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ABSTRACT

Echoes in radar reflectivity data do not always correspond to precipitating particles. Echoes on radar may
result from biological targets such as insects, birds, or wind-borne particles; from anomalous propagation or
ground clutter; or from test and interference patterns that inadvertently seep into the final products.
Although weather forecasters can usually identify and account for the presence of such contamination,
automated weather-radar algorithms are drastically affected. Several horizontal and vertical features have
been proposed to discriminate between precipitation echoes and echoes that do not correspond to precipi-
tation. None of these features by themselves can discriminate between precipitating and nonprecipitating
areas. In this paper, a neural network is used to combine the individual features, some of which have already
been proposed in the literature and some of which are introduced in this paper, into a single discriminator
that can distinguish between “good” and “bad” echoes (i.e., precipitation and nonprecipitation, respec-
tively). The method of computing the horizontal features leads to statistical anomalies in their distributions
near the edges of echoes. Also described is how to avoid presenting such range gates to the neural network.
The gate-by-gate discrimination provided by the neural network is followed by more holistic postprocessing
based on spatial contiguity constraints and object identification to yield quality-controlled radar reflectivity
scans that have most of the bad echo removed while leaving most of the good echo untouched. A possible
multisensor extension, utilizing satellite data and surface observations, to the radar-only technique is also
demonstrated. It is demonstrated that the resulting technique is highly skilled and that its skill exceeds that
of the currently operational algorithm.

1. Introduction

From the point of view of automated applications
operating on weather data, echoes in radar reflectivity

may be contaminated by undesirable echoes. Some of
these applications require that echoes in the radar re-
flectivity moment correspond, broadly, to precipitation,
or “weather.” By removing ground-clutter contamina-
tion, rainfall obtained from the radar data of the Na-
tional Weather Service (NWS) Weather Surveillance
Radar-Doppler 1988 (WSR-88D) can be improved
(Fulton et al. 1988; Krajewski and Vignal 2001). A large
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number of false positives for the “mesocyclone detec-
tion algorithm” (Stumpf et al. 1998) are caused in re-
gions of clear-air return (McGrath et al. 2002; Mazur et
al. 2004). A hierarchical motion estimation technique
segments and forecasts poorly in regions of ground clut-
ter (Lakshmanan 2001). Hence, a completely auto-
mated algorithm that can remove regions of nonpre-
cipitating echo, such as ground clutter, anomalous
propagation, radar artifacts, and clear-air returns, from
the radar reflectivity field would be very useful in im-
proving the performance of other automated weather-
radar algorithms.

Steiner and Smith (2002) describe the causes, effects,
and characteristics of such contamination in weather-
radar data. Several research groups have endeavored to
determine individual features and combinations of fea-
tures that can be used to remove range gates of radar
reflectivity data that correspond to “bad echoes.” Local
neighborhoods in the vicinity of every range gate in the
three WSR-88D radar moments (reflectivity, velocity,
and spectrum width) were examined by Kessinger et al.
(2003) and used for automated removal of nonprecipi-
tating echoes. They achieved success by examining
some local statistical features (the mean, median, and
standard deviation within a local neighborhood of each
gate in the moment fields) and a few heuristic features.
Steiner and Smith (2002) introduced the “spinChange”
(hereinafter referred to as SPIN), which is the ratio of
gate-to-gate differences in an 11 � 21 local neighbor-
hood that exceed a certain threshold (2 dBZ in prac-
tice) to the total number of such differences. Kessinger
et al. (2003) introduced the “SIGN,” which is the aver-
age of the signs of the gate-to-gate difference field
within the local neighborhood. Steiner and Smith
(2002) used a decision tree to classify range gates into
two categories (precipitation and nonprecipitation),
and Kessinger et al. (2003) used a fuzzy-rule base using
features that included the SPIN feature introduced by
Steiner and Smith (2002). In addition to these features
based on a single elevation scan, some vertical-profile
features were also used—the maximum height of a
5-dBZ echo was used by Steiner and Smith (2002).
Kessinger et al. (2003) discussed the use of vertical dif-
ferences between the two lowest reflectivity scans.
Zhang et al. (2004) used the features introduced in
Steiner and Smith (2002) but calculated them with re-
spect to physical height instead of radar tilts (elevation
angles).

Neural networks (NNs) have been utilized in a vari-
ety of meteorological applications. For example, NNs
have been used for prediction of rainfall amounts by
Venkatesan et al. (1997) and for the diagnosis of tor-

nado probability from mesocylones by Marzban and
Stumpf (1996). In fact, Cornelius et al. (1995) at-
tempted to solve the radar quality problem using NNs.
However, the performance of the NN was no better
than a fuzzy-logic classifier (C. Kessinger 2004, per-
sonal communication), and the NN attempt was
dropped in favor of the much more transparent fuzzy-
logic approach described in Kessinger et al. (2003).

Grecu and Krajewski (2000) also used NNs to classify
pixels in WSR-88D data as either anomalous propaga-
tion/ground clutter (AP/GC) or good echo. The tech-
nique of this paper goes beyond that work by following
a formal mechanism for evaluating and selecting input
features to the NN. We also describe how to account for
statistical anomalies in the way the NN inputs are com-
puted, especially at the edges of echoes. A method of
selective emphasis is followed here to ensure good per-
formance on significant echoes. Last, the technique de-
scribed in this paper removes or retains entire echo
regions, not just individual pixels.

A particular challenge in the quality control (QC) of
radar reflectivity data is that errors in the QC process
can be additive from the point of view of downstream
applications. This effect is particularly noticeable in ap-
plications that accumulate radar reflectivity data in
space or time. For example, an application that com-
bines radar data from four radars to form its results will
be affected by QC errors in any of the four radars. In a
similar way, an application that accumulates data from
one of the radars over time will be faced with increasing
likelihood that the input data are incorrect as the time
window of accumulation increases. Radar data mosaics
and precipitation accumulation algorithms, therefore,
have very stringent requirements on data quality. To
put these requirements in perspective, consider using a
hypothetical single-radar QC algorithm that is correct
99% of the time. For an application that combines data
from 130 WSR-88Ds in the continental United States,
the odds of there being bad data somewhere in the
country at any time would be 73% (1 � 0.99130). A 3-h
accumulation of precipitation based on data from a
single radar collected every 5 min will be wrong 30%
(1 � 0.9936) of the time.

Section 2 is organized as follows. Following a descrip-
tion of the machine learning technique used, the full set
of candidate features is described in section 2a. The
training process itself is described in section 2b. Based
on the results of training, feature selection was imple-
mented and the training was repeated on the selected
set of features. The feature selection and the final list of
inputs are described in section 2c. Preclassification
methods were devised to ameliorate shortcomings in
the way the local features were computed. The result of
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the classifier is also subject to spatial postprocessing.
Both the preprocessing and the postprocessing are de-
scribed in section 2d. Section 3 describes the results
achieved on an independent test set and discusses the
implications. Section 4 summarizes the contents of the
paper.

