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1. INTRODUCTION

Probabilistic forecasts of weather elements in-
herently contain more value than their single-
valued counterparts. Recently, a number of tech-
niques have appeared that can create probabilis-
tic forecasts using the output from ensembles of
numerical weather prediction models. Hamill, et
al. (2006) and Hamill and Whitaker (2006) de-
scribe an analog matching technique. Mass, et al.
(2009) use ensembles and Bayesian Model Aver-
aging (BMA) to generate probabilistic mesoscale
weather forecasts. The Meteorological Develop-
ment Laboratory (MDL) of the National Oceanic
and Atmospheric Administration's (NOAA) Na-
tional Weather Service (NWS) has developed a
technique named ensemble kernel density model
output statistics (EKDMOS) that can produce a
forecast probability density function (PDF) or cu-
mulative distribution function (CDF) for weather
elements using error estimation from linear re-
gression and kernel density fitting. Glahn, et al.
(2009) describe the application of the EKDMOS
technique to temperature (T), dew point (Td),
daytime maximum temperature (MaxT), and
nighttime minimum temperature (MinT).

The EKDMOS technique has now been used to
generate forecast PDFs/CDFs of heat index (HI)
and wind chill (WC). HI attempts to reflect the
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combined effects of heat and humidity on the
human body. Similarly, WC attempts to reflect
the combined effects of cold and wind on the
human body. Both HI and WC are used exten-
sively by the NWS to inform public health officials
and the general public about expected weather
hazards. For convenience, forecasts of HI, WC,
and temperature (T) are frequently combined into
a single weather element named apparent tem-
perature (AppT).

2. EKDMOS Technique

The EKDMOS technique begins by using
screening multiple linear regression to develop
forecast equations for the target weather ele-
ment. The predictors used in the regression are
ensemble mean values of model output. The re-
gression directly provides an estimate of error
variance named the prediction interval. Each
time an EKDMOS forecast is made, the forecast
equations developed with the ensemble means
are applied to each ensemble member, and Ker-
nel Density fitting is used to combine the results
into a single probability distribution. The Kernel
Density fitting process uses a Gaussian kernel that
is centered on the member forecast and has the
standard deviation produced by the regression for
that member. Glahn, et al. (2009) describe this
technique in considerable detail and give results
for the four surface weather elements mentioned
above. That paper shows that EKDMOS forecasts
for these weather elements are both accurate
and reliable.



The basic EKDMOS techniques were applied
separately to the tasks of forecasting HI and WC.
T is valid over a very large range of values. Both
HI and WC, however, are limited to specific
ranges. WC is not valid above 50 degrees Fahren-
heit (°F); Hl is not valid below 80°F. One can gen-
erally substitute T for those portions of the range
that are not covered by Hl and WC. Both the HI
and WC are very close to T when computed for
values near the ends of their valid ranges.

3. HI Computation

The HI as used in NWS operations is based on
work by Steadman (1979a) on "The Assessment of
Sultriness" using dry bulb temperature and rela-
tive humidity. A companion paper (Steadman
1979b) included adjustments based on additional
weather elements, but Table 2 from the first pa-
per has been adopted by the NWS. (See NWS
2008a. It mentions HI by name, but provides no
equation or reference.) While tables are useful
enough for human eyes, they can be awkward
when implemented in software. Rothfusz (1990)
fitted the following fourth-order polynomial
equation to Steadman's table:

HI =-42.379 + 2.04901523T +
10.14333127R - 0.22475541TR

—6.83783x10°T?% -5.481717 x10 2 R?
+1.22874x10°T?R +8.5282x10*TR?
—1.99x10°T?R?

(1)

where R is the relative humidity in percent and T
is the temperature in °F.

Equation (1) has been implemented in a num-
ber of NWS software applications. It is important
to note that it yields inappropriate results at tem-
peratures below 80°F.

Former NWS instructions (NWS 2005) include
equation (1) and also specify that two adjust-
ments shall be made in the computation of HI.
The first adjustment to the HI calculation lowers
HI in cases when the relative humidity (RH) is less
than 13% and the temperature is between 80 and
112°F, according to the following formula:
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The second HI adjustment raises Hl in cases when
the RH is greater than 85% and the temperature is
between 80 and 87°F, according to the following
formula:

) R-85Y87-T
Adj2 =
: ( 10 j( 5 j G

Neither of these adjustments appears in the cur-
rent NWS Instruction series, and it is unclear
when and how they have been used in software
development over the years. Both adjustments
were applied as described above for our devel-
opment.

