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ABSTRACT

In an effort to support aviation forecasting, the National Weather Service’s Meteorological Development

Laboratory (MDL) has recently redeveloped the Localized Aviation Model Output Statistics (MOS) Pro-

gram (LAMP) system. LAMP is designed to run hourly in NWS operations and produce short-range aviation

forecast guidance at 1-h projections out to 25 h. This paper compares and contrasts LAMP ceiling height and

visibility forecasts with forecasts produced by the 20-km Rapid Update Cycle model (RUC20), the Weather

Research and Forecasting Nonhydrostatic Mesoscale Model (WRF-NMM), and the Short-Range Ensemble

Forecast system (SREF). RUC20 and WRF-NMM forecasts of continuous ceiling height and visibility were

interpolated to stations and converted into categorical forecasts. These interpolated forecasts were also

categorized into instrument flight rule (IFR) or lower conditions and verified against LAMP forecasts at

stations in the contiguous United States. LAMP and SREF probabilistic forecasts of ceiling height and vis-

ibility from LAMP and the SREF system were also verified. This study demonstrates that for the 0000 and

1200 UTC cycles over the contiguous United States, LAMP station-based categorical forecasts of ceiling

height, visibility, and IFR conditions or lower are more accurate than the RUC20 and WRF-NMM ceiling

height and visibility forecasts interpolated to stations. Moreover, for the 0900 and 2100 UTC forecast cycles

and verification periods studied here, LAMP ceiling height and visibility probabilities exhibit better reliability

and skill than the SREF system.

1. Introduction

The meteorological and aviation communities have re-

cently undertaken a coordinated effort to improve ceiling

height (CIG) and visibility (VIS) forecasts. These fore-

casts are not only valuable in a societal context (e.g., flight

delays and guarding against the loss of life) but are also

instrumental in making economic decisions that routinely

impact airline operations.

Terminal aerodrome forecasts (TAFs) are official avi-

ation forecasts produced by the National Weather Service

(NWS) four times daily, with amendments as necessary.

TAFs consist of forecasts of critical weather elements,

such as CIG and VIS, which are expected to impact an

airport over a specific time period. This time period is

usually 24 h, with selected airports requiring TAFs out

to 30 h, the first 6 h being recognized as the critical TAF

period (NWS 2008).

The NWS’s Meteorological Development Laboratory

(MDL) has been producing objective statistical guid-

ance in the form of model output statistics (MOS) since

the 1970s (Glahn and Lowry 1972). To provide guidance

to the aviation forecaster preparing TAFs, MDL pro-

duces a short-term statistically based forecast guidance

product termed the Localized Aviation MOS Program

(LAMP). LAMP is designed to update the Global Fore-

cast System (GFS) MOS forecast guidance on an hourly

basis with hourly forecasts extending out to 25 h in ad-

vance (Ghirardelli 2005; Ghirardelli and Glahn 2010).1

LAMP generates both categorical and probabilistic guid-

ance for a variety of weather elements with special em-

phasis on those affecting the aviation community. The
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1 In this paper, the acronym LAMP refers to the GFS LAMP

system that updates the GFS MOS and not to the Nested Grid

Model (NGM) LAMP system, which has been discontinued.
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guidance includes, but is not limited to, probabilistic and

categorical forecasts of CIG and horizontal VIS.

Verification of LAMP forecast guidance has shown

improvements over the GFS MOS forecasts for VIS

(Rudack 2005) during the 1–9-h projections and im-

provements throughout the 25-h forecast period for CIG

(Weiss and Ghirardelli 2005). Moreover, LAMP displays

better accuracy than persistence during the LAMP fore-

cast period, even in the short term of 1–6 h. This is a time

frame in which persistence forecasts are regarded as be-

ing highly competitive (Dallavalle and Dagostaro 1995).

Modeling the conditions and various meteorological

processes that lead to low CIG and poor VIS is complex.

For example, the independent or combined effects of ter-

rain, water bodies, soil moisture, and radiation fluxes may

in some instances produce poor VIS. Yet, in other similar

meteorological situations, VIS may not be reduced at all.

Despite these complicating factors, the Global Systems

Division’s (GSD) 20-km Rapid Update Cycle model

(RUC; Benjamin et al. 1999; Benjamin et al. 2004; here-

after referred to as the RUC20), the National Centers for

Environmental Prediction’s (NCEP) Weather Research

and Forecasting (WRF) Nonhydrostatic Mesoscale Model

(NMM; Skamarock et al. 2005; hereafter referred to as

the WRF-NMM), and the Short-Range Ensemble Fore-

casting (SREF) system (Zhou et al. 2004) have begun

producing CIG and VIS forecasts. Very little has been

published concerning the verification of these forecasts.