2. Method

We used a resilient back-propagation NN (RPROP)
as described in Riedmiller and Braun (1993) with one
hidden layer. Every input node was connected to every
hidden node, and every hidden node was connected to
the output node. In addition, there was a short-circuit
connection from the input nodes directly to the output
node to capture any linear relationships; that is, the
network was “fully connected” and completely “feed
forward.” Every hidden node had a “tanh” activation
function, chosen because of its signed range. The out-
put unit had a sigmoidal activation function, g(a) �
(1 � e�a)�1, so that the outputs of the networks could
be interpreted as posterior probabilities (Bishop 1995).
Each noninput node had, associated with it, a bias value
that was also part of the training.

The error function that was minimized was a
weighted sum of the cross entropy [which Bishop
(1995) suggests is the best measure of error in binary
classification problems] and the squared sum of all of
the weights in the network:

E � Ee � � �wij
2 . �1�

The first term is a variation of the cross-entropy error
suggested by Bishop (1995) and is defined as

Ee � ��
n�1

N

cn�tn lnyn � �1 � tn� ln�1 � yn�	, �2�

where tn is the target value of the nth set of input fea-
tures, called a pattern. The target value for a pattern is
0 if the range gate has bad echoes and 1 if it has “good
echoes.” Here, yn is the actual output of the NN for that
pattern input; N is the total number of patterns. The
cost cn captures the importance of that pattern (this
process of selective emphasis is explained in more de-
tail in section 2b). The second, squared-weights, term of
Eq. (1) attempts to reduce the size of the weights and
thus improves generalization (Krogh and Hertz 1992).
The relative weight 
 of the two measures is computed
every 50 epochs within a Bayesian framework with the
assumption that the weights and the errors have Gaus-
sian distributions so that the ratio of their variances
gives a measure of by how much to decay the weights
(MacKay 1992; Bishop 1995). We started by weighing

the sum of weights 2 times as much as the cross-entropy
term (
 � 2), we updated 
 based on the distribution of
the weights and errors every 50 epochs (one epoch is a
complete pass through the entire set of training pat-
terns), and we stopped the learning process at 1000
epochs. We chose the final weights of the network from
the epoch at which the validation entropy error was
minimum, as will be discussed in section 2b.

Doppler velocity data can be range folded (aliased).
For WSR-88D, at the lowest tilt, the velocity scan has a
shorter range than does the reflectivity scan. We there-
fore divided the training range gates into two groups—
one in which velocity data were available and another
in which there was no Doppler velocity (or spectrum
width) information. Thus, two separate NNs were
trained. In real-time operation, either the with-velocity
or the reflectivity-only network is invoked for each
range gate depending on whether there are velocity
data at that point.

At the end of training, the with-velocity network had
28 inputs, 4 hidden nodes, and 1 output and the reflec-
tivity-only network had 22 inputs, 8 hidden nodes, and
1 output.

a. Input features

We chose as potential inputs to the NN features
culled from earlier quality-control attempts—the AP
and GC algorithm of Steiner and Smith (2002), the
Next Generation Weather Radar (NEXRAD) radar
echo classification (REC) algorithm (Kessinger et al.
2003), and the inputs used in the quality-control pre-
processing in NEXRAD precipitation products (Fulton
et al. 1998). These included the data value, the mean,
the median, and the variance computed in local neigh-
borhoods of each of the three moments (reflectivity,
velocity, spectrum width) at the lowest tilt of the radar.
In addition, we took the same four values for the sec-
ond lowest tilt of the radar. We also utilized some of
the textural features that have been found to be useful
in discriminating between precipitation and AP/GC.
These were the SPIN (Steiner and Smith 2002), the
gate-to-gate average square difference (Kessinger et al.
2003), and the SIGN (Kessinger et al. 2003). We in-
cluded the vertical gradient (difference between the re-
flectivities at the two lowest scans; Fulton et al. 1998) as
another input to the NN.

In order that it can operate in real time, the QC
algorithm should not wait for the end of a volume scan
before being able to produce QCed reflectivity scans.
To operate tilt by tilt in real time, it should be able to
compute a feature such as the vertical difference (which
depends on the two lowest tilts) even before the second
tilt arrives. Otherwise, downstream algorithms will be
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faced with a 20–60-s delay. Therefore, all of the vertical
features were computed in a “virtual volume” (Lynn
and Lakshmanan 2002) sense; that is, the latest avail-
able elevation scan at any instant in time was used to fill
in the volume. For example, the vertical gradient would
be updated twice within a volume scan: once at the end
of the first elevation scan when the higher elevation
scan used was from the last volume scan and again
when the second elevation scan from the volume scan
arrived. As a result, in real time, the QC of the first
elevation scan is performed using the vertical-differ-
ence feature computed from the staggered difference
but the QC of all the higher tilts is performed using the
aligned difference. Because the NN is trained on such
staggered differences, it learns to account for them.

In addition to these discriminants described in the
literature, we utilized the following others:

1) the local minimum of the variance, calculated by
first computing the variance within a neighborhood
of every gate and then computing the local mini-
mum in neighborhood around each gate of the
variance field (This quantity is computed for the
lowest two reflectivity scans and the lowest velocity
and spectrum width scans. For example, the vari-
ance of the reflectivity field could be large either
because of high texture, such as in AP/GC, or be-
cause of edge effects. Using the minimum variance
avoids large variance close to the edge of echoes.),

2) the mean and local variance computed in a 5 � 1
neighborhood, that is, along a radial for the lowest
reflectivity scan (many problems in radar data, es-
pecially hardware issues, may impact a single radial
while leaving adjacent radials unaffected),

3) the maximum vertical reflectivity, over all of the
elevations (like all vertical features, the vertical
maximum is computed in a virtual volume sense),

4) the fraction of range gates in a 5 � 5 local neigh-
borhood that had values greater than 5 dBZ in the
lowest reflectivity scan and in the vertical maxi-
mum field (this feature, referred to as “echo size”
in this paper, is useful in detecting speckle),

5) a weighted average of the reflectivity (dBZ) values
over all the elevations, where the weight of each
data point is given by the height of that range gate
above the radar (This takes into account the entire
vertical profile instead of just the first two eleva-
tions. A large weighted average is associated with
tall thunderstorms and provides a counterbalance
to the large horizontal gradients associated with
such thunderstorms. AP/GC, on the other hand,
has small weighted averages but also has large hori-
zontal gradients.),

6) echo-top height, defined as the maximum height of
reflectivity above 0-, 5-, and 10-dBZ thresholds
(convective storms tend to have large values of
echo-top heights),

7) the physical height at which the maximum reflec-
tivity echo occurs at this range and azimuth from
the radar (higher echoes are typically more reli-
able),

8) the change in the maximum vertical reflectivity
from this virtual volume to the last complete vol-
ume (good echoes rarely have large temporal gra-
dients),

9) the outbound distance along a radial to a gate with
zero velocity, that is, at a particular gate, the dis-
tance to a gate further away from the radar with
zero velocity (A gate with zero velocity is likely to
be AP/GC. Gates between the radar and the AP
gate are likely to also be AP, making this input
potentially useful.), and

10) the inbound distance along a radial to a gate with
an echo-top over 3 km, that is, at a particular gate,
the distance to a gate closer to the radar that has an
echo top higher than 3 km (this input is potentially
useful because gates that come after such a high
echo gate are likely to be good).

