Rip Current Definition:

a jet-like seawardflow across the surfzone of a beach.

Rips At Roberita Beach Beja Calif, MEXICO

REFERENCE: SHORE PROCESSES LAB PHOTO NO

THOTO TAKEN BY D.L. INMAN

A Overhead View of a California Mega Rip

July 25, 2009 by Tom Cozad, pilot: Howard Hamlin

Types of Rip Currents

From United States Lifesaving Association manual:

Fixed: appear over a rip channel.

Permanent: stationary near a jetty

Flash: due to sets of waves, bi-modal waves

Traveling or migrating: caused by strong swells which strike the beach obliquely.

What causes rip currents?

Major factors

Breaking Waves

Water Level

Beach Characteristics

Consider Surface Wave Energy Dissipation Over a Sand Bar

---- Increase in Water Level over the Bar

Convert momentum flux forces (KE-PE)

Approaches to Studying Rip Currents

- Laboratory Experiments: Qualitative features, scale problem
- Field Studies: expensive, not easily repeatable
- •Theory/Computer modeling: need initial/boundary conditions, CPU intensive
- Diagnostic Monitoring of surf data: our approach

Lab Experiment

Haller *et al.* (2002) Haller and Dalrymple, 1999

Wave number spectrum observed using *Marine X-band radar* May 29, 2001, 15:10 UTC

$$Hs = 4.5 \text{ m}$$

$$Tp = 9.2 \text{ s}$$

$$\lambda p = 133 \text{ m}$$

Modeling of Nearshore Current Circulations

Boussinesq wave/current model on a sand bar bathymetry (FUNWAVE)

(Chen et al., *J. Geophys. Res.*, 1999)

Coupled wave-driver (REF/DIF) & circulation model (SHORECIRC)

(Haas et al., *J. Geophys. Res.*, 2003)

Rips over Panama City Beach with bar-trough and protruded shore

Southern California Rip Current Monitoring surf zone data

Q1: What are the prevailing **conditions** for rip currents?

Find a rule of thumb from the data.

Q2: How to define the **strength** of rip currents? Generalize a description of rip risk levels.

Seasonal Wave Characteristics on Moonlight Beach

Mean Waves	Surf Height (ft)	Wave period (sec)	Surf Zone Width (ft)
Season Winter	3.50	10.5	203
	2.00	0.0	200
Spring	2.89	9.8	280
Summer	2.61	12.6	242
Fall	2.59	11.6	205

Winter: 12/15/08-4/16/09 Spring: 4/16/08-06/10/08 Summer: 6/12/08-10/02/08 Fall: 10/03/08-12/14/08

Seasonal Rip Current Characteristics at Moonlight Beach, CA

Intensity	Weak	Moderate	Strong	No rips
Season				
Winter	50	56	14	22
Spring	33	26	4	8
Summer	51	53	5	20
Fall	37	25	3	14

Winter: 12/15/08-4/16/09 Spring: 4/16-06/10/08 Summer: 6/12-10/02/08 Fall: 10/03-12/14/08

Methods of Prediction

I. Rip prevailing condition:

A. Wave -Sediment (by Short and Wright) or M 2

$$\Omega = H_b / T_w = wave particle speed/sand falling speed $1 < \Omega < 6$ rips appearing ranges.$$

- B. Surf scale parameter (Wave-Beach) (Guza, Nielsen, etc) or M₃
 - 2.0 $<\epsilon = a_b \omega^2 / g \tan^2 \beta =>$ wave steepness/beach face slope.
- II. Rip strength estimate:

More sensitive to beach face slope, limited

Critical Skill Performance

During 4/15/08 - 8/16/2008

SCORE	POD	FAR	SR	CSI
Methods	Probability of detection	False Alarm rate	Success ratio	Critical success index
Wave-Sand M2	0.81	0.25	0.75	0.631
Wave-beach M 3	0.69	0.36	0.64	0.523

(A) Spilling breakers in series with saturated surf zones. Usually can be seen at low tide. Waves are high.

(B) Longshore bar-trough with steeper waves that collapse near the shore. Rip appears at bar breaches.

Beach cusps, Ω < 1 or ε < 2.0, waves are reflected

Methods of Prediction

I. Rip prevailing condition:

A. Wave -Sediment (by Short and Wright) or M 2

$$\Omega = H_b / T_w = wave particle speed/sand falling speed $1 < \Omega < 6$ rips appearing ranges.$$

- B. Surf scale parameter (Wave-Beach) (Guza, Nielsen, etc) or M₃
 - 2.0 $<\epsilon = a_b \omega^2 / g \tan^2 \beta =>$ wave steepness/beach face slope.
- II. Rip strength estimate:

Rip strength versus water volume flux

Back-up Slides

Delft 3D Model Setup – Nested Domains

Encircles Area 3

CPU used for initialization: 415.210s

CPU used for simulation: 718.835s

CPU used for close and stop: 0.715s

Total: 1134.92s (~19 min.)

Delft3D SWAN Area

- 15m x 30m resolution
- Boundary information from DIOPS SWAN

Delft3D SWAN/FLOW Area

- 5m x 15m resolution
- Standard boundary conditions
- No roller activated
- 3 hr run (in 1 hr spin up)

Nearshore Circulation: Model vs. Visual Signals

Circulation Results for 10/10/2003 at 1900 GMT

Other factors and Variability of Rip Currents

- 1. Tide effects: within 12 hours, tide rises from low-high
- 2. Wave direction: normal wave incidence vs. oblique wave
- Different beaches, such as in a bay or semi-protected?

Uncertainties of prediction lies on:

- * Lifetime of rips vary: 10 sec~3 min ~ weeks.
- * Pulsation of rip: intensities vary with water levels. Low swell waves (~ 2 ft) at low tide can develop

Tide effects on Rip hazard

Rip current results	Max rip	Rescue	Surf Zone
Water levels	speed (m/sec)	numbers	Width (yards)
	(III/SCC)		(yarus)
Low tide	0.60	465	80
(0.5 m)			
High tide	0.25	3	40
(3.0 m)			

Nile Mile Beach: H=0.65 m, T=10 sec and slope = 1/25

Remarks for Operation

- •Lifeguards----NWS can collaborate to provide consistent beach safety operation.
- Getting surf heights are crucial for rip currents.
- •The beach sand grain size and beach face slope matters, IT SHOULD BE RECORDED MONTHLY.
- •In Surf zone forecast, changes in sea states (3 hrs) and the beach states (12 hrs) must be noted during a storm.

Surf zone forecast and High Surf complements each other.