Bruce Veenhuis August 14, 2012

Introduction

- Raftery et al. (2005) proposed applying Bayesian Model Averaging (BMA) to ensembles
- Basic Idea

 \bigcirc

- Weight ensemble members based on past performance
- Calibrate ensemble spread
- Do this by fitting a Normal Mixture statistical model to ensemble member forecasts

Normal Mixture Model

Forecasted Temperature [F]

Fitting the Statistical Model

 Challenge is to estimate statistical model parameters

$$p(y) = \sum_{k=1}^{K} w_k N(f_K, \sigma^2)$$

Where

 \mathcal{O}

 w_k are weights -> $p(M_k|y^T)$ f_k is the ensemble-member forecast σ is the predictive variance

 Raftery et al. (2005) estimated parameters with the Expectation Maximization Algorithm (Dempster et al., 1977).

Example NAEFS Application

 \mathcal{O}

Max T, CRPS, Cool Season, 4 Years Cross Validated

Example NAEFS Application

Spread-Skill BMA

 \mathcal{D}

Max T, Cool Season, 4 Years, **Cross Validated**

126-hr Projection Cool Season

Fitting the Statistical Model

• EM Algorithm

Iterative

 \mathcal{O}

- Must keep entire training sample on hand
- Prone to overfitting with small samples (Hamill 2007)

Propose Decaying Average BMA

- Estimate parameters with decaying averages rather than EM algorithm
- Stable estimates
- Less data storage
- Results comparable to EM algorithm
- Similar to NCEP's bias correction

- Use similar formulation to Raftery et al. (2005)
- Continuously update estimate of weights and predictive standard deviation as past forecasts verify
- Update is via a decaying average

New Estimate = $(0.95 \times \text{Old Estimate}) + (0.05 \times \text{Latest Estimate})$

- Issue a forecasts
 - For example, the 42 hour 2-m temperature forecast
- Wait for forecast to verify

 Different projections verify at different times
- Pair forecast with its verifying observation
- Begin update process

- Two-step procedure
 - First update weights
 - Then update predictive standard error
- Going to demonstrate procedure for updating weights
 - Update for predictive error is similar

For one case, take member forecasts and observation, and compute...

$$z_{k}^{j} = \frac{w_{k}^{j-1}g(y^{j}|f_{k}^{j},\sigma^{j-1})}{\sum_{i=1}^{K}w_{i}^{j-1}g(y^{j}|f_{k},\sigma^{j-1})}$$

 w_k^{j-1}

Previous weight estimate for member *k*

 $g(y_t|f_{kt},\sigma^{j-1})$

k

j

 y_j

 $N(f_k^{j}, \sigma^{j-1})$ evaluated at observation y_t .

- Ensemble Member
 - Current day being verified
 - Observation

Example Z calculation

$$z_{k}^{j} = \frac{w_{k}^{j-1}g(y^{j}|f_{k}^{j},\sigma^{j-1})}{\sum_{i=1}^{K}w_{i}^{j-1}g(y^{j}|f_{k},\sigma^{j-1})}$$

$$z_1^j = \frac{0.005}{0.005 + 0.020}$$

Example Z calculation

Example Z calculation

Updating the Weights

 \bigcirc

• z_k^j values enter into decaying average update

$$w_k^j = (1 - \alpha) \times w_k^{j-1} + \alpha \times z_k^j$$

α Decaying weight (~.05)

Decaying Average BMA Example

- Decaying Average ($\alpha = 0.05$)

Comparison with Raftery's BMA

Hypothetical 2 member ensemble

Single z Value

Day in Sample

- Decaying Average ($\alpha = 0.05$)
- EM Algorithm (50 days)

Decaying Average BMA Spread

• With today's z_k^j values compute

j

 $m{y}_j$ f_j

$$s^{2(j)} = \sum_{k=1}^{K} z_k^{j} (y^i - f_k^{j})^2$$

- k Ensemble Member
 - Current day being verified
 - Observation
 - Ensemble Member Forecast k

Decaying Average BMA Spread

• s^{2(j)} enters into the decaying average algorithm

$$\sigma^{2^{(j)}} = (1 - \alpha) \times \sigma^{2^{(j-1)}} + \alpha \times s^{2^{(j)}}$$

α Decaying weight (~.05)

Comparison with Raftery's BMA

Conclusions

- Propose to use Decaying Average BMA
 - Stable parameter estimates
 - Less data storage (~3 days)
 - Avoids iterative algorithm
 - Results asymptotically similar to EM algorithm
- SREF
 - 21 members 3 distinct models
 - 7 member sub-ensembles -> 3 weights, 1 standard deviation