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1+ INTRODUCTION

Objective statistical guidance is frequently
expressed in terms of probabilities. These proba-
bilities may pertain to categories of a continuous
or quasi-continuous event or to a dichotomous event
such as precipitation/no precipitation. While a
probabilistic forecast clearly contains more infor-
mation than a non-probabilistic one, many times
there is a requirement to express the prediction in
the form of a categorical statement.

An adequate translation of a probabilicy
into a yes/no forecast, or the selection of a
single category that best represents a muleti-
category probability statement, is by no means a
simple matter. a classification procedure that is
not tailored to the particular forecast element,
such as forecasting an event when its probability
exceeds 50 percent or choosing the category with
the maximum probability, will frequently fail to
achieve a suitable balance of forecast and observed
events. 1In order to deliver a realistic categori-
cal forecast, the selection method must take the
frequency and predictability of the event into
account. :

The Techniques Development Laboratory (TDL)
is upgrading its statistical guidance system. One
project will place a system at local forecast
offices to update central MOS guidance with infor-
mation from hourly observations, locally run
numerical models, and radar data. This system, the
Local AWIPS MOS Program (LAMP), 1is a more recent
version of an earlier one designed for AFOS (Glahn
and Unger, 1986) (Unger et al., 1989). 1t provides
guldance for nearly all MOS forecast elements for
hourly projections from 1 through 20 hours.

The large amount of guidance to be available
from this Project requires an efficient and accu-
rate means of category selection. This paper
summarizes a recursive estimation procedure to
obtain threshold values that translate probabilicy
statements into categorical forecasts with a
specified bias (ratio of forecasts to observa-
tions). The technique can be used on hiscorical
forecasts to obtain the threshold values. It can
also be used in real time to produce threshold
values that "learn” from the current forecast
performance in order to move toward values that
will produce desired biases,
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A SINGLE EVENT PROBABILITY

Terminology

A single event probability forecast will be
used to introduce the procedure. Let r, denote the
probability forecast on case {. The verifying
observation is represented by d,, which assumes the
value 1 when the event occurs, and 0 otherwise. A
threshold value, t, is required to translate r,
into a categorical forecast, f,, defined similarly
to the observation. A forecast for an event is
made when r; > t. An historical series of N fore-
casts (1L = 1 to N), referred to here as dependent
data, is used to obtain threshold values.

Exact Threshold Value . .

For any desired bias, b, a threshold can be
found such that the number of cases in which r, > ¢
is equal to the product of the desired bias, b, and
the number of observed events in the dependentc data
This threshold exactly fits the dependent
data and is hereby referred to as the exact thresh-
old value. An exact threshold can efficiently be
found by a procedure which orders the dependent
data forecasts to obtain a ‘cumulative forecast
probability distribution from which the appropriate
threshold value can be located.

The Adaptive Threshold Estimation

Procedure

Autoregressive models and recursive estima-
tion procedures have been used for some time to
provide on-line adaptive estimation of the statis-
tical properties of mathematical and physical
systems.
the literacure are inappropriate for the classifi-
cation procedures described here because of cthe
binary nature of the categorical forecasts and the
high degree of serial correlation of the forecasts
and observations, A procedure specifically de-
signed to process the information obtained from the
forecast performance was devised to provide an
adaptive filter for threshold estimation. Simplic-
ity was considered of paramount importance in the
design of the technique, since even a modest amount
of additional computational effort can seriously
encumber a large statiscical forecasting syscem.

Many of the adaptive filters described in

The Adaptive Threshold Estimation Procedure
(ATEP) uses the forecast made from the currenc
threshold

value, together with irs verifying



observation, to adjust the threshold for the next
forecast., For a single event probability where the
categorical forecast is determined by

f, = 1 when T, = t,

the ATEP adjustment equations are:
Ciep = €& + 4, when £, = 1,
€4y = £, - ba, when d, = 1.

Here A controls the magnitude of change made to the
threshold at the end of each timestep. Since A
governs how much influence the recent data has on
the threshold value, 1t can be considered as the
ATEP filter gain.

Fig. 1 {llustrates in contingency table form
the change made in the threshold as a function of
the forecast, the observation, and A. Note that
for a unit bias, no adjustment is made for a
correct forecast. For an incorrect forecast, the
threshold will always move toward the value re-
quired to produce a correct forecast on that case.
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Figure 1. Contingency table for threshold changes
made by ATEP for a bias, b and a gain, A.

