Joseph R. Boccheeri

Recent Experiments in the Use of Model Output Statistics

TECHNICAL DEVELOPMENT LABORATORY
SYSTEMS DEVELOPMENT OFFICE
NATIONAL WEATHER SERVICE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
DEPARTMENT OF COMMERCE
After performing these experiments for the 12-24 h period, we developed

a set of experimental snow amount forecasts which were later called the

"National Weather Service's, 1971 Model" (National Weather Service, 1971). It uses

the output of any other model (or models) and determines the snowfall amount by

a formula dependent on the current forecasted snowfall amount.

A Model Output Statistics (MOS) system for forecasting heavy snow has been
developed.
cases would be available for equation development.

We need a sufficient number of show amount
to make the equation large enough to
determine the reduction of show amount.

We considered the equation shown in (Fe).
By Equation estimation. Relative
percentage for each forecast for the development sample. We
considered the equation for each forecast for the development sample.

where \(R^F \) is the relative proportion forecast for a particular
forecast. Where \(R^F \) is the relative proportion forecast for a particular
forecast.

\[
R^F = \frac{R^F - (S)_{POS}}{\text{POS}(S)}
\]

(1)

Relative proportion of forecast for each show amount category
was computed for each station and for each show amount category
on the development sample. A statistic called the relative proportion
was developed to evaluate the equation to obtain forecasts for each
station. The relative proportion was developed to evaluate the equation
to obtain forecasts for each station.

In another experiment, we determined the optimum number of predictors to
use at the National Meteorological Center.

In the process of developing the experimental forecast (1962),
we did a comprehensive verification between the two forecast systems with four
periods. In the process of developing the experimental forecast (1962),
we did a comprehensive verification between the two forecast systems with four
periods.

In the process of developing the experimental forecast (1962),
we did a comprehensive verification between the two forecast systems with four
periods.

The procedure can be found in Table 1962 and 1972.

Table 1962 and 1972.

The procedure can be found in Table 1962 and 1972.
In a true mathematical sense, this method doesn’t give the unconditional probability of the event. The method is essentially the one used in the operational system to obtain

\[P(\text{POSA}) \times \text{POP} = P(\text{POSA}) \times \text{POPA} \]

The latter method, called MOSD, involves the determination of the unconditional probability of the event. This method is essentially the one used in the operational system to obtain

\[\text{Poisson}(\mu) \times \text{POP} = \text{Poisson}(\mu) \times \text{POPA} \]

We experimented with two methods for obtaining unconditional probabilities of the event.

EXPERIMENTS IN ESTIMATING THE UNCONDITIONAL PROBABILITY OF SHOW AMOUNT

The experiments were associated with heavy snow in the Western United States, when the ISU was a heavy snow system. The experiments were conducted under various parameters at 500 mb to be useful. The experiments were conducted under various parameters at 500 mb, which were used to estimate the total amount of snowfall. The experiments were conducted under various parameters at 500 mb, which were used to estimate the total amount of snowfall. The experiments were conducted under various parameters at 500 mb, which were used to estimate the total amount of snowfall. The experiments were conducted under various parameters at 500 mb, which were used to estimate the total amount of snowfall.

In Table 1, the predictor types are ranked as determined by the model scores.
2. For the independent sample, the t-test score and phi score for each of the remaining categories were compared to the development sample. The development sample was generated using the chi-square procedure for the 18-24 and 24-67 period. The t-test scores were calculated for the 12-24, 16-67, and 24-67 period. The result was then compared to the t-test scores for the 12-24, 16-67, and 24-67 period. The resulting value was then compared to the t-test scores for the 12-24, 16-67, and 24-67 period. If the resulting value was less than the threshold value, the category was classified as not exceeded. If the resulting value was greater than the threshold value, the category was classified as exceeded. If the resulting value was equal to the threshold value, the category was classified as equal.

