APPLICATIONS OF THE MOS TECHNIQUE:
A BIBLIOGRAPHY--No. 4

Gary M. Carter and J. Paul Dallavalle

October 1985
APPLICATIONS OF THE MOS TECHNIQUE: A BIBLIOGRAPHY--No. 4

Gary M. Carter and J. Paul Dallavalve

1. INTRODUCTION

For more than 10 years, the National Weather Service has provided its field forecasters and various other users of weather information with objective weather guidance based on the Model Output Statistics (MOS) technique. Surface wind (direction and speed) for several stations in the eastern United States was the first weather element for which MOS forecasts were provided on an operational basis. This guidance, first issued in 1968, relied primarily on output from the Techniques Development Laboratory's (TDL's) Subsynoptic Advection Model (SAM). Later, probability of precipitation and precipitation type forecasts were added to the SAM guidance package. In 1972, probability of precipitation guidance based on output from the National Meteorological Center's six-layer coarse mesh Primitive Equation (PE) model was provided for many locations throughout the conterminous United States. Later, as indicated in Table 1, many other elements were added, and the Limited-area Fine Mesh (LFM) model became the main source of input for the MOS prediction equations.

Table 1. Approximate month and year of operational implementation for various types of MOS guidance for locations throughout the conterminous United States.

<table>
<thead>
<tr>
<th>Weather Element</th>
<th>PE-based Guidance</th>
<th>LFM-based Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability of Precipitation</td>
<td>January 1972</td>
<td>February 1976</td>
</tr>
<tr>
<td>Precipitation Amount</td>
<td>October 1977</td>
<td>October 1977</td>
</tr>
<tr>
<td>Precipitation Type</td>
<td>November 1972</td>
<td>February 1976</td>
</tr>
<tr>
<td>Snow Amount</td>
<td>--</td>
<td>October 1977</td>
</tr>
<tr>
<td>Thunderstorm/Severe Local Storms</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Short-range</td>
<td>May 1973</td>
<td>April 1974</td>
</tr>
<tr>
<td>Medium-range</td>
<td></td>
<td>April 1978</td>
</tr>
<tr>
<td>Maximum/Minimum Temperature</td>
<td>August 1973</td>
<td>February 1976</td>
</tr>
<tr>
<td>3-hourly Temperature</td>
<td>--</td>
<td>June 1978</td>
</tr>
<tr>
<td>3-hourly Dew Point</td>
<td>--</td>
<td>April 1980</td>
</tr>
<tr>
<td>Surface Wind</td>
<td>May 1973</td>
<td>February 1976</td>
</tr>
<tr>
<td>Cloud Amount</td>
<td>December 1974</td>
<td>February 1976</td>
</tr>
<tr>
<td>Ceiling/Visibility</td>
<td>October 1974</td>
<td>February 1976</td>
</tr>
<tr>
<td>Obstructions to Vision</td>
<td>--</td>
<td>April 1980</td>
</tr>
<tr>
<td>Solar Energy</td>
<td>--</td>
<td>October 1981</td>
</tr>
<tr>
<td>Sunshine</td>
<td>--</td>
<td>October 1983</td>
</tr>
</tbody>
</table>

This bibliography is an attempt to document applications of the MOS technique to weather forecasting. The entries have been arranged by broad categories such as general reference articles and verification reports or according to the type of weather element. No article is referenced more than once. Within each subsection, the entries are arranged in alphabetical order by last name of the (first) author, and for each author, the entries are in chronological order. The double asterisk denotes the most current and comprehensive references in each particular subsection.
The vast majority of the authors are (or were) members of TDL. The listing for TDL authors is nearly exhaustive. The last section is devoted specifically to non-TDL applications.

We plan to revise and update the bibliography on a biannual basis.

2. BIBLIOGRAPHY

A. General Reference

B. Verification

C. Temperature

——, 1978: Statistical forecasts of surface temperature from numerical weather predictions. Symposium on the Interpretation and Use of Large-Scale Numerical Forecast Products, Braccell, United Kingdom, European Centre for Medium Range Forecasts, 221-272.

D. Precipitation

1. Probability of Precipitation

1. Operational Probability of Precipitation Forecasts

2. Precipitation Amount

3. Precipitation Type

4. Snow Amount

E. Thunderstorms/Severe Local Storms

1. Short-range

2. Medium-range

F. Wind

1. Aviation/Public Weather Surface Winds

No. FAA-RD-70-43 to Federal Aviation Administration, U.S. Department of
Transportation. Techniques Development Laboratory, National Weather

Janowiak, J. E., 1981: The usefulness of LFM boundary layer forecasts as pre-
dictors in objective surface wind forecasting. TDL Office Note 81-6,

National Weather Service, 1973a: Surface wind forecasts based on Model Output
Statistics (MOS)--No. 1. NWS Technical Procedures Bulletin No. 86,
National Oceanic and Atmospheric Administration, U.S. Department of

1973b: Surface wind forecasts based on Model Output Statistics (MOS)--
No. 2. NWS Technical Procedures Bulletin No. 93, National Oceanic and

1973c: Surface wind forecasts based on Model Output Statistics (MOS)--
No. 3. NWS Technical Procedures Bulletin No. 98, National Oceanic and

1973d: Surface wind forecasts based on Model Output Statistics (MOS)--
No. 4. NWS Technical Procedures Bulletin No. 102, National Oceanic and

1975a: Warm season surface wind forecasts based on MOS--No. 4. NWS
Technical Procedures Bulletin No. 137, National Oceanic and Atmospheric
Administration, U.S. Department of Commerce, 6 pp.

1975b: MOS surface wind, cloud amount, and 3-category flight weather
forecasts. NWS Technical Procedures Bulletin No. 139, National Oceanic

1976a: Surface wind forecasts based on Model Output Statistics (MOS)--
No. 6. NWS Technical Procedures Bulletin No. 152, National Oceanic and

1976b: Surface wind forecasts based on Model Output Statistics (MOS)--
No. 7. NWS Technical Procedures Bulletin No. 161, National Oceanic and

NWS Technical Procedures Bulletin No. 191, National Oceanic and Atmos-

NWS Technical Procedures Bulletin No. 229, National Oceanic and Atmos-

NWS Technical Procedures Bulletin No. 271, National Oceanic and Atmos-
2. Marine Winds

3. Gusts

4. Special Wind Applications

G. Aviation Applications

H. Agricultural Applications

1. Specialized Guidance

2. Sunshine and Solar Energy

I. Alaskan Guidance

J. Local AFOS MOS Program (LAMP)

... 1984a: Experimental wind forecasts from the Local AFOS MOS Program. NOAA Technical Memorandum NWS TDL 72, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, 60 pp.**

... 1984c: Surface wind forecasts from the Local AFOS MOS Program (LAMP). *Preprints Tenth Conference on Weather Forecasting and Analysis*, Clearwater Beach, Amer. Meteor. Soc., 78-86.
K. Non-TDL Applications

3. ACKNOWLEDGEMENTS

Many people have contributed to this effort; most, but not all, are cited in the references. We sincerely thank each one for his or her contribution.