All of the NN inputs were scaled such that each feature
in the training data exhibited a zero mean and a unit
variance when the mean and variance are computed
across all patterns in the entire with-velocity training
set. The mean and variance computed on the training
set are used to scale the run-time values.

Histograms of a few selected features are shown in
Fig. 1. Note that these features are not linear discrimi-
nants by any means—it is the combination of features
that gives the NN its discriminating ability. The histo-
grams in Figs. 1c and 1d illustrate the result of selective
emphasis (explained in section 2b) that we adopt during
the training so that larger reflectivities are not auto-
matically accepted.

We used these features to train an NN and then re-
moved the features one at a time. If the resulting NN
had essentially the same performance after a feature
was removed, that feature was permanently removed.
The final list of features used is listed in section 2c.

b. Training process

With the NN architecture arbitrarily fixed as above,
the training process consists of choosing 1) the number
of hidden nodes, 2) the weights of each link between
nodes, and 3) the set of input features to use. This
section describes our approach to selecting the weights
and number of hidden nodes of the NN. Section 2c
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describes the method of choosing the input features.
An NN is, essentially, an evidence-based framework.
The weights were chosen to minimize the cross-entropy
measure on a carefully selected set of radar volume
scans. These volume scans covered a variety of phe-
nomena that the resulting network was expected to dis-
criminate with skill (see Table 1).

A human interpreter examined these volume scans
and drew polygons using the “warning decision support
system-integrated information” (WDSS-II) display
(Hondl 2002) to select bad-echo regions (see Fig. 2).
The expert determined this based on analyzing loops of
reflectivity data, examining the velocity data, and con-
sidering outside factors such as the presence or absence
of terrain and seasonal effects. For situations in which
the expert was doubtful, the echoes were accepted as
good echo so that the QC procedures would err on the
side of caution. An automated procedure used these
human-generated polygons to classify every range gate

of the training dataset into the two categories (precipi-
tating and nonprecipitating).

The data we have are not representative of true a
priori probabilities, because each of the scenarios is a
rare event. Patterns are assigned different importance
factors cn [see Eq. (2)]. It is easy to see that if the cost
factors cn are positive integers, the cost factor can be
moved out of the error equation by simply repeating
the nth pattern cn � 1 times.

The importance factors are chosen based on the ver-
tical maximum of the reflectivity (a process we call “se-
lective emphasis”) to satisfy two goals: 1) to achieve an
a priori probability, given any reflectivity value, of close
to 0.5, so that the network is forced to rely on other
factors and 2) to achieve better performance on strong
echoes than on weak ones on the grounds that strong
echoes are more important.

In the velocity network (a proxy for range gates close
to the radar; see section 2), precipitating echoes are

FIG. 1. Histograms of selected features over the entire training dataset: (a) SPIN, (b) standard deviation of velocity, and (c) vertical
maximum. Note that, as a result of careful construction of the training set and selective emphasis (see section 2b), the histograms in
(c) are nearly identical—this is not the a priori distribution of the two classes because AP is rare and clear-air return tends to be smaller
reflectivity values. (d) The a priori distribution of the vertical maximum values in the training set before selective emphasis.
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repeated d/20 times while nonprecipitating echoes are
repeated d/10 times, where d is the reflectivity value.
Thus, AP with large reflectivity values is emphasized, as
are strong reflectivity cores. The emphasis is done in
such a way that the resulting a priori probability in the

training set at any reflectivity value is close to 0.5, yield-
ing a balanced distribution of patterns. In the reflectiv-
ity-only network, nonprecipitating echoes are repeated
3d/5 times. As can be seen from Eq. (2), the repeating
of patterns has the same effect as imposing a cost factor

FIG. 2. An expert manually established the truth of the training and validation volume scans
by drawing polygons around echoes that he believed did not correspond to precipitation.

TABLE 1. The volume scans used to train the WSR-88D QC NN described in this paper.

Radar Location Volume-scan start time Reason chosen

KABR Aberdeen, SD 2028:46 UTC 28 Jul 2005 Biological
KAMA Amarillo, TX 2047:19 UTC 29 Apr 2004 Sun spikes, small cells
KBHX Eureka, CA 1617:09 UTC 2 May 2003 Stratiform
KFDR Fredrick, OK 1419:38 UTC 3 May 2005 Weak convection
KFWS Fort Worth, TX 0358:51 UTC 19 Apr 1995 Biological, ground clutter
KFWS Fort Worth, TX 1555:37 UTC 19 Apr 1995 Weak convection
KFWS Fort Worth, TX 0459:04 UTC 20 Apr 1995 Insects, convection
KFWS Fort Worth, TX 1855:57 UTC 20 Apr 1995 AP, squall line
KICT Wichita, KS 0609:24 UTC 24 Apr 2003 Convection
KLIX New Orleans, LA 1409:42 UTC 17 Aug 2005 Weak convection
KLSX St. Louis, MO 0537:17 UTC 10 Nov 1998 Clutter near radar, convection
KMVX Grand Forks, ND 1955:47 UTC 1 Jan 2005 Snow
KTLX Oklahoma City, OK 1251:21 UTC 18 Oct 2002 Stratiform, sun spike
KTLX Oklahoma City, OK 1613:43 UTC 19 Oct 2002 Convection, small cells
KTLX Oklahoma City, OK 1829:11 UTC 29 Apr 2004 Sun spikes, biological
KTLX Oklahoma City, OK 1805:40 UTC 5 May 2005 Test pattern
KUDX Rapid City, ND 0229:57 UTC 15 Feb 2005 Snow
KYUX Yuma, AZ 1511:46 UTC 1 Sep 2005 AP far away from radar
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to each pattern. We are, in essence, assigning a higher
cost to misclassifying high-dBZ range gates than to mis-
classifying low-dBZ range gates. The histograms in
Figs. 1c and 1d show the effect of this selective empha-
sis—note that the histograms in Fig. 1c are shifted to
the right (higher reflectivity values) and have approxi-
mately equal probabilities at all reflectivity values (bal-
anced distribution).