To quantify the overall utility of LAMP CIG and VIS

guidance to the forecast process at TAF sites, we verified

LAMP CIG and VIS forecasts along with forecasts pro-

duced by the RUC20, WRF-NMM, and SREF over the

contiguous United States (CONUS). This verification

study was conducted by pooling 1462 stations across the

CONUS. While this approach yields a CONUS-wide

average performance measure and may not be represen-

tative of specific sites, we believe that verifying the data

in this manner provides useful information concerning

the overall strengths and weaknesses of these forecasting

systems.

The structure of this paper is as follows. Section 2

briefly discusses the models and types of data used in this

verification study as well as how the dynamical model

data were interpolated to stations for verification pur-

poses. Verification results are presented in sections 3

and 4 followed by a summary and concluding remarks in

section 5.

2. Model data and methodology

LAMP produces forecasts from multiple linear regres-

sion equations that update the GFS MOS guidance and

provides forecasts at an hourly resolution out to 25 h in

advance. Most forecast weather elements are available

for 1591 stations located in the CONUS, Alaska, Hawaii,

Puerto Rico, and the Virgin Islands.2 The predictor sour-

ces that are used as input to the LAMP regression system

include observations, GFS MOS forecasts, climatic vari-

ables (e.g., cosine of the day of the year), and forecasts

generated by simple advective models. Forecast equa-

tions can be developed regionally; that is, a regression

equation is developed with data obtained from several

stations in a region. In this instance, guidance for all sta-

tions in that region is generated from that same set of

regression equations. An alternative approach, which is

more commonly used in forecasting temperature, dew-

point, wind speed, and wind direction, involves develop-

ing a regression equation that applies to a specific station.

The regional approach is typically used in situations

where the forecast events are rare and a larger sample is

required to stabilize the regression analysis. This is the

approach used in developing LAMP CIG and VIS fore-

cast equations.

The RUC20 and WRF-NMM are dynamical models

that generate continuous CIG and VIS forecasts through

postprocessing algorithms. The models produce forecasts

on a 20- and 12-km horizontal resolution Lambert Con-

formal grid, respectively. The SREF system is ensemble

based and produces probabilistic forecasts that are in-

terpolated onto a 40-km horizontal resolution Lambert

Conformal grid. The SREF used in this study comprises

10 perturbations from the Eta Model, 5 perturbations

from the Regional Spectral Model, 3 perturbations from

the WRF-NMM, and 3 perturbations from the National

Center for Atmospheric Research’s version of the Weather

WRF model (NCAR-WRF), totaling 21 members (Du

et al. 2004). The RUC20, WRF-NMM, and SREF VIS

algorithms are discussed in Stoelinga and Warner (1999),

Smirnova et al. (2000), and Zhou et al. (2004).

With respect to the RUC20, we would have preferred

to use the higher-resolution 13-km RUC model; however,

an archive of that RUC data was not available. Although

the coarser 20-km horizontal resolution RUC20 model

does degrade the quality of CIG and VIS forecasts, the

forecasts are still considered skillful (S. G. Benjamin 2007,

personal communication).

a. Verification data

To evaluate the quality of categorical CIG and VIS

forecasts, LAMP station-based CIG and VIS proba-

bilistic and categorical forecasts were generated from

0000 and 1200 UTC initial conditions for the period of

2 Real-time hourly updated GFS-based LAMP forecasts are

available online (http://weather.gov/mdl/gfslamp/gfslamp.shtml).
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October 2006–September 2007.3 These weather forecasts

are at an hourly resolution from 1 to 25 h in advance.

Operational model data from the 0000 and 1200 UTC

runs of the RUC20 and WRF-NMM were retrieved for

the verification period. Specifically, the model analyses

and forecasts of continuous CIG and VIS at an hourly

resolution extending out to 12 h for the RUC20 and 25 h

for the WRF-NMM were collected. To evaluate the per-

formance of LAMP and SREF probability forecasts, the

0900 and 2100 UTC postprocessed SREF CIG and VIS

probability forecasts were retrieved for the same veri-

fication period. The collected SREF probabilities are at

3-h intervals extending out to 24 h. For a specific ele-

ment and category, the SREF probability forecasts of

CIG represent a consensus relative frequency based on

all 21 members. For example, if 10 of the 21 members

predict a CIG of #3000 ft, the probability forecast for

CIG of #3000 ft would be 48%. Also note that unlike

LAMP and the verifying observations that account for

low VIS caused by nonhydrometeors such as haze or

blowing phenomena, the SREF VIS forecasts only ac-

count for hydrometers (Zhou et al. 2004).

RUC20 and WRF-NMM continuous forecasts were

verified for CIG of #3000, ,1000, and ,500 ft, and VIS

of ,3, ,1, and ,½ mi. Since correctly forecasting in-

strument flight rule (IFR) conditions or lower is extremely

important in aviation forecasting, these forecasts were

also verified. IFR or lower conditions occur when either

the lowest CIG is ,1000 ft and/or the VIS is ,3 mi (NWS

2008).