The stability of the filter is examined by
computing the expected value of the threshold
change. Where P(f=1) and P(d=1) indicate the
probabilicy of the forecast and observed event,
respectively, the expected value is,

E{ty) - €] = A(P(f=1) - bP(d=1)).

E[ty,, - t,]) = 0 when P(f=1) = bP(d=1), or, in other
words, when the categorical forecast bias is b.
When the threshold is too low, the bias will exceed -
b, and the filter moves the threshold toward a
higher wvalue. In a similar manner, the filter
Pushes a threshold that is too high (low bias) to-
ward a lower value. The result is a time series
that converges to a value that will produce the re-
quested bias, provided thac 4 is small. The
convergence properties of tha filter, and the
selection of A will be discussed in Section 4,

3. MULTI -CATEGORY PROBABILITIES

3.1 Terminologx

A multiple category probability forecast
refers to a series of probability statements that
Pertain to the possible outcome of a single event.
Lec T1,y denote the forecast probability cthat the
observation on the ith case will fall into the jeh
category, The verifying observation, D;, and
categorical forecase, Fi, assume the value of the
Ccategory which is predicted or observed. (The

upper case is used rto distinguish this notation
from che binary notaction used earlier.) F, will be
referred to as a "best category” forecast, follow-
ing cthe convention in many statistical weather
forecasting systems. .Note that the term "bescr
only signifies thac the category is selected by the
rules used for the classification and not that ic
is {in some way an optimum choice.

Classification of a multi-category probabil-
ity statement is difficult because the categories
are interrelated in a complex way. Factors such ag
the correlation between forecasts for different
categories, variacions in climatological frequency,
differences in predictability, and differing
degrees of importance of each category must be
considered to arrive at an effective categorical
forecast.

The probability forecasts are pProcessed by
rules, referred to here as the classification
strategy, that specify exactly how the best cate-
gory Is to be selected. There are many different
classification strategies possible for the mulcei-
category probability forecast. This discussion
focuses on strategies that use threshold values to
determine the best category.

Strategies that use only the probabilities
for the specific category to which they apply
(discrete probabilities) are referred to as dis-
crete methods. For ordinal categories (categories
for which the order is meaningful), cumulative
probabilities

3
Ry = ’2 Tyx
<1

can be used. Classification Strategies are labeled
cumulative or discrete depending on the probabili-
ties that they use.

The ATEP filter operation will be discussed
for several classification strategies. It is not
the intention of this paper to examine the relative
merits of these strategies. Rather, the discussion
focuses on the filter equations required for each
method.

3.2 Ordered Selection Stfacegy--Exact Threshold
Values

A common thresholding strategy used for a
multiple category forecast is an ordered selection
approach. Cumulative or discrete probabilities are
tested against threshold values. Categories are
examined in a specific order, with the first
category that exceeds its threshold selected as the
best category for that forecast. The categories
are usually ordered according to the operational
significance of the event in question, with che
most important assigned the lowest value and,
therefore, is tested firsc, For a forecast with
NCAT categories, only NCAT-1 thresholds need to be
checked since F = NCAT is assigned when no thresh-
olds are exceeded.

Thresholds that Produce desired biases For
the ordered selection Sstrategies can be found
through an iterative technique. The category 1L
threshold i{s examined firse, and a threshold fourd
in the same manner as the single evenc probabilicy.
Once this threshold is decermined, all cases with
Ty,p 2 & are eliminated from the sample. The,
remaining cases are used to find a threshold value
for the next category, from efther the discrete or



cumulacive probabilities, depending on the selec-
tion scrategy desired. The cases that exceed this
threshold are then eliminated from the sample, and
the next higher category s examined. Thig Succes-
sive searching and elimination continues for NCAT-1
categories,

3.3 Ordered Selection Strategy--ATEP Thresholds

The ATEP system uses the following adjust-
ment technique for discrete ordered selection
strategy.

Ci+1,x = T x + 4, for F, = K

Cie,p = Ty - bA, for D = L
where L is the observed category and K is the best
category forecast for the i case. The redundant
category, j = NCAT, is not used for this system.
Thresholds for categories not specified by adjusc-

ment equations remain unchanged.

For the cumulative ordered selection strat-
egy, the ATEP adjustment equations are:

Citr,y = &3 + A, when K 5 j, J=1,NCAT-1,

Ci41,9 =ty - BjA, when L 5 j, j=1,NCAT-1.
The B, signifies cumulative bias,

(P(Fy s J)/P(D, s §)).