Some range gates can be classified very easily be-
cause they are obvious. To aid processing efficiency,
both in the training stage and in the running stage, we
preclassify such range gates using criteria described in
section 2d. These criteria also account for shortcomings
in the way that the input features used for classification
are computed. Such range gates are not presented to
the NN in training, and range gates that match these
criteria are preclassified the same way in run time as
well. The preclassification process is described in more
detail in section 2d.

The training process is an automated nonlinear opti-
mization during which we need to find weights that
yield a good discrimination function on the training
data but are not so overfit to the training data that they
do poorly on independent data.

A validation set can ensure a network’s generaliza-
tion, typically through the use of early stopping meth-
ods (Bishop 1995). In the NN literature, a validation set
is also utilized to select the architecture of the NN
(Masters 1993). We used a validation set that consisted
of features derived from several volume scans that ex-
hibited AP, convection, clear-air return, stratiform rain,
and radar test patterns (see Table 2).

During each training run, the RPROP algorithm was
utilized to optimize the weights on the training data
cases. At each iteration of the optimization process, the
performance of the weights on the validation set was
checked. Even though the training entropy error may

continually decrease, the validation entropy error typi-
cally does not (see Fig. 3a). We select the weights cor-
responding to the stage at which the validation entropy
error is minimum; thus the use of a quasi-independent
validation set helps to prevent the weights being overfit
to the training set. We trained each network with dif-
ferent numbers of hidden nodes and selected the num-
ber of nodes for which the validation entropy error is
minimum, as shown in Fig. 3b. Thus, we used the vali-
dation set both to determine when to stop within a
training run and to pick the final architecture of the
NN. Other than to choose the number of hidden nodes,
we did not consider any alternate network topologies
(such as two layers of hidden nodes) because, in theory
at least, a single hidden layer is enough to interpolate
any continuous function to arbitrary accuracy (Bishop
1995).

Note that the cross-entropy error criterion for the
with-velocity network is less than that of the reflectiv-
ity-only network. This is a measure of how useful the
velocity information is to classification accuracy.

We used a testing set, independent of the training
and validation sets, as described in section 3, and it is
this independent set for which the results are reported.

c. Feature selection

In the process of training the networks, each of the
computed inputs was removed and the NN was reopti-
mized. The probability of detection (POD) of precipi-
tating echoes and the false-alarm rates (FAR) for both
networks (the with velocity and the reflectivity only;
see section 2) were noted. If removing the input had no
significant negative effect on the four statistics (POD
and FAR on the two networks), the input was perma-
nently removed.

For example, using this process, it was found that
retaining just the mean and variance in the local neigh-

TABLE 2. The volume scans used as a validation set to test the generalization of an NN.

Radar Location Volume-scan start time Reason chosen

KAMA Amarillo, TX 1053 UTC 24 May 1994 AP
KAMA Amarillo, TX 2042:49 UTC 29 Apr 2004 Weak convection, interference
KAMA Amarillo, TX 1408:11 UTC 29 Aug 2005 AP far away from the radar
KDDC Dodge City, KS 0151:51 UTC 21 Apr 2005 Convection, interference
KDLH Duluth, MN 1956:45 UTC 1 Jan 2005 Snow
KFSD Sioux Falls, SD 2035:28 UTC 28 Jul 2005 Biological
KHDX Holloman, NM 1029:36 UTC 28 May 2005 Interference
KINX Tulsa, OK 1831:06 UTC 29 Apr 2004 Weak convection, sun strobes
KLNX North Platte, NE 0253:23 UTC 15 Feb 2005 Snow
KSGF Springfield, MO 1857:09 UTC 17 Aug 2005 Weak convection, biological
KTLX Oklahoma City, OK 0806:51 UTC 11 Jun 2003 Weak convection
KTLX Oklahoma City, OK 1124:43 UTC 11 Jun 2003 Sun strobe
KTLX Oklahoma City, OK 0918:27 UTC 13 Jun 2003 Biological, convection
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borhood was enough—use of the median did not im-
prove the capability of the NN to learn the data, as
measured by the cross entropy. We discovered that the
use of some features hurt trainability, especially when
the features in question were highly effective in a uni-
variate sense. This was probably because the NN got
caught in local minima. In such cases, we reformulated
the feature to avoid this problem—the echo size, echo
top, and vertical difference were defined so that their
use does not lead to poor performance.

We discovered that computing the echo top with a
threshold of either 0 or 10 dBZ, depending on whether
the ground temperature at the radar site was below or
above 10°C, respectively, greatly improved the perfor-

mance. We also found that computing the echo top only
for elevations above the lowest elevation improves the
reliability of this measure. Thus, the echo-top param-
eter referred to in this paper is the maximum physical
height to the top of an echo when it reaches either 0 or
10 dBZ in elevation scans other than the lowest scan of
elevation of reflectivity.

The vertical difference between the two lowest eleva-
tion scans leads to poorly performing NNs, probably
because it is such a good univariate classifier. We de-
fined the vertical difference as the difference between
the lowest elevation scan and the first elevation scan
that crosses 3 km at this range; thus at far ranges the
vertical difference is always zero. This feature is used
only close in to the radar where the difference is be-
tween the lowest scan and a scan at a reliable height.

The local neighborhood for all the statistics, includ-
ing the SPIN, was chosen to be 5 � 5, after we experi-
mented with 3 � 3 and 7 � 7 sizes. Choosing the neigh-
borhood size for each statistic individually might yield
better results, but the additional complexity may not be
worth the reward. In the case of SPIN, for example, the
11 � 21 neighborhood size used by Steiner and Smith
(2002) yielded a slightly better performance, but the
computation then takes nearly 8 times as long.

Following this process of pruning the input features,
we were left with the following 28 input features at
every gate—from the lowest velocity scan: 1) value, 2)
local mean, 3) local variance, 4) difference, and 5) mini-
mum variance; from the lowest spectrum width scan: 6)
value; from the lowest reflectivity scan: 7) local mean,
8) local variance, 9) difference, 10) variance along ra-
dials, 11) difference along radials, 12) local minimum
variance, 13) SPIN, and 14) inflections along radial
(Kessinger et al. 2003); from the second-lowest reflec-
tivity scan: 15) local mean, 16) local variance, 17) local
difference, 18) variance along radials, 19) difference
along radials, and 20) minimum variance; within a vir-
tual volume scan: 21) vertical maximum, 22) weighted
average, 23) vertical difference, 24) echo top, 25) height
of maximum, 26) echo size in vertical composite, 27)
inbound distance along radial to 3-km echo top, and 28)
outbound distance along radial to gate with zero veloc-
ity. The “difference” statistic is simply the difference
between the value at that gate and the mean within the
neighborhood and is used to decorrelate the pixel value
from the local mean.

