REVIEW

Vol. 92, No. @

F—— T
|
B -

e Y 8 B s

I P———

Figrrr 7.—Energy caleulation for variable depth model with stress
parallel to the depth contours, central time differences, filtered
factor space differences, no rotation.
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—Same as figure 7, but with rotation.

depicted in figure 6. No instabilities were observed with
or without rotation of the basin on a 36>36As grid.
The results are not shown.

The fifth test was identical with the preceding one, -
except that the depth law was changed to

A Al
Dir, ) f u"'k%,-— y+h.

This 1= equivalent to rotating the basin shown in figure 6
by 907 so that the stress is parallel to the bottom contours,

The energy curves obtained from an 18 2 18As grid
without rotation are shown in ficure 7. The =olud curve
wis obtained with boundary conditions of the form of
equation (25}, The dashed line was obtained with hound-

ary conditions of the formt of equation (27). Ilere it is
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seen that the form of the houndary conditions can affeet
the computational stability and that instability may take
the form of u eradual loss as well as o growth of energy,

The CHEerTy curves obtatned with rotation are shown in
fignre 8,
and the dashed Tme with (27).
variable depth maodels are more complex than those of

The solid line was obtained with equation (25
The flow patterns of the
the constant depth models.  Thus a hetter deseription of
the flow and an improvement in the computational sta-
bility ean be obtained by using smaller values of Ar
This is particularly true when the rotation of the earth is
considered.

9. THE PHYSICS OF THE DISSIPATION PROCESS

The least understood of the problems involved in the
construcetion of hydraulic models is the proper method of
dissipating energy. A physical analysis of the problem
indicates that the prineipal eause of dissipation over a
rigid bottom in shallow water is skin friction and that
this should depend on the bottom roughness and the
velocity vector near the bottom. The resulting stress is
proportional to the velocity gradient at the bottom and
is believed to be proportional to the square of the speed
at the upper limit of the boundary layer, and directed
oppositely to the bottom current vector.  However, the
caleulations discussed above provide values only for the
mean current averaged throughout the depth of the fluid.
In severe storms, the instantaneous motion at the bottom
may be dominated by wind waves and swell to a depth
of a hundred feet, and even the resultant motion, averaged
over many wave periods, may have any orientation
relative to the mean current motion. The direction, as
well as the magnitude, of the bottom stress vector is
frequently indeterminable from the other information
provided by the calculation.

The above considerations apply to both physical and
mathematical models. When only the transient periods
involving the build-up of a disturbance are considered,
the quantitative accuracy of published computations
appears to be independent of the assumptions made about
the bottom stress, and a wide range of assumptions has
been used. This suggests that equally good results might
be obtained for the transient case by neglecting the
dissipation term altogether. This procedure cunnot be
used in studving the decay of an unusual disturbance or
in studying quasi-steady state solutions which require the
operation of the model for several prototype days or
weeks.  In these cases some dissipative mechanism must
be included to obtain a reasonable balance of energy.
Any scheme which achieves a reasonable halunce of
energy can be expected to provide a reasonable prleture of
the main features of the flow, but only the scheme which is
locally correct will give a good veproduction of small-seale
features.

The usze of hvdraulic models avoids the necessity of a
clear statenent of the Inw governing the dissipation of

enerey.  This does not mean that it avoids the ervors
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Hohe teodel

is enlibrated for ealm weather conditions it ean be expeeted

resulting from using an unsatisfactory kiw.

to underestimate the friction offeets during stovis. 1F
calibrented for storm comditions it can be expeeted to

overestimate friction during ealm weather conditions.

10. THE COMPUTATION OF DISSIPATION TERMS

Although the proper expression for the physical dis-
sipation term has not been uniquely determined. it is safe
to say that its effeet should be 1o deerease the total energy
of the flow. However, the straightforward infroduetion
of the dissipation term into central difference formulas
usually leads to computational instability, that 1z, to an
increase in the energy of the computed flow. This may
be avoided by evaluating the velocity at time f— At when
computing the dissipation term in a model in which central
differences are used for all other terms, or an implicit
method may be used. A more detailed discussion of this
computational problem has been given by Miyakoda [16]
and Platzman [I8].