The Hl is not the only index that can measure
the combined effects of heat and humidity. Kalk-
stein and Valimont (1986) describe a weather
stress index that ranges from 0 to 100 and is ad-
justed for local climatology. Schoen (2005) de-
scribes a temperature-humidity index.
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4. HI Development

Glahn, et al. (2009) describe the Global En-
semble Forecast System (GEFS) as it is run by the
National Centers for Environmental Prediction
(NCEP) and as it is used by MDL to generate
EKDMOS. MDL generally divides T, Td, MaxT, and
MinT into 6-month seasons with boundaries set at
April 1 and October 1. Seasons were not used in
our development of HI or WC forecast equations.
We found that the observations created seasons
of a sort; HI was generally not observed during
the cool season, and WC was generally not ob-
served during the warm season.

HI forecast equations were developed from
GEFS forecasts and surface observations for 2280
stations distributed throughout the coterminous
United States (CONUS), Alaska, Hawaii, and U. S.
territories. For development, we set HI to T for
cases with T between 70 and 80°F and omitted
cases with T less than 70°F. We only developed HI
equations with data sets that contained at least
5% HI cases, i.e., cases with temperatures greater
than 80°F. Every equation developed used the
model value of Hl as a predictor. Other predictors



were offered to the screening regression proce-
dure, and they were incorporated into the fore-
cast equations.

The filtering techniques described above re-
sulted in an insufficient number of data points for
many stations in the northern climes and along
the west coast of the CONUS. To increase the size
of the development data set, we grouped the
data from neighboring stations with similar tem-
perature distributions and diurnal cycles. We
used the ratio of cases in the >80°F range to cases
in the >70°F as a guide to climatological similarity.
We did not develop equations for sta-
tions/regions that did not have 100 data points.

The number of stations with HI forecasts varies
with the hour of the day. At 1200 UTC (a cool
time of day for much of the CONUS) HI equations
were developed for only 308 stations. At
2100 UTC, however, equations were successfully
developed for 1830 stations. Most of the region-
alized equations included only two stations.
Roughly 200 stations were paired in this manner
at the warmer times of the day. We did create
groups of three, four, and five stations, but there
were less than 20 of them.

The development data set for HI begins on 01
October 2004 and continues for 2 years. Data
from 01 October 2006 through 01 October 2007
were reserved to serve as an independent sam-

ple.

5. WC Computation

The WC as used by the NWS has its origins in a
series of experiments in Antarctica which ingen-
iously modeled the human body with a cylinder of
warm water (Siple and Passell 1945). The Wind
Chill Factor computed from this work served the
NWS from 1973 until 2001. An improved set of
assumptions and new experiments led to the in-
troduction of a revamped WC equation in 2001
(Bluestein and Osczevski 2002; Osczevski and
Bluestein 2005). NWS directives (2008) specify
the current WC equation as follows:

WC =35.74+0.6215T —
35.75(V *1¢) + 0.4275T (v °**)

Where WC is the WC in °F, T is the air tempera-
ture in °F, and V is the wind speed in mph.
Analogous to the HI equations, Equation (4)
should not be used for temperatures that are
greater than 50°F.

6. WC Development

Forecast equations for WC were developed
from GEFS forecasts and surface observations for
2280 stations in the CONUS and Alaska. As with
the HI development, we made no attempt to
stratify the cases by season. Wind chill values
were computed from 10-m wind speed and 2-m
temperature for both model forecasts and surface
observations. For development, we set WCto T
for cases with T between 50 and 60°F and omitted
cases with T greater than 60°F.

As with the HI development, some stations
had insufficient data to support development of a
WC equation specifically for that station. To miti-
gate this problem, thirteen geographic regions
were identified where station data were com-
bined to yield sufficient cases. Observations from
a period of 45 months were analyzed to identify
“wind chill days,” i.e., days when a wind chill
temperature was computed for at least one hour.
We found 1440 stations that had 220 or more
wind chill days during this period. Single-station
equations were developed for these stations. The
rest of the stations were grouped into 13 regions
based on geography and the number of wind chill
days. This process yielded enough cases in each
region to develop forecast equations.

The development data set for WC begins on
01 July 2004 and continues until 30 September
2007. Data from 01 October 2007 through 30
September 2008 were reserved to serve as an
independent sample.