The reflectivity-only NN, used where there are no
velocity data or where the velocity data are range
folded, had only 22 input features because the first six
features (corresponding to velocity and spectrum
width) are unavailable. If removing a reflectivity-based

FIG. 3. Use of a validation set to decide when to stop the train-
ing and to decide on the number of hidden nodes. The y axis is
Ee /N [see Eq. (2)]. (a) Training error vs validation error. Note
that the training error continues to decrease but the validation
error starts to increase after a while, showing that the training is
becoming counterproductive; “wv” refers to the NN with velocity
data, and “wov” refers to the NN without velocity data (see sec-
tion 2 for the description of why there are two networks). (b)
Validation error curves for different numbers of hidden nodes.
The number of hidden nodes at which the validation error was
minimized was chosen as the network architecture.
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feature affected either the with-velocity network or the
reflectivity-only network, that feature was retained.

d. Preprocessing and postprocessing

The NN simply provides a function that maps the
input features to a number in the range [0, 1]. The
quality of the output is only as good as the input fea-
tures. In general, a more reliable input space yields a
better-performing NN.

Many of our input features are computed in local
neighborhoods around a particular gate. Such features
exhibit unwanted characteristics near the edges of
storms. Therefore, the echo-size parameter is used to
preclassify such edge range gates. Only gates for which
the echo size is greater than 0.9 are presented to the
NN. Gates with echo sizes less than 0.5 are classified as
nonprecipitation—this is akin to median filtering the
input data. Gates with echo sizes between 0.5 and 0.9
simply pick up whatever the majority of their neighbors
are classified as. The effect of this median filtering
and assigning a “do not care” status is shown in Figs. 4a
and 4b.

In radar reflectivity data, range gates are set to be
invalid in two situations: 1) the range gate is not sensed
by the radar at all, such as if the gate in question is out
of the radar range at that elevation angle, and 2) the
range gate in question was sensed, but the resulting
echo’s signal was not much stronger than the noise nor-
mally expected. To improve the robustness of the sta-
tistics being computed, we sought to distinguish be-
tween these two situations. We set all range gates in the
reflectivity fields that could conceivably have had a ra-
dar return (those range gates with a height below 12
km) and that had a radar return below the noise thresh-
old (and was therefore set to missing) to be zero. Thus,
the only missing-data values correspond to atmospheric
regions that are not sensed by the radar at all. At this
stage, range gates that are expected to be beam blocked,
applying the technique of O’Bannon (1997), are also set
to have missing data. Values with 0 dBZ are used in
computing local features, but missing data are not.

Features such as sun strobes are rare even within the
context of an elevation scan and are difficult, therefore,
for a gradient-descent function such as an NN to opti-

FIG. 4. The echo-size parameter, a measure of how much of a pixel’s neighborhood is filled (see section 2a), is used during
preprocessing to avoid presenting the NN with statistics computed in poorly filled areas. Postprocessing the NN confidence field based
on spatial analysis reduces random errors. (a) Original image, (b) precipitation confidence before postprocessing, (c) precipitation
confidence after postprocessing, and (d) final QCed product.
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mize. A heuristic method consequently is employed to
detect and remove such radials. We look for radials in
which more than 90% of the gates are filled with re-
flectivity values greater than 0 dBZ and whose values
are linearly increasing (with a correlation coefficient
greater than 0.8). If less than four radials in the eleva-
tion scan are mostly filled, then those radials with a
90% fill and 0.8 correlation coefficient are removed
from the data and are replaced by interpolating neigh-
boring radials, as shown in Fig. 5. A future study could
examine whether the use of sunrise and sunset times
and the position of the sun relative to the radar position
can be used to form an estimate of regions where sun
strobes are likely.

The echo-top parameter is an extremely accurate
univariate classifier once small echoes (echo size less
than 0.5) and radial artifacts are removed from the pre-
sented input vectors. Thus, if a range gate has an echo
top greater than 3 km, it is preclassified as being pre-
cipitation. As a result of preclassification, the range
gates presented to the NN are the “hard” cases—those
range gates with an echo top less than 3 km, with radials
that look reasonable and are within an area of echo.

Although the NN computes the posterior probability
that, given the input vector, the range gate corresponds
to precipitating echoes, adjacent range gates are not
truly independent. In fact, the training process, using
polygons to delineate good and bad areas, underscores
the fact that the QC needs to be performed on a spatial,
rather than on a range gate, basis.

A simpler form of the texture segmentation intro-
duced in Lakshmanan et al. (2003) is performed on the
vertical maximum field. The simplification is that only a
single scale of segmentation, rather than the multiscale
segmentation described in that paper, is desired. Then,
the mean of the NN output within each cluster is de-
termined, and if the mean is below a certain threshold

(arbitrarily chosen to be 0.5) then the entire cluster is
removed as not corresponding to precipitation.

Figure 4c demonstrates how postprocessing the re-
sulting field has removed random1 errors within the
clusters to yield an almost completely correct classifi-
cation.

3. Results and discussion

A diverse set of 16 volume scans (independent of
those chosen for training and validation, shown in
Table 3) were chosen, and bad echoes were marked on
these volume scans by a human observer. An auto-
mated routine then used these polygons to create a
“target” set of elevation scans. These are the products
that an ideal QC algorithm would produce. The same
volume scans were QCed using the NN introduced here
and using the Build-7 version of the radar echo classi-
fier implemented in the “open radar products genera-
tor” (Jain et al. 1998) of the NEXRAD system.

Two sets of comparisons were performed. From the
cleaned-up elevation scans, “reflectivity composite”
(vertical maximum) and “vertical integrated liquid”
(VIL; Greene and Clark 1972) products were created.
These products were then compared range gate by
range gate with the same products created from the
target elevation scans. The comparisons were formu-
lated as follows: the probability of detection is perfect
(1.0) if all precipitating echoes are retained in the final
products. The false-alarm ratio is perfect (0.0) if none
of the contaminants remain in the final products. The

1 Statisticians distinguish between random errors and systemic
(or systematic) errors. Systemic errors are errors resulting from an
identifiable cause and can often be resolved. On the other hand,
random errors are a result of the underlying probability distribu-
tions, such as the overlap between them, and cannot be avoided.