The verification periods for both categorical and prob-

abilistic forecasts were stratified into two seasons. The

cool season spanned October 2006 through March 2007,

while the warm season stretched from April through

September 2007. This is consistent with the seasonal

stratification used in the development and verification of

MDL’s LAMP and MOS statistical products. All cross-

model comparison verification scores are derived from

matched samples.

Although the LAMP system covers both the CONUS

and areas outside the CONUS, the domains of the RUC20,

WRF-NMM, and SREF are primarily restricted to the

CONUS. Thus, the verification domain was limited to the

CONUS. A total of 1462 aviation routine weather report

(METAR) stations in the CONUS are used in this veri-

fication study. Figure 1 depicts the system domains and

the locations of the 1462 CONUS stations.

b. Model data conversion

The verification in this study is intended to assess the

quality of guidance available for TAFs valid at stations.

Therefore, the model forecasts had to be interpolated to

stations while accounting for the discontinuous nature of

CIG and VIS. A nearest-neighbor matching technique

was used; that is, the CIG or VIS value at the grid point

closest to a station was assigned to that station. Gener-

ally, a more realistic representation of the discontinuous

field at stations is preserved when applying this technique,

rather than, for instance, using bilinear interpolation. To

correctly treat the gridded RUC20 CIG values, which are

given relative to sea level, the CIG forecasts were ad-

justed by subtracting the station elevation from the CIG

forecast. This results in CIG forecasts relative to the

ground. Since the WRF-NMM CIG forecasts are defined

relative to the model surface, the station-based CIG

forecasts were calculated by adding the differences be-

tween the gridpoint elevations and the station elevations

to the nearest-neighbor matched CIG forecast.

Once the model-based CIG and VIS forecasts were

properly matched to stations, the continuous forecast

values were binned into the categories defined in the

LAMP system (see Tables 1 and 2). Note that the RUC20

and WRF-NMM CIG and VIS data were converted from

Système International (SI) to English units. CIG fore-

casts were then rounded to the nearest hundred feet. The

FIG. 1. Domains of the forecast systems investigated. The outer

rectangle indicates the area of both the WRF-NMM and SREF

domains. The inner rectangle indicates the area of the RUC20

domain. The dots indicate the locations of the 1462 LAMP stations

in the CONUS, which coincide with the verification points.

3 The reader should note that prior to June 2007, the 0000 and

1200 UTC LAMP cycles were not yet implemented operationally.

Consequently, to obtain forecasts for the verification period stud-

ied here, we retrospectively generated LAMP forecasts in a man-

ner following the same techniques used in the operational setting.

A separate study was performed (using the same metrics in this

paper) comparing the LAMP operational CIG and VIS forecasts to

the regenerated forecasts for the period of June–September 2007

and we found that the scores were virtually identical.
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LAMP CIG and VIS categories are consistent with sig-

nificant aviation flight category levels (NWS 2008).

The processing of the 0900 and 2100 UTC SREF prob-

abilistic forecasts was handled somewhat differently than

the RUC20 and WRF-NMM CIG and VIS forecasts. To

retain the spatial regularity that is generally observed for

probabilistic forecasts, these SREF forecasts were inter-

polated to stations by using bilinear interpolation—

a standard MDL practice for fields that are generally

spatially well behaved. For verification purposes, each

interpolated CIG and VIS forecast station value was

converted from a percent to a probability ranging between

0 and 1, inclusively.

3. Verification results of categorical forecasts

Categorical and probabilistic forecasts require different

metrics to evaluate their accuracy or skill. The threat score

or critical success index (CSI) is often used to determine

the accuracy of categorical forecasts (e.g., forecasts of

CIG , 1000 ft) (Wilks 2006). A perfect forecasting sys-

tem has a CSI of one while a CSI value of zero represents

the worst possible score. Since one metric does not ad-

equately describe the quality of a forecasting system, we

also evaluate CIG and VIS categorical forecasts by using

the bias. Bias, in the context of categorical forecasts, is

the ratio of the number of forecasts for a particular event

(e.g., forecasts of CIG , 1000 ft) divided by the number

of observed occurrences of that event (Wilks 2006). A bias

value of one (unit bias) means that the system forecasts

the occurrence of the event with the same frequency that

it is observed. A bias value greater (less) than one means

that the system is overforecasting (underforecasting) the

occurrence of that particular event.

a. Categorical ceiling height forecasts

Since the LAMP, RUC20, and WRF-NMM categorical

CIG forecast CSI scores are very similar at both 0000 and

1200 UTC, only results from the 0000 UTC cycle will be

presented unless otherwise noted. Figure 2 displays the

CSI and bias values for categorical CIG forecasts issued

from the 0000 UTC LAMP, WRF-NMM, and RUC20 for

the 2006–07 cool season. (Recall that the RUC20 model

forecasts beyond the 12-h projection were not available.)