11. SUMMARY AND FUTURE OUTLOOK

It has been shown that the computational stability
and henee the reliability of numerical solutions of the
hvdrodynamic equations may depend on the purticular
manner in which the terms and differential quotients of
the differential equations and the boundary conditions
are approximated by finite difference expressions. It has
been pointed out, but not explicitly demonstrated, that
the errors resulting from an unsatisfactory method of
approximations to the terms and differential quotients
cenerally take the form of false disturbances with hori-
zontal scales of only a few mesh lengths in both the velocity
and height fields. Small-scale disturbances in the grid
svstem can be eliminated or at least suppressed by the use
of appropriate filter functions. However, the filtering
operators will affect both the true small-scale disturbance
which iz a part of the physical problent and the false small-
scale disturbance which results from the numerical process
in the same manner. Thus it is not possible to obtain a
true solution when the numerical process applied generates
disturbances of the same scale as the real disturbances.

This difficulty, which is of a mathematical nature, can
be avoided by using mesh lengths much smaller than the
ceale of any important phenomenon to be investigated.
This result could be obtained in a straightforward manner
by nsing uniformly spaced computation points over the
entive basin., and magnetic tapes or other devices for
mcrensing the storage capacity of a computer. This is
rather expensive because the permissible value of Af s
limited  proportionally 1o de/yul).
cenerally needed only in shallow water, hut the exitence
of deep water constrainsg one to compute exee=ssive thne
The same result can bhe obtained by using

Space  detail s

detail as well.
Canaller mesh length in regions where small-scale phicnom-

ena are important. and a greater mesh Tength i other
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recions,  Kxperiments now  being  conducted by the
authors and their associates indieate that this process will
produce satisfactory results but that this problem is no
move simple than the econstruetion of an optimum finite
difference form,

Although no data on the solution of practical problems
are conlained in this paper, references have been made to
several studies by Hansen, Platzman, Welander, und
others in which excellent agreement was obtained between
numerical solutions of the equations and the large-seale
features of geophysical phenomena. In most cases the
computations also show small-scale plhienomena of greater
intensity than that observed in nature, and not very well
correluted with the observed small-scale phenomena.

The problem of energy dissipation is of a more funda-
mental nature. One other problem of a similar nature is
also important. This is the specification of the wind stress
field. In both of these cases the difficulty 1s due to the
lack of a satisfactory physical model relating the transfer
of momentum by turbulence to the time-averaged flow of
a fluid, Tn the first approximation the difficulty amounts
to an imprecise knowledge of & momentum transfer coeffi-
cient such as the drag coefficient for wind over water, or
water over the bottom of the basin, In both cases some
improvement in the numerical solution can he obtained
by ealibrating it to past observations by experimenting
with the transfer coefficients, in much the same way as
one ealibrates a hydraulic model by varying the roughness
parameter. The process is not very satisfying from a
scientific point of view, but it can be used to obtain useful
results.

The authors must decry a prevailing tendency in this
field 1o try to match a poorly understood dissipation
mechanism to a poorly understood computational insta-
bility problem in the hope that the two errors will cancel
each other,

The nature of the computational difficulties 13 well
enough understood to enable one to obtain considerable
insicht into the nature of many problems even thouch
quantitatively exact answers may not be available. For
example, numerical computations may be used to deter-
mine the relative severity of the surge expected to accom-
pany an arbitrary storm approuching the coast from
several directions.  This concept hus been used as the
basis of o suecessful system for predicting the seiches ocen-
stonally produced in Chieago by squall hines. Numerical
caleulations by present methods can be expected to reveal
the response of a harbor as o whole to any Tavee-seale dis-
turbance outside the harbor, but the hydrodynamie eal-
culations discussed here eannot yvet be depended on to
veveal information on the effects of breakwaters or wave
run-tp, or intersecting wave trains. Other types ol eal-
culations, such as wave refraction dingrams based on

acometrical optics, muy he useful in solving such problems,
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APPENDIX 1.—ENERGY CALCULATIONS

The enerey invariant for equations (4), (5), (6) without
the friction and foreing terms i3

K f I: (_{;!f.g—l—ri}i_;_][_vi) 74

where <1 is the surface area of the basin.  Since the trans-
ports and height values are known only at discrete points
of u erid system, the enercy equation can be solved only
by recourse to a numerical quadrature. Throughout this
paper, the three fields are calculated at each and every
orid point, including the boundaries, for each time interval.