FIG. 5. A heuristic method is used to identify radials that are completely filled and monotonically increasing. Such radials are
replaced by a linear interpolation of their (good) neighbors. (a) Original data, and (b) QCed data.
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critical success index (CSI) is a combination of these
two measures (Donaldson et al. 1975) and is formulated
similarly, that is, as a measure of the algorithm’s skill in
detecting and retaining precipitation echoes. The
Heidke skill score (HSS) compares the performance of
the algorithm with a theoretical algorithm that operates
purely on chance (Heidke 1926). Because the HSS re-
quires the number of nonprecipitating range gates that
were correctly identified, this number was taken as the
number of range gates from the radar that had an echo
in the range (��, 0) dBZ in both the original and
the quality-controlled reflectivity composite fields (or
VIL � 0 in the case of the VIL fields).

Using the reflectivity composite as a verification
mechanism ensures that we are assessing the algorithm
across all reflectivity values, regardless of the height at
which they occur. VIL, on the other hand, serves as a
measure of the presence of significant echo. Because a
good QC technique should not remove good data, using
VIL as a verification measure is a way to assess the
extent to which good data are retained.

The statistics were computed on the test dataset with
one of the test cases removed at each time. This “leave
one out” procedure, also termed jackknifing, can be
used to estimate the standard error of a statistic (Efron
and Tibshirani 1997). What is reported in Table 4 is the
mean skill score achieved and the 95% confidence in-
terval assuming a normal distribution of skill scores. A
more complete statement of the results, including the
individual cases, is available in Fritz et al. (2006).

a. Assessing performance of a QC algorithm

In this paper, the performance of the QC technique
was assessed by a comparison with the skill of a human
expert. Thus, the numbers in Table 4 reflect the per-

formance of the algorithm assuming that the human
expert is perfect. To reduce expert bias, a different hu-
man expert than the one who provided the truth for the
training and validation cases analyzed the test cases.

Other techniques of assessment have been followed
in the literature. Kessinger et al. (2003) validated their
technique by comparing the results of their QC tech-
nique running on polarimetric radar data with the re-
sults of a hydrometeor classification algorithm on the
assumption that the hydrometeor classifier is perfect.
This was reasonable because their study focused on AP/
GC mitigation and polarimetric algorithms do very well
in identifying AP/GC. Our goal in this research was to
achieve a QC algorithm that worked on a variety of
real-world observed effects, including hardware faults
and interference patterns. It is unclear what a hydro-
meteor classification algorithm would provide in that
case. Because there are few polarimetric radars in the
United States at present, such an approach would also
have limited the climatological diversity of test cases.

Another way that QC algorithms have been vali-
dated is by comparing the result of a precipitation es-
timate from the radar fields with observed rain rates
(Robinson et al. 2001; Krajewski and Vignal 2001). One
advantage of this approach is that it permits large vol-
ume studies—for example, Krajewski and Vignal
(2001) used 10 000 volume scans, albeit all from the
same radar and all in warm weather. The problem with
such a verification method is that the skill of the QC
technique has to be inferred by whether precipitation
estimates on the QCed data are less biased (as com-
pared with a rain gauge) than precipitation estimates
carried out on the original data. Such an inference is
problematic—reduction in bias can be achieved with
unskilled operations, not just by removing true con-

TABLE 3. The volume scans used to evaluate the WSR-88D QC neural technique described in this paper.

Radar Location Volume-scan start time Reason chosen

KLBB Lubbock, TX 0144 UTC 5 Oct 1995 AP
KTLX Oklahoma City, OK 1416 UTC 16 Jun 1996 AP, rain
KUEX Hastings, NE 0231 UTC 13 Jun 2002 Strong convection
KICT Wichita, KS 2032 UTC 19 Apr 2003 Weak convection
KDVN Davenport, IA 0436 UTC 1 May 2003 Weak convection
KAMA Amarillo, TX 2150 UTC 3 May 2003 Biological
KTLX Oklahoma City, OK 2231 UTC 30 Apr 2004 Strong convection
KFDR Fredrick, OK 0259 UTC 16 Jul 2004 Bats
KINX Tulsa, OK 1121 UTC 17 Aug 2004 Speckle
KCYS Cheyenne, WY 0057 UTC 21 Sep 2004 Sun ray
KFFC Atlanta, GA 1615 UTC 27 Sep 2004 Stratiform rain
KICT Wichita, KS 0801 UTC 26 Oct 2004 Stratiform rain
KILX Lincoln, IL 2356 UTC 26 Oct 2004 Stratiform rain
KHDX Holloman, NE 1034 UTC 28 May 2005 Hardware fault
KDGX Jackson, MS 2215 UTC 7 Jun 2005 Weak convection
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tamination. This is because the mapping of reflectivity
Z to rainfall R is fungible. Thus, if the chosen Z–R
relationship leads to overestimates of precipitation, a
QC algorithm that removes good data along with AP/
GC will lead to lower bias. In a similar way, if the
chosen Z–R relationship leads to underestimates of
precipitation, a QC algorithm that does not remove all
the contaminants will lead to a lower bias. If the Z–R
relationship is estimated directly from the data, the
very process of fitting can lead to incorrect inferences
because a contaminated field may end up being fit bet-
ter than a true one.

Thus, assessing QC algorithms by comparing them
with a human expert provides a comparison that is not
subject to biases in other sensors or algorithms. The
drawback is that automated large-scale studies of the
kind performed by Krajewski and Vignal (2001) are not
possible because of the reliance on a human expert to
provide “truth.” Because establishing the truth of data
by hand takes inordinate amounts of time, the number
of data cases for which truth is defined has to be small
for such a direct evaluation method.

The size of our training, validation, and testing sets—
about 12 volume scans each—may seem insignificantly
small. When we started the study, we imagined that we
would have to build an enormous database of artifacts

and good cases from radars all over the country over
many years to build a robust algorithm. Instead, we
found that an algorithm trained on only a few selected
volume scans could do surprisingly well on data from
anywhere in the United States. This result was because,
while we needed to ensure, for example, that we had a
stratiform rain case in our training, it did not matter
from where in the country the case came. Thus, we took
care to select the limited volume scans carefully, keep-
ing in mind the underlying diversity of the data. We
have verified that the algorithm does work equally well
on radars across the country by monitoring a 1-km-
resolution multiradar mosaic of QCed radar data (Lak-
shmanan et al. 2006) from 130� radars across the
United States. This multiradar mosaic, which we have
been monitoring since April of 2005, was available on
the Internet at the time of writing (http://wdssii.nssl.
noaa.gov/). The experience gained in thus selecting a
representative training set came in handy in when
choosing a diverse testing set as well and explains the
relatively small size of our testing set.

b. Comparison with the operational algorithm

The measures of skill on the reflectivity composite
product serve as a proxy for visual quality, and the

TABLE 4. The QC NN described in this paper was compared with the REC, the operational algorithm implemented on the NEXRAD
system. Reflectivity composite and polar VIL products were computed from the QCed reflectivity elevation scans and were compared
range gate by range gate. The quoted skill scores are listed to two significant digits with a 95% confidence interval. The confidence
interval was estimated by jackknifing the data cases.