The CSI values in Figs. 2a–c exhibit the same general

pattern of behavior. At every projection, LAMP fore-

casts are as accurate, or more so, than persistence, the

RUC20, and the WRF-NMM. Improvement over per-

sistence and other models in the very-short term (1–6 h)

distinguishes LAMP. Prior to the 9-h projection, LAMP

demonstrates marked improvement over the RUC20 and

WRF-NMM. Although LAMP CSI scores tend to level

off beginning at the 9-h projection, the CSI scores still

remain at or above all three other forecast systems

throughout the 12-h forecast period.4 However, the ac-

curacy of the RUC20 and WRF-NMM is comparable to

LAMP during the 9–12-h projections for CIG # 3000 ft.

For projections beyond 12 h, CSI scores for WRF-NMM

categorical CIG forecasts for all three categories remain

noticeably lower than LAMP, with the exception of CIG

forecasts of #3000 ft for projections of 12–15 h, when

LAMP and WRF-NMM scores are very close.

Higher CSI values can reflect a system’s tendency to

overforecast the frequency of the event (i.e., the system

has a bias greater than 1.0). To investigate this, we cal-

culated the corresponding bias values for CIG (Fig. 2).

During the 1–12-h projections for CIG # 3000 ft, bias

values are generally close to one. However, a noticeable

increase in bias is detected for the RUC20 and WRF-

NMM during this period for CIG , 1000 and ,500 ft. In

contrast, the LAMP bias values for the same categories

remain close to 1.0. For projections of 12–25 h, LAMP

forecast bias values remain relatively constant. In con-

trast, WRF-NMM bias values deteriorate for projections

15 through 25 for all three CIG categories. Note that the

bias of the WRF-NMM is as high as 4.5 for CIG , 500 ft

at the 23-h projection.

Though not shown here, the accuracy of the WRF-

NMM forecasts for CIG # 3000 ft appears to be closely

TABLE 1. LAMP categories of ceiling height.

Category Ceiling height (ft)

1 ,200

2 200–400

3 500–900

4 1000–1900

5 2000–3000

6 3100–6500

7 6600–12 000

8 .12 000 or unlimited ceiling

TABLE 2. LAMP categories of visibility.

Category Visibility (mi)

1 ,1/2

2 1/2 to ,1

3 1 to ,2

4 2 to ,3

5 3 to 5

6 6

7 .6

4 Confidence testing was not done on any of the verification re-

sults discussed in this paper.
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related to the time of day for which the forecasts are

valid rather than the forecast projection itself. Figure 2a

shows the 0000 UTC WRF-NMM CSI scores increasing

through the 1–12-h projections and decreasing thereafter.

In contrast, the 1200 UTC CSI scores (not shown) reach

a minimum by the 12-h projection and increase there-

after. That is to say, the traces of the 0000 and 1200 UTC

CSI scores are in phase with each other with respect to

the verifying hour of the day.

b. Categorical visibility forecasts

The overall pattern of behavior of the verification scores

for categorical VIS forecasts (Fig. 3) is similar to the CIG

categorical forecasts. One difference, however, is the sharp

decline in the LAMP CSI scores for VIS forecasts in the

first 6 h. A second distinction is that the LAMP CSI scores

become almost constant from the 6-h projection onward.

This leveling-off period begins approximately 2 h earlier

than in the CIG plots.

Of note, the RUC20 and WRF-NMM CSI scores for

all three categories and all projections are low, with values

hovering at or below 0.20. While the CSI scores do not

vary much between the RUC20 and WRF-NMM during

the 1–12-h forecast period, the bias values do behave

quite differently (Fig. 3). The WRF-NMM bias values

for each category generally remain uniform with only

a slight modulation. However, the RUC20 bias values

FIG. 2. (left) CSI and (right) bias for categorical forecasts of ceiling height (a) #3000, (b) ,1000, and (c) ,500 ft.

Shown are persistence, LAMP, WRF-NMM, and RUC20 scores from the 0000 UTC cycle for the cool season of

Oct 2006–Mar 2007.
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steadily increase by projection when moving from VIS ,

3 miles (mi) to VIS , ½ mi. We suspect that these bias

differences between the RUC20 and WRF-NMM can

be partially attributed to the different weights given to

the low-level relative humidity (which is known to have

an early morning high bias) used in the visibility algo-

rithm (G. Manikin 2009, personal communication).