Consider a rectangular (L) grid whose points on L
run from 0 to L, and on W run from 0 to . By noting
that the boundary conditions oblige the transports normal
to the boundaries and at the corners to be zero, energy for
the rectangular basin at a given time can be approximated
by the trapezoidal rule to

oF  L-1W-1 . o .
E*:_fjf?z"”‘,z 2 lglhy, UL+ Vi) YD
plAs) 1 =1

1 1=1 ) i ) real o . : 2
+= ‘}:r (61 (ho, )+ (he, )? }A-{ W0, 2)*+ (Vo 1) 1 Do,

= j=

e 5 » \B Y g 1 L—1 o
+{ U, )2+ (Vi) 1Dy 51+ 3 ; [g{ (hi0)?
—f—{fi 1. u')g } E‘l ({:-"»i.”‘):—l_ (r[‘.o)g }/I)s. n‘+'tr ({-ri. u')g
+ (Vo) YDl oo+ o) (e o)+ ()]

where  h, ;=h(iAs, jAs 1), g =4 (1A, jAs, £), v =
r(ids, jAs, t).  The quantity I£* is the energy term calcu-
lated here in machine computations for convenience.

APPENDIX 2.—STARTING PROCEDURE

I contral differenices are used and caleulations are for
cach orid point at each time period, it is necessary to
know the field values of L7, V', and A at time ¢ and {—1
in order to caleulate the values at time £+1.  Thus some
alternative procedure must be used for caleulations at
time t=—1. This requirement is avoided when only
forward differences are used in time, or when the stag-
cered grid system is emploved; however, there are other
disadvantazes to these systems.  Sinee all grid points
arve used at each time step in this study, special starting
procedures are required utilizing o forward difference
scheme for the first time interval.

Sinee the field values are zero initindly and the forcing
funetion is small ot the fiest time interval, the momentum
cquations of motion are approximated at interior points to,

ol Fie e
of %
ol ¥ ]
or =S
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Applyving a forward difference 1o the time derivatives
ahove and takine the arithmete tean i time Tor the

viehtchnnd <ide of the equations give,

. Af i
il s o %) i __f\,‘ |
5 Al s
Pl [Pal—00 )

When the principal part of each transport term i cliosen
for the Coriolis eross term, the above is further APProxi-
mated to

Af fat

5 SRS Sanivil €000 S
t‘— T 570y l: Tl.)+ 9 T‘u’]
= &

5 Af
vi [ et~ e

The starting values for the transport terms are now
cubstituted in the equation of continuity, with similar
reazoning as above, to give heicht values at the interior
points as

LTS TR ;W o SRS, i JPRRY

Note that I ;
type foree used in this study except for points on
fir<t mesh lines bordering the boundaries.

A starting procedure lor the boundaries can now be
formulitted. Consider the west wall where the U7 trans-
port is zero for all time. In this case the V7 transport is,

is zoro everywhere in the interior for the
the

For the force comsidered in this paper, Vo s zero.
Similar considerations hold for the other boundaries. The
boundary conditions of equation (25) utilizing a forward
differencing in space give
B =h, = Ve 07k )
G40, 4
Similar forms are developed for the other boundaries.

For the corner points, a method is given in Appendix 3.

Tests made with several different types of starting
procedures gave results which appear to show that the
numerical solution for a rectangular basin, initially
quiescent, is not sensitive to the starting procedure used
for the type foree considered in this study.