Product Data range Measure No QC REC QC NN

Composite �0 dBZ CSI 0.61  0.06 0.59  0.057 0.86  0.011
FAR 0.39  0.06 0.4  0.06 0.02  0.0072
POD 1  0 0.96  0.0031 0.88  0.0088
HSS 0.89  0.02 0.88  0.019 0.98  0.0016

Composite �10 dBZ CSI 0.68  0.071 0.66  0.069 0.96  0.0083
FAR 0.32  0.071 0.32  0.073 0.02  0.007
POD 1  0 0.94  0.0023 0.92  0.0039
HSS 0.93  0.017 0.93  0.016 0.99  0.0011

Composite �30 dBZ CSI 0.92  0.02 0.84  0.014 1  0.000 72
FAR 0.08  0.02 0.09  0.011 0  0.000 57
POD 1  0 0.92  0.0065 1  0.000 29
HSS 1  0.000 64 0.99  0.000 52 1  0

Composite �40 dBZ CSI 0.91  0.023 0.8  0.013 1  0.000 38
FAR 0.09  0.023 0.1  0.0074 0  0.000 39
POD 1  0 0.88  0.0088 1  0
HSS 1  0.000 16 1  0.000 18 1  0

VIL �0 kg m�2 CSI 0.53  0.16 0.48  0.13 1  0.0011
FAR 0.47  0.16 0.49  0.15 0  0.000 53
POD 1  0 0.9  0.0078 1  0.000 84
HSS 0.97  0.0091 0.97  0.0085 1  0

VIL �25 kg m�2 CSI 1  0.0022 0.65  0.033 0.99  0.0027
FAR 0  0.0022 0.19  0.025 0  0.0022
POD 1  0 0.76  0.026 1  0.000 75
HSS 1  0 1  0 1  0

MARCH 2007 L A K S H M A N A N E T A L . 299



measures of skill on the VIL product serve as a proxy
for the effect on severe weather algorithms.

Range gates with VIL greater than 25 kg m�2 repre-
sent areas of significant convection. It is curious that
when VIL is directly computed on the reflectivity data,
without an intermediate QC step, the FAR is near zero
for values greater than 25 kg m�2. This is because the
VIL product is based on a weighted integration in
which echoes aloft receive large weights. The VIL is not
affected so much by shallow, biological contamination
or by AP/GC close to the ground. In other words, VIL
values greater than 25 kg m�2 are obtained in regions
for which there are high reflectivity values in several
elevation scans—a condition not seen in bad-echo re-
gions.

The effect of assigning higher costs [cn in Eq. (2)] to
higher reflectivity values during the training process is
clear in the final results; the QC NN makes most of its
mistakes at low values of reflectivity and is very good at
reflectivity values above 30 dBZ.

As can be readily seen, both from Table 4 and from
the examples in Fig. 6, the NN outperforms the fuzzy-
logic automated technique of Kessinger et al. (2003),
which is one of a number of algorithms that perform
similarly (Robinson et al. 2001).

Note that the operational REC algorithm, like most
earlier attempts at automated QC of radar reflectivity
data, was designed only to remove AP and GC. Other
forms of the REC (used to detect insects and precipi-
tation) have been devised but have not been imple-

FIG. 6. The performance of the QC NN and the REC demonstrated on three of the independent test cases. (a) Reflectivity composite
from the KTLX radar at 1416 UTC 16 Jun 1999 showing both ground clutter and good echoes. The range rings are 50 km apart. (b)
Result of QC by the REC. (c) Result of QC by the NN. All of the AP has been removed and the good echo has not been touched. (d)
Reflectivity composite from KHDX at 1034 UTC 28 May 2005 showing a hardware fault. (e) Result of QC by the REC. (f) Result of
QC by the NN. All of the data from this problematic volume scan have been wiped out. (g) Reflectivity composite from KFDR at 0259
UTC 16 Jul 2004 showing biological contaminants. (h) Result of QC by the REC. (i) Result of QC by the NN—the algorithm
performance is poor in this case.
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mented operationally (C. Kessinger 2006, personal
communication). It is unclear how these individual al-
gorithms would be combined to yield a single all-
purpose QC algorithm. When QCed data are used as
inputs to algorithms, such as precipitation estimation
from radar, all forms of contamination need to be re-
moved, not just AP. Hence, our goal was to test against
all forms of contamination. The REC columns in Table
4 should not be used as an assessment of the skill of the
algorithm itself (such an assessment would concentrate
only on AP cases). Instead, the skill scores reported for
REC should be used as an indication of the results that
will result if the REC AP detection algorithm is used as
the sole form of QC in a real-world situation in which
all kinds of contaminants are present. In other words,
the operational algorithm may or may not be a poor
performer (our test set did not include enough AP cases
to say one way or the other); it is just that an AP-only
approach is insufficient as a preprocessor to weather-
radar algorithms.

c. Effect of postprocessing

The precipitation confidence field that results from
the NN is subject to random “point” errors. So, the field
is postprocessed as described in section 2d and demon-
strated in Fig. 4. Such spatial contiguity tests and object
identification serve to remove random error, yielding
QCed fields for which good data are not removed at
random range gates. However, such spatial processing
could also have side effects, especially where there are
regions of bad data adjacent to a region of good echo.
Because of their spatial contiguity, the two echo regions
(good and bad) are combined into a single region and
the output of the NN is averaged over all the range
gates in that region. This procedure typically results in
the smaller of the two regions being misclassified. We
believe that such cases are relatively rare. One such
case from 1993 (shown in Fig. 7) demonstrates a situa-
tion in which there is AP embedded inside a larger
precipitation echo. The AP range gates are correctly
identified by the NN, but they are misclassified at the
spatial postprocessing stage. A multiscale vector seg-
mentation, as in Lakshmanan et al. (2003), based on
both the reflectivity field and the identified precipita-
tion confidence field, could help to resolve such situa-
tions satisfactorily. We plan to implement such a seg-
mentation algorithm.

Figure 7 also illustrates another shortcoming of the
technique described in this paper. If there is AP at
lower elevation angles and precipitation echoes at
higher elevation angles over the same area, the desir-
able result would be to remove the AP at lower eleva-
tion scans but to retain the precipitation echoes aloft.