7. Methods and Baseline for Evaluation

We follow the pattern of Glahn et al. (2009)
for evaluating the HI and WC forecast equations.
This includes using Probability Integral Transform
(PIT) histograms, Cumulative Reliability Diagrams
(CR; CRD), Squared Bias (SB) in Relative Frequency
(RF), and Continuous Ranked Probability Score



(CRPS). The first three assess reliability while the
last assesses accuracy. Briefly, PIT histograms use
the probability value of the forecast Cumulative
Distribution Function (CDF) at the observed value.
When PITs for a sufficient number of cases are
plotted in a histogram, the resultant graph yields
a considerable amount of information about bi-
ases and under and overdispersion. CRDs present
similar information in a format that is reminiscent
of the familiar reliability diagram. SB in RF con-
denses the reliability information contained in a
PIT histogram (or, alternately, a CRD) into a single,
negatively-oriented score. While SB provides a
score that can be conveniently compared among
techniques and time projections, alone it yields
no information about the causes of any unreliabil-
ity. SB alone will not allow one to discern be-
tween bias problems and dispersion problems.
The negatively-oriented CRPS is the integral of the
squared difference between the CDF and the veri-
fying observation, and it has units of the weather
element (°F in this work).

Because HI and WC are both bounded on one
side, we are faced with an interesting verification
problem. Consider the case where a technique
makes no forecast of HI (WC) because T is fore-
cast to be too cold (hot), yet the verifying obser-
vation is warm (cold) enough to calculate a value.
Clearly, cases of this sort need to be included in
the evaluation. All four measures described
above, however, will omit these cases because
the forecast is missing. This problem has the net
result of making the scores “look too good.” Fu-
ture work will need to evaluate the size of this
scoring bias. We can only note its presence in the
results presented here.

Again, following the pattern of Glahn et al.
(2009), we use HI and WC forecasts computed
from the raw ensembles (RawEns) as our baseline
for evaluation. HI and WC forecasts for each en-
semble member are rank ordered and used to
compute a crude CDF. For this comparison we
considered the RawEns forecast for HI (WC) to be
missing when more than half of the members
made forecasts that were too cold (warm) to cre-
ate a HI (WC).

8. HI Results

Fig. 1 shows PIT histograms and CDFs that ver-
ify the independent data sample of RawEns and
EKDMOS for HI at three forecast time projections,
roughly Day 2, Day 5, and Day 7. RawEns shows a
considerable amount of underdispersion which is
largely corrected by EKDMOS. The maximum de-
viation in cumulative reliability is 31% for RawEns
at 48 h, and the maximum deviation in cumulative
reliability is 10% for EKDMOS at the same forecast
time projection. Fig. 2a shows that SB values for
EKDMOS are almost two orders of magnitude
smaller than those of RawEns. The CRPS scores
for EKDMOS Hl in Fig. 2b compare favorably with
those reported for T by Glahn (2009). Fig.3
shows bias (a) and Mean Absolute Error (MAE; b)
for RawEns and EKDMOS. These two scores are
applied to single-valued forecasts. In this case,
the median of the forecast distribution is scored.
The warm bias in RawEns is easier to assess in this
figure than in the PIT histograms. Both the bias
and MAE scores shown in Fig. 3 for HI compare
favorably to those reported for T in Glahn, et al.
(2009).

9. WC Results

WC results were not as good as those for HI.
Fig. 4 shows PIT histograms and CDFs that verify
the independent data sample of RawEns and
EKDMOS for WC. As in the results for HI above,
RawEns shows a considerable amount of un-
derdispersion and a noticeable cold bias. The
EKDMOS technique, successfully corrects the dis-
persion, but exhibits a warm bias. The maximum
deviation in cumulative reliability is 48% for
RawEns at 48 h, and the maximum deviation in
cumulative reliability is 13% for EKDMOS at 120 h.
The value for the rightmost column of the PIT his-
togram in Fig. 4a is 10.5. Despite the bias in
EKDMOS, Fig.5a shows that EKDMOS scores
much better than RawEns for SB. In Fig. 5b we
see that EKDMOS is more accurate than RawEns
at all projections. CRPS values approach 6°F at a
number of later forecast projections. This is con-
siderably worse than the scores for T shown in
Glahn et al. (2009). This suggests that it is more



difficult to forecast WC than Hl or T. Fig. 6 shows
bias (a) and MAE (b) for RawEns and EKDMOS.

We were surprised that the WC equations did
not perform better. Time did not permit a thor-
ough investigation of the issues. A brief examina-
tion of CONUS seasonal mean temperatures for
the development and independent data samples
showed relatively cooler temperatures in the in-
dependent data. Of course, this is only one of
many possible explanations for the warm bias in
the EKDMOS forecasts for WC. Cross validation of
the data samples is underway at the time of this
writing.