For some numerical runs with different starting pro-
cedures. the height values of the houndary points after
ench interval of machine caleulations were stored on
magnetic tape for future use. The same problem was
thenr rerun with the stored height values as bhoundary
conditions to see if zero normal transport could he recap-
(ured on the boundaries. For these tests, the starting
procedure was superior to others tried and did recapture
the boundaries except for
minor errors on the corner points.

zeror normal transports at

D Lee Hartis and Chester P, Jelesnionski
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APPENDIX 3.—CORNER POINTS
The corner ]}l‘i!llH af a ['('t‘l:ll!\'il]].‘il' '_11:1 fraove zora
transports: therefore of 7o, oV 0f wre alen T zero. This
shoeests using both momentu eouations weighted
cqually 1o determine heighi values ot the corners. Clon-

cider the SW oeorner at point (0,05, The two momentan

equaiions give

|
17 [

ok ', oh 7
il

Or :‘,‘.‘I)'. oy
as m (13,

Expuanding the above derivatives adding and

arraneing gives,

: X Qhe o e 1.
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For starting values, a simple forward difference of the
{wo momentun equations gives

! As o I
ff,‘,.“—_[}lh],. 1 _I;t}'n_.!:{l.){)ﬁl_” (L" 'r_qtulu"':' A T[]JI"J]-'Z

The momentum equations can also be combined to uive
a slightly different compact form.®

-1 0 =1
h;:‘u'{ 14 O\ ity [ sl /9
: | [ ' _ff])n,n '

Ll o 4 =1

Application of (27) to the two momentui equations
gives, for variable depths,

-1 0 =1
4 4 nif_f);,);ff.—f‘i"' [ sl 24)
;{;;Ir“____—._'__i _'}__._}—1;_{; S i =t
!| 4 4 EJ Dy,
L0 4 s

Similar results liold for the other three corner points.
Notice that the height values at the corner points are
determined last, after field values arve determined at the
interior and houndary points.

APPENDIX 4.—SMOOTHING THE CENTRAL
DIFFERENCE FORM

The growth of encergy in the yuns of the cent ral difference
form may be attributed to the interaction of high lre-
quency components for which the orid system is ineapable
of diseriminating correetly.  The smallest wavelenoth for
which the grid system is capable of digeriminating is
2s; this wavelength is the one most likelv to arise from

truncation error and therefore the one most llkely 1o

SPhe fornt ean Be derived from o Taylor expransion i two ditensions or appeations

of {141,
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degrade the solution with time. By use of u smoothing
routine, wavelength components of 23« may be suppressed
from the field at given times (Shuman [22]).  An elemen-
wary smoothing funetion in one-dimension acting on a
ficld F at diserete interior points (7. /) of a grid system can
be,
~, - . . l :

=g Wieas 2F 4 Frngl=3 11 2 L| Feg

In two dimensions, one could smooth first in oue
divection and then smooth the smoothed value in the other
to obtain,

} 1!' Py i | 1 1 2 1

Pk l=2lg 921 F.

F 4_ : (.1 ‘ ].6 4 - .i I’!.j
| F:..f—t'_ ‘ 1 2 1 I

It is irrelevant in which direction smoothing is first ap-
plied. The 9-point form can be applied to the field values
of interior points while the 3-point form can be applied to
the boundaries. No known symmetric smoothing form
can be applied to the corner points.

It is possible to keep the program loops which compute
the field quantities for time ¢+ 1 distinet from the smooth-
ing loops, and in fact this procedure is frequently followed.
Some advantages can be gained by combining the two
processes. 1f the 9-point smoothing form is applied to the
derivatives of the central difference form, say, in the -
direction, there follows,

ol 1 = z
) M el A L
g [—1 —2 0 2 1|
s |0 _ 9 F
32As| 4 o % 2L i
i =B g %
If the following approximation is considered,

1 | — o 0 0 1] 1 [—1 0 1
Al g ¢ B seetoledd B BE
32As| i, 8 Y ' Fas

j B 6. 0 1 ~1 b U

then the derivative can be rewritten as,*®

oF" , -1 0 1
e 3—i_-) ol 7.
= () 1
and
ol | . 2 |
: ) it ] 0
al e Yo .\_\.\'-_.-‘ & A

These expression= ave of the sane forneas eoptiation (13,
This derivation explains the name “filter factor form®™

(Shaman 1230 and the choiee of the constants o wnd b
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This derivation also shows that all finite difference
operators have some characteristics of smoothing opera-
tors. It appears that terms which are not differenced
should be smoothed by a similar smoothing function.
Experiments not discussed i this report indicate that
this procedure improves the stability of the ealeulations.
The filter factor forms of the equations of motion, as
used in this study, are given below. Note that the
Coriolis terms are smoothed.