For the development sample, the t-test score was computed using the chi-square procedure. The resulting value was then compared to the t-test scores for the 12-24, 16-67, and 24-67 period. If the resulting value was less than the threshold value, the category was classified as not exceeded. If the resulting value was greater than the threshold value, the category was classified as exceeded. If the resulting value was equal to the threshold value, the category was classified as equal.

For the independent sample, the t-test score was computed using the chi-square procedure. The resulting value was then compared to the t-test scores for the 12-24, 16-67, and 24-67 period. If the resulting value was less than the threshold value, the category was classified as not exceeded. If the resulting value was greater than the threshold value, the category was classified as exceeded. If the resulting value was equal to the threshold value, the category was classified as equal.

For the development sample, the t-test score was computed using the chi-square procedure. The resulting value was then compared to the t-test scores for the 12-24, 16-67, and 24-67 period. If the resulting value was less than the threshold value, the category was classified as not exceeded. If the resulting value was greater than the threshold value, the category was classified as exceeded. If the resulting value was equal to the threshold value, the category was classified as equal.

For the independent sample, the t-test score was computed using the chi-square procedure. The resulting value was then compared to the t-test scores for the 12-24, 16-67, and 24-67 period. If the resulting value was less than the threshold value, the category was classified as not exceeded. If the resulting value was greater than the threshold value, the category was classified as exceeded. If the resulting value was equal to the threshold value, the category was classified as equal.

For the development sample, the t-test score was computed using the chi-square procedure. The resulting value was then compared to the t-test scores for the 12-24, 16-67, and 24-67 period. If the resulting value was less than the threshold value, the category was classified as not exceeded. If the resulting value was greater than the threshold value, the category was classified as exceeded. If the resulting value was equal to the threshold value, the category was classified as equal.

For the independent sample, the t-test score was computed using the chi-square procedure. The resulting value was then compared to the t-test scores for the 12-24, 16-67, and 24-67 period. If the resulting value was less than the threshold value, the category was classified as not exceeded. If the resulting value was greater than the threshold value, the category was classified as exceeded. If the resulting value was equal to the threshold value, the category was classified as equal.

For the development sample, the t-test score was computed using the chi-square procedure. The resulting value was then compared to the t-test scores for the 12-24, 16-67, and 24-67 period. If the resulting value was less than the threshold value, the category was classified as not exceeded. If the resulting value was greater than the threshold value, the category was classified as exceeded. If the resulting value was equal to the threshold value, the category was classified as equal.

For the independent sample, the t-test score was computed using the chi-square procedure. The resulting value was then compared to the t-test scores for the 12-24, 16-67, and 24-67 period. If the resulting value was less than the threshold value, the category was classified as not exceeded. If the resulting value was greater than the threshold value, the category was classified as exceeded. If the resulting value was equal to the threshold value, the category was classified as equal.

For the development sample, the t-test score was computed using the chi-square procedure. The resulting value was then compared to the t-test scores for the 12-24, 16-67, and 24-67 period. If the resulting value was less than the threshold value, the category was classified as not exceeded. If the resulting value was greater than the threshold value, the category was classified as exceeded. If the resulting value was equal to the threshold value, the category was classified as equal.

For the independent sample, the t-test score was computed using the chi-square procedure. The resulting value was then compared to the t-test scores for the 12-24, 16-67, and 24-67 period. If the resulting value was less than the threshold value, the category was classified as not exceeded. If the resulting value was greater than the threshold value, the category was classified as exceeded. If the resulting value was equal to the threshold value, the category was classified as equal.

For the development sample, the t-test score was computed using the chi-square procedure. The resulting value was then compared to the t-test scores for the 12-24, 16-67, and 24-67 period. If the resulting value was less than the threshold value, the category was classified as not exceeded. If the resulting value was greater than the threshold value, the category was classified as exceeded. If the resulting value was equal to the threshold value, the category was classified as equal.