During the 13–25-h projections, LAMP VIS CSI

scores generally remain higher than those of the WRF-

NMM, with the exception of forecasts of ,1 mi in the

19–23-h projection range, where the WRF-NMM scores

are slightly higher. Unlike the initial 12 projections for

the WRF-NMM, subsequent projections exhibit a pro-

nounced bias oscillation (especially for VIS , 1 mi and

VIS , ½ mi) (Fig. 3). Note, however, as in the earlier

projections, LAMP bias scores do not deviate much

from unit bias.

c. IFR or lower forecasts

Figure 4a shows the CSI and bias values for IFR con-

ditions or lower for the 2006–07 cool season. Scores are

shown for persistence, LAMP, RUC20, and the WRF-

NMM. As expected, the same overall pattern of behavior

exhibited in the categorical CIG and VIS verifications

is evident here. As demonstrated by the CSI, LAMP is

more accurate than all other systems at every projection.

The performance of the RUC20 and WRF-NMM is gen-

erally constant through all 12 projections with CSI values

of RUC20 forecasts generally higher than those from the

WRF-NMM.

FIG. 3. (left) CSI and (right) bias for categorical forecasts of visibility (a) ,3, (b) ,1, and (c) ,½ mi. Shown are

persistence, LAMP, WRF-NMM, and RUC20 scores from the 0000 UTC cycle for the cool season of Oct 2006–

Mar 2007.
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IFR and lower bias scores for LAMP, RUC20, and

WRF-NMM for the cool season generally reflect the

composite bias scores shown in Figs. 2 and 3 for CIG ,

1000 ft and VIS , 3 mi, respectively. LAMP biases

generally remain close to 1.0 throughout the 25 pro-

jections while the WRF-NMM biases remain close to

1.5 through the 12-h projection and then steadily increase

thereafter. The RUC20 bias values steadily increase

through the 12-h projection due to the high bias associ-

ated with forecasting VIS , 1 mi.

Figure 4b displays the warm season (April–September

2007) CSI and bias verification results for IFR condi-

tions or lower. For the CSI, the verifications generally

exhibit patterns of behaviors similar to their cool season

counterparts with some notable exceptions. As ex-

pected, the CSI scores for IFR or lower conditions for all

systems are lower when compared to the cool season.

This result is consistent with the less frequent occur-

rence of this phenomenon in the warm season. The

warm season RUC20 and WRF-NMM CSI score values

shadow each other much more closely throughout the

12-h forecast period compared to the cool season CSI

scores. The corresponding LAMP and WRF-NMM bias

scores for the warm season display a diurnal signal and

are completely out of phase with respect to each other

(Fig. 4b).

4. Verification results of probabilistic forecasts

Recently, end users of aviation products have expressed

interest in using probability forecasts of CIG and VIS.

These probabilities can be incorporated into cost–loss

models to make critical economic decisions (Keith and

Leyton 2007).

In 2006, the National Research Council (NRC 2006)

released a report characterizing and communicating

uncertainty information. This report discusses the prob-

lems with deterministic forecasts and how they can be

misleading without understanding the underlying un-

certainties. It further charges that the NWS has a re-

sponsibility to provide products that communicate the

underlying forecast uncertainty. LAMP provides proba-

bilistic forecast guidance and, as such, provides infor-

mation relating to forecast uncertainty.

The P score, which was proposed by Brier (1950), is

often used to quantify the quality of a set of probabilistic

forecasts. The P score represents the mean-squared er-

ror for probabilistic forecasts and ranges between 0 and

2, inclusively. (The results presented in this paper are the

half-P score and range between values of 0 and 1, in-

clusively. We will hereafter refer to the half-P score as the

Brier score.) The Brier score comprises three terms: re-

liability, resolution, and uncertainty (Murphy 1973; Wilks

FIG. 4. (left) CSI and (right) bias for forecasts of IFR or lower conditions for the (a) cool season Oct 2006–Mar 2007

and (b) warm season Apr–Sep 2007. Shown are persistence, LAMP, WRF-NMM, and RUC20 scores from the

0000 UTC cycle.
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2006). Reliability and resolution provide information on

the bias and sharpness, respectively, of the probability

forecasts within specific ranges and, thus, provide some

indication of the quality of the probabilities. The uncer-

tainty term is a measure of the complexity associated with

forecasting the event and is quantified in terms of the

climatology of the event.

Lower Brier scores indicate greater accuracy while

higher scores indicate the opposite. However, one should

not assume that the Brier score defines the usefulness of

a forecasting system. For example, probabilities for rare

events such as VIS , ½ mi may result in a low Brier

score but may not be any more accurate than a proba-

bility forecast equal to the climatic relative frequency of

the event. Thus, to demonstrate skill, the forecasts must

be compared to some baseline. When two systems are

compared to each other, the Brier skill score (Wilks 2006)

is typically used to evaluate the skill of one system over

the other. We would have liked to compute the Brier skill

score for each system using climatic relative frequencies

as the reference system; however, a long-term clima-

tology of CIG and VIS for all 1462 stations used in this

verification study was not available. Instead, we have

computed the Brier skill score for the LAMP forecasts

by using the SREF forecasts as the reference system.