10. AppT Method

The National Weather Service Instruction for
National Digital Forecast Database and Local Da-
tabase Description and Specifications (NWS 2009)
specifies the following algorithm for combining T,
WC, and HI to form AppT:

Apparent Temperature - The perceived tem-
perature derived from either a combination of
temperature and wind (Wind Chill), or tempera-
ture and humidity (Heat Index) for the top of
the indicated hour. Apparent temperature grids
will signify the Wind Chill when temperatures
fall to 40°F or less, and the Heat Index when
temperatures rise above 80°F. Between 41 and
80°F, the Apparent Temperature grids will be
populated with forecast temperature.

The NWSI provides no explicit guidance for
forming forecast probability distributions of AppT.
We have adapted the NWSI technique with our
EKDMOS techniques to form these probability
distributions. We combine probability distribu-
tions for T, WC, and HI using the KDE step of the
EKDMOS technique. First, we compute single-
valued forecasts and prediction intervals for T,
WC, and HI for each member of the GEFS where
possible. The T forecast from each member is
evaluated to determine whether a kernel should
be created from the T, WC, or HI fore-
cast/prediction interval. Then, the KDE process
proceeds using a set of kernels that can be a mix-
ture of weather elements. We expect that many
AppT forecasts will fall clearly within one of the
three temperature ranges and all kernels will
come from only one weather element. In cases

where the temperature is near 80°F (40°F), one
can expect kernels of T and HI (T and WC) to be
part of the KDE. One can imagine an extreme
case where ensemble members will spread so far
that all three may be considered in the KDE.

The method described above for creating AppT
forecasts seems likely to yield skewed distribu-
tions when the AppT forecast is centered near the
transition value of 40°F. This is because predic-
tion intervals for WC are likely to be larger than
prediction intervals for T for any given forecast.
Thus, the WC kernels at and below 40°F are likely
to be wider than the T kernels above 40°F.

11. Sample PDFs

Again following Glahn, et al. (2009), we pre-
sent sample PDFs for two case studies. Fig.7a
shows a time series of seven EKDMOS PDFs all
forecasting the 0000 UTC AppT at Pagosa Springs,
Colorado on 08 October 2004 along with the veri-
fying observation. The two earliest forecasts (168
and 144 h) show considerable skew toward cold
temperatures. All forecasts have modes that are
reasonably close to the verifying observation, and
the forecasts quickly converge and become
sharper. Fig. 7b shows a similar time series of
PDFs for the same date, but a warmer location—
Concord, California. Some skew is evident in the
earliest forecast. Again, all forecasts seem to ver-
ify reasonably well, and they converge and be-
come sharper as lead time diminishes.

12. Conclusions

The EKDMOS method introduced by Glahn, et
al. (2009) has been successfully applied to two
additional weather elements, Hl and WC. Since
temperature is an important component of both
these weather elements, one can expect both Hl
and WC to have probability distributions that are
quasi-normal. In previous work we observed that
the EKDMOS technique was robust since it could
be applied without change to T, Td, MaxT, and
MinT. That claim is now reinforced by the reliable
and accurate results for Hl and WC.

We have introduced a derivation of the
EKDMOS technique that produces forecasts of



AppT by combining forecast kernels for multiple
weather elements. We have yet to verify the re-
sultant AppT forecasts.

13. Future Work

Much work remains before these forecasts of
AppT can become an operational reality. The
verification issues mentioned above must be re-
solved. The forecasts for stations must be applied
to grids and made available to customers and
partners via the National Digital Guidance Data-
base (NDGD). Forecasts equations must be de-
veloped for the 1200 UTC run of the GEFS.
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Figure 1: PIT histograms and CRDs verifying HI forecasts from raw ensembles and EKDMOS at 48-, 120-,

and 168-h projections covering the independent sample.
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Figure 2: (a) SB in RF and (b) CRPS verifying Hl forecasts for the raw ensembles and EKDMOS for the in-
dependent sample.
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techniques for the independent sample.
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Figure 4: PIT histograms and CRDs verifying WC forecasts from RawEns and EKDMOS at 48-, 120-, and

168-h projections covering the independent sample.
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Figure 5: (a) SB in RF and (b) CRPS verifying WC forecasts for the raw ensembles and EKDMOS for the
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Figure 6: (a) Bias and (b) MAE computed for the median WC forecast for the raw ensembles and
EDKMOS techniques for the independent sample. Note warm bias in EKDMOS.
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PROBASILITY

Figure 7: AppT PDFs for Pagosa Springs, Colorado (KCPW) and Concord, California (KCCR). All of the PDFs
above verify at 0000 UTC 08 Oct 2004. The observed temperature is indicated by the vertical black line.
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