For the independent sample, the t-test score was computed using the chi-square procedure. The resulting value was then compared to the t-test scores for the 12-24, 16-67, and 24-67 period. If the resulting value was less than the threshold value, the category was classified as not exceeded. If the resulting value was greater than the threshold value, the category was classified as exceeded. If the resulting value was equal to the threshold value, the category was classified as equal.

For the development sample, the t-test score was computed using the chi-square procedure. The resulting value was then compared to the t-test scores for the 12-24, 16-67, and 24-67 period. If the resulting value was less than the threshold value, the category was classified as not exceeded. If the resulting value was greater than the threshold value, the category was classified as exceeded. If the resulting value was equal to the threshold value, the category was classified as equal.

For the independent sample, the t-test score was computed using the chi-square procedure. The resulting value was then compared to the t-test scores for the 12-24, 16-67, and 24-67 period. If the resulting value was less than the threshold value, the category was classified as not exceeded. If the resulting value was greater than the threshold value, the category was classified as exceeded. If the resulting value was equal to the threshold value, the category was classified as equal.

For the development sample, the t-test score was computed using the chi-square procedure. The resulting value was then compared to the t-test scores for the 12-24, 16-67, and 24-67 period. If the resulting value was less than the threshold value, the category was classified as not exceeded. If the resulting value was greater than the threshold value, the category was classified as exceeded. If the resulting value was equal to the threshold value, the category was classified as equal.

For the independent sample, the t-test score was computed using the chi-square procedure. The resulting value was then compared to the t-test scores for the 12-24, 16-67, and 24-67 period. If the resulting value was less than the threshold value, the category was classified as not exceeded. If the resulting value was greater than the threshold value, the category was classified as exceeded. If the resulting value was equal to the threshold value, the category was classified as equal.

For the development sample, the t-test score was computed using the chi-square procedure. The resulting value was then compared to the t-test scores for the 12-24, 16-67, and 24-67 period. If the resulting value was less than the threshold value, the category was classified as not exceeded. If the resulting value was greater than the threshold value, the category was classified as exceeded. If the resulting value was equal to the threshold value, the category was classified as equal.

For the independent sample, the t-test score was computed using the chi-square procedure. The resulting value was then compared to the t-test scores for the 12-24, 16-67, and 24-67 period. If the resulting value was less than the threshold value, the category was classified as not exceeded. If the resulting value was greater than the threshold value, the category was classified as exceeded. If the resulting value was equal to the threshold value, the category was classified as equal.

For the development sample, the t-test score was computed using the chi-square procedure. The resulting value was then compared to the t-test scores for the 12-24, 16-67, and 24-67 period. If the resulting value was less than the threshold value, the category was classified as not exceeded. If the resulting value was greater than the threshold value, the category was classified as exceeded. If the resulting value was equal to the threshold value, the category was classified as equal.

For the independent sample, the t-test score was computed using the chi-square procedure. The resulting value was then compared to the t-test scores for the 12-24, 16-67, and 24-67 period. If the resulting value was less than the threshold value, the category was classified as not exceeded. If the resulting value was greater than the threshold value, the category was classified as exceeded. If the resulting value was equal to the threshold value, the category was classified as equal.

For the development sample, the t-test score was computed using the chi-square procedure. The resulting value was then compared to the t-test scores for the 12-24, 16-67, and 24-67 period. If the resulting value was less than the threshold value, the category was classified as not exceeded. If the resulting value was greater than the threshold value, the category was classified as exceeded. If the resulting value was equal to the threshold value, the category was classified as equal.

For the independent sample, the t-test score was computed using the chi-square procedure. The resulting value was then compared to the t-test scores for the 12-24, 16-67, and 24-67 period. If the resulting value was less than the threshold value, the category was classified as not exceeded. If the resulting value was greater than the threshold value, the category was classified as exceeded. If the resulting value was equal to the threshold value, the category was classified as equal.