The reliability diagram is one method for visually

assessing the bias behavior of a set of probabilistic

forecasts. Probability forecasts for a particular event

(e.g., VIS , 1 mi) are generally partitioned across evenly

spaced bins (0%–10%, 10%–20%, . . . , 90%–100%) and

are compared to the observed relative frequency of the

event within that bin. Probabilistic forecasts are deemed

reliable when the average probability forecast and the

average observed frequency of the event are about the

same for all or a majority of bins.

During the verification period examined here, an error

was present in the process used to generate the opera-

tional SREF probabilities for CIG (J. Du 2009, personal

communication). For this paper, we have corrected this

mistake and have plotted the reliabilities of both the

operational and corrected CIG probabilities. Since, how-

ever, the incorrect probabilities are considered the official

operational forecast, our verification discussion is re-

stricted to those forecasts.

a. Probabilistic ceiling height forecasts

1) RELIABILITY

To compare the LAMP and SREF probabilities, re-

liability diagrams were generated for each of the cate-

gories discussed in sections 3a and 3b for the 3-, 6-, 9-, 12-,

18-, and 24-h projections for the stations and seasons

noted earlier. Figure 5 displays the cool season reliability

diagrams for CIG probability forecasts of #3000 ft issued

at 0900 UTC. Note that LAMP exhibits better reliability

for all projections; scores close to the diagonal line of

perfect reliability are desirable. The SREF demonstrates

comparable reliability to LAMP at the 3- and 6-h pro-

jections with only a slight tendency to underforecast in

the lower probability bins. For the 12-, 18-, and 24-h

projections the SREF becomes less reliable with a clear

tendency to overforecast CIG. The 2100 UTC SREF

reliability (Fig. 6) at the 3- and 6-h projections display

a tendency to overforecast CIG # 3000 ft. Similar be-

havior is noted for the same time of day in the 0900 UTC

SREF forecasts for the 12- and 18-h projections. The

behavior of the SREF 0900 and 2100 UTC reliabilities

appears to be at least partly influenced by the time of day

for which the forecasts are valid. This is akin to the be-

havior noted above for continuous CIG for the WRF-

NMM (section 3a). The 0900 and 2100 UTC warm season

reliabilities for CIG # 3000 ft (not shown) display the

same overall temporal behavior as is seen during the cool

season.

The 0900 and 2100 UTC SREF forecasts for CIG ,

1000 ft (Figs. 7 and 8) exhibit a distinct overforecasting

bias—even more than what was noted for CIG # 3000 ft.

This is true across the 3-, 6-, 12-, 18-, and 24-h projections

and for both the cool and warm seasons (not shown).

Unlike the SREF reliabilities for CIG # 3000 ft, the

reliabilities for CIG , 1000 ft do not appear to vary as

a function of the time of day. Note that LAMP displays

better reliability than the SREF for all the projections

examined here.

As a word of caution, reliability scores in the higher

probability bins must be interpreted judiciously. The

significant drop in the number of forecasts in these bins

by both LAMP and the SREF (as shown in the histo-

grams in Figs. 5–8) makes evaluating the reliability dif-

ficult. When the number of forecasts in these bins is

small, chance plays a role in the calculation of the re-

liability score.

2) BRIER SKILL SCORE

Brier skill scores (using the SREF as the reference

system) were calculated for the same cycles and verifica-

tion periods described in the previous section. Figure 9a

shows the Brier skill scores for CIG , 1000 ft for the

0900 UTC 2006–07 cool season. LAMP demonstrates

better skill as seen by the Brier skill score (between 43%

and 32%) for all forecast projections. The maximum

improvement occurs at the 3-h projection with a second

relative maximum at the 15-h projection. The LAMP

improvement over the SREF is maximized at the 3-h

projection partly because LAMP uses the METAR

observations (of CIG) valid at the initial cycle time as
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FIG. 5. (left) Reliability diagrams and (right) histograms for probabilities of ceiling height

#3000 ft for the (a) 3-, (b) 6-, (c) 12-, (d) 18-, and (e) 24-h projections for LAMP and SREF.