However, because the technique described in this paper
uses all of the elevations within a virtual volume scan to
classify range gates on a two-dimensional surface, the
resulting classification is independent of the elevation
angle. Thus, all of the range gates would either be re-
moved (because of the AP below) or retained (because
of the precipitation aloft).

d. Multisensor QC

The radar-only QC technique described above, and
whose results are shown in Table 4 and Fig. 6, performs
reasonably well and is better than earlier attempts de-
scribed in the literature.

We have been monitoring a 1-km-resolution multi-
radar mosaic of QCed radar data (Lakshmanan et al.
2006) from 130� radars across the United States for
nearly a year as of this writing. This continuous moni-
toring led to the identification of some systemic errors
in the radar-only technique. Many of these errors occur
at night in areas subject to “radar bloom” (biological
contamination in warm weather, as shown in Fig. 6g)
and when radars experience hardware faults or inter-
ference from neighboring radars that cause unantici-
pated patterns in the data. When considering data from
just one radar at a time, the incidence of such errors
may be acceptable. However, when merging data from
multiple radars in real time from 130 WSR-88Ds, such
as in Lakshmanan et al. (2006), the errors are addi-
tive—at any point in time, one of these systemic errors
is 130 times as likely. Therefore, the quality of radar
data feeding into multiradar products has to be much
better.

One potential way to improve the quality of the re-
flectivity data is to use information from other sensors
(Pamment and Conway 1998). In real time, we can
compute the difference

T � Tsurface � Tcloudtop, �3�

where the cloud-top temperature Tcloudtop is obtained
from the 11-�m Geostationary Operational Environ-
mental Satellite infrared channel and the surface tem-
perature Tsurface is obtained from an objective analysis
of surface observations. In the ideal case, this difference
should be near zero if the satellite is sensing the ground
and should be greater than zero if the satellite is sensing
clouds—in particular, high clouds. In practice, we use a
threshold of 10°C. Unlike the visible channel, the IR
channel is available throughout the day but has a poor
temporal resolution and high latency (i.e., it arrives af-
ter significant delays) in real time. Therefore, the sat-
ellite data are advected using the clustering and Kal-
man filtering technique described in Lakshmanan et al.
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(2003) to match the current time before the difference
is computed.

If there is any overlap between a region of echo
sensed by radar and clouds sensed through the tem-
perature difference, that entire region of echo is re-
tained. If there is no overlap, the entire region is de-
leted, as shown in Fig. 8.

Although in this paper we have shown this multisen-
sor QC operating on radar data combined from mul-
tiple radars, the multisensor QC technique can be ap-
plied to single radar data also (Lakshmanan and
Valente 2004).

The trade-offs of using such a multisensor QC tech-
nique are not yet completely known. Although sporadic
errors left by the radar-only technique are corrected by

the multisensor component, the multisensor QC tech-
nique of the form discussed leaves much to be desired.
Satellite IR data are of poor resolution (approximately
4 km every 30 min); the surface temperature data we
use are even coarser. Many shallow storms and precipi-
tation areas, for example, lake-effect snow, are com-
pletely missed by the satellite data. The advection may
be slightly wrong, leaving smaller cells unassociated
with the clouds on satellite. Thus, although the multi-
sensor aspect can provide an assurance that clear-air
returns are removed, it can also remove many valid
radar echoes. An examination of its performance over
a climatologically diverse dataset is required.

An implementation of this QC technique for WSR-
88D data was available (free for research and academic

FIG. 7. An instance in which spatial postprocessing is detrimental. (a) A radar composite from KLSX at 0409 UTC 7 Jul 1993 showing
anomalous propagation (marked by a polygon) embedded inside precipitation echoes. (b) The precipitation confidence field from the
NN showing that the AP and precipitation areas have been correctly identified for the most part. The dark areas are good echo. Note,
however, the random errors in classification in both the AP and precipitation areas (circled). (c) The result of spatial postprocessing;
because the precipitation area is much larger than the AP area, the AP area is also identified as precipitation. Use of a vector
segmentation algorithm may help to resolve situations like this one. (d) The resulting QCed composite field has misidentified the AP
region as precipitation.
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use) on the Internet at the time of writing (http://www.
wdssii.org/).

e. Research directions

We have focused on developing a single algorithm
that could be used to perform QC on WSR-88D data
from anywhere in the continental United States and in
all seasons. It is possible that a more targeted QC ap-
plication (e.g., targeted to the warm season in Florida)
might work better because it would limit the search
space for the optimization procedure. On the other
hand, there should be no reason to target a QC appli-
cation by the type of bad echoes expected. There is
little that the end user of two QC products—one for
AP/GC and the other for radar test patterns—can do
other than to use a rule of thumb to combine these into
a single product. A formal optimization procedure

should, in theory, do better at arriving at such a com-
bined product.

It was pointed out in this paper that when combining
radar data from multiple radars the errors are additive.
Therefore, the QC procedure, although adequate for
single-radar products, needs to be further improved for
multiradar products. The use of satellite and surface
data in real time was explored, but some limitations
were observed. A multisensor approach merits further
study.

This research utilized only a selected set of training,
validation, and independent test cases. In such a selec-
tion, the climatological probabilities of the various er-
rors are lost. A climatological study of all the WSR-88D
radars in the continental United States, with the actual
probability of the various problems that a QC tech-
nique is expected to handle, may permit a better design
of QC techniques. We believe that our technique of

FIG. 8. (a) Part of a radar image formed by combining QCed radar data from all of the WSR-88D radars in the continental United
States at approximately 1 km � 1 km every 2 min. The detail shows Nevada (top-left of image) to the Texas Panhandle (bottom-right
of image). (b) Two good echoes are marked by rectangles (in Nevada and Arizona). One bad-echo region is marked by a circle (in
Nebraska, top-right). (c) Cloud-cover product formed by taking a difference of cloud-top temperature detected by satellite and surface
temperature from an objective analysis of surface observations. Notice that the echo in Arizona has cloud cover; the marked echoes
in Nevada and Nebraska do not. (d) Applying the cloud-cover field helps to remove some bad echo in Nebraska while retaining most
of the good echo. However, good echo in Nevada has been removed because it was not correlated with cold cloud tops in satellite IR
data.
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selected emphasis to balance out distributions and to
emphasize strong reflectivity echoes is a better ap-
proach, but this assertion is unproven.

4. Summary

This paper has presented a formal mechanism for
choosing and combining various measures, both pro-
posed in the literature and introduced in this paper, to
discriminate between precipitation and nonprecipitat-
ing echoes in radar reflectivity data. This classification
is done on a region-by-region basis rather than range
gate by range gate. It was demonstrated that the result-
ing radar-only quality-control mechanism outperforms
the operational algorithm on a set of independent test
cases. The approach of this paper would be just as ap-
plicable to data from a newer generation of radars or to
data from radars in different areas of the world.
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