If the area 9-point smoothing form and the above
altered derivative forms are applied to the field values at
time m in the equations of motion for the central difference
form, the following results:

-1 0 1
T Tk "= ] ‘—\f | ;
Urf'=U27'—9Dus 15, ';_2 0 2h,
|—1 0 1
‘1 2 1[
'._fl ! 7 rn
e 4 2vaearae,
AP
| 1 2 1
Fom et Tm— ] .ll‘ | 1
Voti=yeit—gD,, El 0 0 0k,
-1 =2 -1
",1 2 I'i
-
By 4 gUpAoaee
b | *
h 2 1
I—1 0 1\
e L 2i{_-;f{j
== 0 1§
1 2 1|
| |
410 0 0Ve;
|—1 —3 —1!

Note that in boundary computations using the one
dimensional smoothing operator, the Coriolis cross terr
is absent and the derivative remains unchanged fror
a similar approximation as in the two-dimensional forn
The contral difference form thus can be applied directl
to the boundaries without any alterations.

Some further characteristies of the filter factor form «
the equations can be illustrated by considering the fre

b

il neiehbwring proints, ane can foryg,

i s eageneded i Tastor series up to ate b ehiding the 2 derivatives e

whiere a0 apl B are pirseiers ot dwspesal, (i the eenieal ditferenoe form g i taken

pern, T thas Spuedy on s
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oceillitions of a constant depth basin in the absenee of
1.t for the
have solutions ol

the Cortolis and Toree terms, the ~olution
heteht fields

mdividual termes,

transport and fornal

{3 e R Y 1 A

where (£ 1V ) oc g™ ~13saiten anda=2x'L. b

tal wave numbers,

2 Ware spa-

The formal solution permits,

(U717 Ryt e (LT 17 ) o
(("?1.!"‘!}!“_“" }\{( ‘.11];) mi=Tiat

The filter factor form may now be written as,

[ M—1 0 \f:-l-ai")\ it
0 A—1 ‘\.: Tav''X Y=l
L\'jiﬁv’)\ VI8N N Jot

gDAt At
s e B_— —iis
4As 4As

»' =4 sin bAs(1+cos aAs)

where, a= y p' =4 sinaAs(1-4-cos bAs), and

Suppose now that L or W has waveleneth 28+, The
terms »/, and »"* in the matrix dizappear =o that wave-
lengths of 2As are deleted from the computations.*

In order for the matrix form to hold,

(N[ (= 1)+ a2+ N]=0

Vo W
A2 [“8_.(" T{"_) o 1] A21=10

or

For stability, it is required (Richtmyer [20]) that N 1.
For this to hold, the above equation gives,

o G e P
4 Ty

Noting that the max of »" and »" is 8, then substitution
in the above equation gives a stability criterion of,

As
A
\26D
This eriterion is identical to that of the central difference
form.

APPENDIX 5.—FISCHER'S FORM

The finite difference form given by Fischer [3] uses
forward differences in time and central differences in
space. It is a combination of explicit and  implicit
methods. For interior points, neglecting bottom siress
and incorporating the pressure force term with =
surface stres= term, the form is,

Lhwe

“In the eentral ditferenee form, wivelengths of 23s donot convenient iy drop out sitee
W anl o do not nave the multiplication term, (19e0s] A<,
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where the notation follows that of equations (1) (3],
It can be shown that for constant depth, no Coriolis, and
free oscillations, a stability eriterion for the simple wave
cquation 1s,

At /2,_\\
N gD

Fischer’s form is appealing sinee field values for time
(1 —1)Al are not required in the ealculations, the stability
eriterion is twice that of the central difference form, and
starting values are not needed.  For the case of rotation
with constant depths and a periodic boundary condition
that permits a solution in a Fourier expansion, the form is
unstable unless the bottom stress term in the difference
form is retained as a frictional dissipation term. The
{riction term as given by Fischeris, @r_p=rl; "r_p= ¥,
where » is a coefficient generally given as a function
that varies inversely as some power of the depth.  For
this case. Fischer shows that the difference form is stable
provided that

M2, =0
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