Verification is from the 0900 UTC cycle for the cool season of Oct 2006–Mar 2007. Reliability

lines from both the operational (Oper.) and corrected (Corr.) SREF probability forecasts are

included. Reliability values (left side) composing less than 1% of the total number of cases are

indicated with a hollow marker and a dashed line to emphasize that these values should be

interpreted judiciously.
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FIG. 6. As in Fig. 5, but for 2100 UTC.
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FIG. 7. As in Fig. 5, but for ceiling height ,1000 ft.
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FIG. 8. As in Fig. 7, but for 2100 UTC.
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predictors. Observations, when used as persistence fore-

casts, are very difficult to improve upon in the very short

term. By including the most recent observation as a pre-

dictor, LAMP consistently produces forecasts with com-

parable or better skill than persistence forecasts, even in

the very short term. The 0900 UTC warm season scores

(Fig. 9b) exhibit the same overall type of behavior as seen

in the cool season except that the overall LAMP im-

provement is less. LAMP improvement over SREF is

evident at every projection with a maximum occurring at

the 3-h projection. The same overall improvement of

LAMP over the SREF is also noted for the 2100 UTC

cycle for both the cool and warm seasons (Figs. 9c and

9d) with the greatest improvement occurring at the 3-h

projection.

b. Probabilistic visibility forecasts

1) RELIABILITY

The 0900 and 2100 UTC LAMP cool (Figs. 10 and 11,

respectively) and warm season (not shown) probability

forecasts of VIS , 3 mi demonstrate better reliability

than the SREF for all projections. LAMP forecasts for

the 3- and 6-h projections exhibit no discernable bias,

while the forecasts for 12 and 18 h tend to underforecast

VIS at the higher probabilities. In contrast, the reliabilities

for the SREF probability forecasts exhibit discernable

projection-to-projection fluctuations. These vacillations

are independent of season and cycle time and appear to be

related to the time of day for which the forecast is valid.

The VIS reliability results exhibit a diurnal rhythm similar

to the CIG forecasts of #3000 ft, albeit more pronounced.

This rhythm can possibly be attributed to the tendency of

some of the ensemble models to oversaturate the lowest

model levels during the late night and early morning

hours. The sensitivity of the VIS algorithm to the over-

abundance of hydrometeors (or surface cloud water)

could explain the distinct overforecasting of VIS , 3 mi

during this time period (G. Manikin 2009, personal com-

munication). Similar diurnal fluctuations are not present

in LAMP probabilistic forecasts.

The overall 0900 UTC cool season SREF probability

forecasts for VIS , 3 mi generally exhibit better reli-

ability than the 2100 UTC cool season forecasts. While

both cycles have a bias toward overforecasting, the 0900

and 2100 UTC SREF reliabilities are competitive with

FIG. 9. Brier skill scores of LAMP over SREF for probability ceiling height forecasts of ,1000 ft. Verification

is from (a) the 0900 and (c) 2100 UTC cycles for the cool season of Oct 2006–Mar 2007 and (b) the 0900 and

(d) 2100 UTC cycles for the warm season of Apr–Sep 2007. Brier skill scores from both the operational (Oper.) and

corrected (Corr.) are included.
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FIG. 10. (left) Reliability diagrams and (right) histograms for probabilities of visibility ,3 mi

for the (a) 3-, (b) 6-, (c) 12-, (d) 18-, and (e) 24-h projections for LAMP and SREF. Verification is

from the 0900 UTC cycle for the cool season of Oct 2006–Mar 2007. Reliability values (left side)

composing less than 1% of the total number of cases are indicated with a hollow marker and

a dashed line to emphasize that these values should be interpreted judiciously.
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FIG. 11. As in Fig. 10, but for 2100 UTC.
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LAMP at the 12- and 24-h projections, respectively (both

valid at 2100 UTC). This behavior is evident for the warm

season as well (not shown).

2) BRIER SKILL SCORE

Figure 12 shows the Brier skill scores for probabilistic

forecasts of VIS , 3 mi. The same cycles and periods

described in the previous section were verified. While

LAMP probabilistic forecasts improve over SREF, the

improvement is not as pronounced as for CIG , 1000 ft

(Fig. 9). The greatest improvement in the LAMP visibility

forecasts for the 0900 UTC cycle occurs at the 3-h pro-

jection for both the cool and warm seasons (32% for cool

season and 31% for warm season). For the 2100 UTC

cycle, the greatest improvement of LAMP over the SREF

occurs at the 15- (17%) and 12-h (16%) projections for

the cool and warm seasons, respectively. These valid

times correspond to the forecast period when the SREF

probabilities demonstrate their poorest reliability. At the

0900 UTC cycle for both cool and warm seasons, LAMP

marginally improves over the SREF between the 9- and

15-h projections (generally under 5%). Similar relative

improvement is also evident at the 2100 UTC cycle be-

tween the 18- and 24-h projections. These times correspond

to the forecast period when the SREF probabilities dem-

onstrate their best reliability.

5. Summary and conclusions

This paper compares statistically based LAMP CIG

and VIS forecasts over the CONUS with forecasts pro-

duced by the RUC20, WRF-NMM, and SREF. This ver-

ification study was conducted by pooling 1462 stations

across the CONUS. While this approach yields a CONUS-

wide average performance measure and may not be rep-

resentative of specific sites, we believe that verifying the

data in this manner provides useful information concern-

ing the overall strengths and weaknesses of these fore-

casting systems.