For the development sample, the t-test score was computed using the chi-square procedure. The resulting value was then compared to the t-test scores for the 12-24, 16-67, and 24-67 period. If the resulting value was less than the threshold value, the category was classified as not exceeded. If the resulting value was greater than the threshold value, the category was classified as exceeded. If the resulting value was equal to the threshold value, the category was classified as equal.
results indicated that the two systems were of comparable accuracy. The
scores were then compared to the operational forecasts for each forecast period. The scores were then
compared to the operational forecasts for 24-hour and 48-hour periods. Also, the dete-
minant scores were found to be more for the 12-24 h and 12-48 h periods. The results indicate
that both the three systems and the operational forecasts were comparable to these scores
which was expected. We then compared the forecast score to the operational forecasts
and found them to be more for the 12-24 h and 48-hour periods. The forecast scores were
then compared to the operational forecasts for each forecast period. The results indicate
that both the three systems and the operational forecasts were comparable to these scores.

To help determine whether the experimental system was as accurate as the operational forecast
system, we decided to use the PROD CHosen to estimate the forecast, since it will be easier
to compute. We compared the PROD CHosen to the operational forecast scores for each forecast period. The
same procedure was followed for the 24-hour and 48-hour periods.

We also experimented with the following methods for estimating the uncalibrated probabilities:

1. The PROD CHosen was used to estimate the forecast, since it will be easier
to compute. We compared the PROD CHosen to the operational forecast scores for each forecast period. The
same procedure was followed for the 24-hour and 48-hour periods.

2. The PROD CHosen was used to estimate the forecast, since it will be easier
to compute. We compared the PROD CHosen to the operational forecast scores for each forecast period. The
same procedure was followed for the 24-hour and 48-hour periods.

3. The PROD CHosen was used to estimate the forecast, since it will be easier
to compute. We compared the PROD CHosen to the operational forecast scores for each forecast period. The
same procedure was followed for the 24-hour and 48-hour periods.

4. The PROD CHosen was used to estimate the forecast, since it will be easier
to compute. We compared the PROD CHosen to the operational forecast scores for each forecast period. The
same procedure was followed for the 24-hour and 48-hour periods.
<table>
<thead>
<tr>
<th>Number of Snow Cases</th>
<th>Total Number</th>
<th>Snow Amount Category (Indices)</th>
<th>Total Reduction of Variance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>1</td>
<td>2.0</td>
<td>100</td>
</tr>
<tr>
<td>0.000</td>
<td>2</td>
<td>4.0</td>
<td>80</td>
</tr>
<tr>
<td>0.000</td>
<td>3</td>
<td>6.0</td>
<td>60</td>
</tr>
<tr>
<td>0.000</td>
<td>4</td>
<td>8.0</td>
<td>40</td>
</tr>
<tr>
<td>0.000</td>
<td>5</td>
<td>10.0</td>
<td>20</td>
</tr>
</tbody>
</table>

The table 3 shows the reduction of variance for NEEP conditional probability of snow.

<table>
<thead>
<tr>
<th>Snow Amount Category (Indices)</th>
<th>Predictors</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td>1</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>0.000</td>
</tr>
</tbody>
</table>

The reduction of variance is also shown in parentheses. The table shows the frequency (%) of each region (1971-77 through 1979-80).
<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1.4</td>
<td>0.6</td>
<td>0.4</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2.4</td>
<td>4.5</td>
<td>4.5</td>
<td>1.8</td>
<td>2.8</td>
<td>1.5</td>
<td>1.8</td>
<td>0.4</td>
<td>0.5</td>
<td>2.4</td>
<td>4.5</td>
</tr>
<tr>
<td>9.7</td>
<td>19.8</td>
</tr>
</tbody>
</table>

For each snow amount category to be given in parentheses the number of cases for which prediction of variance by each predictor is shown. The additional reduction of variance is shown.
Figure 1. The five regions used in the development of the experimental PoSA(S) equations. The dots show the stations for which snow amount data were available in the developmental archive.