We found that independent of season, the 0000 and

1200 UTC station-based LAMP CIG, VIS, and IFR or

lower categorical forecasts are more accurate than RUC20

and WRF-NMM postprocessed forecasts when interpo-

lated to stations and then categorized. In the early pro-

jections (1–6 h), LAMP forecasts are noticeably more

accurate. In the 6–12-h projection period, the CSI scores

for the RUC20, and to a lesser extent WRF-NMM,

begin to approach the LAMP CSI scores. WRF-NMM

FIG. 12. Brier skill scores of LAMP over SREF for probability visibility forecasts of ,3 mi. Verification is from

(a) the 0900 and (c) 2100 UTC cycles for the cool season of Oct 2006–Mar 2007 and (b) 0900 and (d) 2100 UTC cycles

for the warm season of Apr–Sep 2007.
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forecasts of CIG, VIS, and IFR or lower in the 13–25-h

forecast period are generally less accurate than LAMP

especially for the elements of CIG and IFR or lower. We

also note that the warm season verification scores of the

less common events (e.g., VIS , 1 mi, CIG , 500 ft, and

IFR or lower) display less accuracy than the cool season

verification scores across all systems.

By performing verifications at both 0000 and 1200 UTC

for the WRF-NMM, we found that forecasts of VIS and

IFR or lower, and to a lesser extent CIG, are more sen-

sitive to the time of day for which the forecasts are valid

than the forecast projection itself. This can be partially

attributed to the tendency of the WRF-NMM to satu-

rate the model level closest to the ground too frequently

in clear conditions with light winds during the nighttime

hours. WRF-NMM developers are aware of this issue

and have been making incremental improvements over

the years (G. Manikin 2009, personal communication).

For the 0900 and 2100 UTC forecast cycles and veri-

fication periods studied here, LAMP CIG (,1000 and

#3000 ft) and VIS (,3 mi) forecast probabilities exhibit

overall better reliability across all probability bins than

the SREF probabilities. While the SREF probabilities

are sometimes very reliable for both CIG # 3000 ft and

VIS , 3 mi, the valid times generally occur during the

daylight hours (independent of cycle and season). In

contrast, LAMP probability forecasts of CIG and VIS

generally display consistent projection-to-projection re-

liability independent of cycle time. Where LAMP CIG

reliabilities do differ slightly from projection to pro-

jection (e.g., 0900 UTC cycle – cool season for CIG #

3000 ft), the fluctuation does not appear to be diurnally

driven and is possibly due to a small sample size.

The skill of LAMP CIG and VIS probability forecasts

over the SREF is demonstrated through the Brier skill

score. For both cycle times and seasons, LAMP forecasts

of CIG , 1000 ft show considerable skill over the SREF,

especially at the 3-h projection when observations have

a significant impact on LAMP forecasts. Although the

SREF reliabilities for VIS , 3 mi vary as a function of the

time of day (rather than cycle issuance time), their overall

relative stable behavior strongly contributes to a smaller

LAMP Brier score percentage improvement. As a final

thought, we note that the verification of both the oper-

ational and corrected SREF CIG probabilities indicates

the potential benefits of calibrating SREF probability

forecasts. Calibrating these probabilistic forecasts, that

is, correctly populating the bins with forecast probability

values closer to the observed frequency of events, would

remove a portion of the bias exhibited by the SREF and

in turn improve forecast reliability.

LAMP forecasts are being used by a variety of different

customers in the decision support process for aviation

forecasts. Currently, National Weather Service forecasters

can use LAMP guidance for both generating and updat-

ing TAFs (Oberfield et al. 2008). The utility of LAMP in

the TAF preparation process has been documented by

Thompson and Baumgardt (2009). In their paper, they

discuss the evolution of a particular snow event and its

associated impacts on flight conditions around Rochester,

Minnesota. Thompson and Baumgardt noted that 1) by

integrating LAMP guidance into the aviation forecast

process, TAF accuracy can be improved, and 2) LAMP

CIG and VIS forecasts, in some instances, actually verify

better than the official TAF.

The National Ceiling and Visibility (NCV) forecast

system also benefits from LAMP CIG and VIS forecasts

(Black et al. 2008). NCV ingests CIG and VIS fore-

casts from a host of objective weather forecasting systems

and determines the most reasonable CIG and VIS fore-

casts. Statistical analyses in the NCV system have shown

that LAMP performs very well and, in some instances,

outperforms all other forecast system inputs.

A defining characteristic of the LAMP system is its

ability to utilize station-based observations in a mean-

ingful way to generate forecasts. The observations are not

only integral to generating skillful and reliable probabi-

listic forecasts but are also used in the postprocessing step

of producing threshold values for accurate categorical

forecasts. The results presented in this paper show that

RUC20 and WRF-NMM continuous CIG and VIS fore-

casts and SREF CIG and VIS probabilistic forecasts could

benefit from additional postprocessing.
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