The mathematical stability of the multi-
category systems can be examined by computing the
expected value of the threshold change for each
category. For the discrete strategy,

E[tia,y - t 4] = A(P(F=j) - byP(D=j)),

J=1 to NCAT-1,
and for the cumulative strategy,
Efty,,, - ty] = A(P(F=<j) - ByP(D=<j)),
j=1 to NCAT-1,
. For small a, thresholds will converge to
values which produce the requested forecast biases.
The bias for j = NCAT is implicitly controlled by

the other categories.

3.4 The Discrete Ratio Thresholding Strategy

A problem with the ordered selection strate-
gles 1s that all categories are not considered
simultaneously. This can lead to situations where
categories with substantial probability are ne-
glected because a lower category may have margin-
ally surpassed its threshold. In an actempt to
improve the efficiency of category selection, a
classification strategy that selects the category
with the highest ratio of forecast to threshold
value has been tested for some elements.

Exact threshold values for this classifica-
tion SCrategy are very difficult to find by non-
recursive methods since ic is not possible to
approach the situation one category at a time.
ATEP thresholds, on the other hand, are easily
obtained by using the same basic strategy as for
the discrece case described above, with one addi-
tional consideration. Since the selection method

depends only on the forecast to threshold ratio,
the thresholds are only important relative to one
another. An infinite number of threshold values
can produce categorical forecascs with the desired
blases since any multiple of an exace threshold set
will produce the same categorical forecasts.

To produce thresholds that will converge to
a specific set of values, one category must be
fixed. This "anchor” category also provides a
category who’s bias {s not explicitly controlled by
the filter. (Only NCAT-1 biases can actually be
specified, since one category is redundant).

While any value can be used for the anchor
category, a logical choice is its unit-bias, single
event threshold. This will help produce thresholds
that appear reasonable; that is, each will gener-
ally be close to the value that the probabilicty
will have to exceed to select the related category.
There is no feedback between the actual categorical
forecast and the anchor category’s threshold. The
anchor category is isolated from the other catego-
ries in threshold estimation, although its thresh-
old value is computed recursively along with the
others.

With an anchor category, j=A, and a classi-
fication strategy of

F, = K, for Ty ¢/t x = max(ry ;/t, ),

j=1 to NCAT.

"ATEP filter equations are:

Ci+1x = € x + 4, for F, = K, K w A
Cie,L = Ty L - bA, for Dy = L, L x A
Cier,a = ;:i,A + 4, forr ,=r¢,
Cier,a = €y s - A, for D, = A.

4, THRESHOLD CONVERGENCE

The time series behavior of the thresholds
depends in a complex way on the distribution of
forecast values, the skill of the prediction, the
serial correlation of both the forecasts and
observations, and the value of A. Day to day
variations in weather might be considered to be a
source of noise since they cause the thresholds to
oscillate about their exact values. The amount of
noise in the threshold time series depends to a
large extent on the filter galn. Noise must be
limited by the selection of a small A before
thresholds can converge. '

A weather element for which the serial
correlation of the threshold changes is high re-
quires a smaller A than does one for which the
changes are more random. Experience with several
weather elements Indicates that thresholds take an
excessive amount of time to converge when 4 is set
to a’value that reduces the noise to acceptable
levels. Threshold convergence is so slow for some
elements that acceleration techniques are required.

Two methods have been employed to accelerate
convergence. The first is the practice of varying
A éccording to the confidence in the threshold.
For thresholds which may require considerable
adjustment, the filter gain needs to be relacively
high, placing a considerable welght on recenc dacta.
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As rhe thresholds become more accurate, A is de-
Creased.

The second convergence acceleration tech-
nique is to maintain a second series of threshold
values smoothed with a low pass filter to remove
high frequency variations and seasonal cycles. The
periodic replacement of the unsmoothed thresholds
with their smoothed counterparts, usually in
conjunction with a reduction in the filter gain,
can greatly accelerate convergence. This steers
the unsmoothed values toward the middle of their
ranges, where the exact values are likely to be.

The very simple first order low pass filter

used here is described briefly by Raymond and

Garder (1991, Eq. 26)
ESyy1,y = ats; , + (1 - a)ty ,

where ts, ; is the smoothed threshold value for time
1 and category j. The parameter, a, must be within
the range, 0 < a < 1 and determines the frequency
response of the filter. A value near 1 will
greatly attenuate higher frequency variations.
This filter, chosen for its simplicity, does not
have a very sharp response. The response, however,
is not particularly fimportant for ATEP operations.
Other low pass filters designed for time series
application can be used if more precise filtering
is required.

Smoothed thresholds are never used in the
recursive filter itself but only to provide final
estimates of threshold values or to provide stable
values from which to make forecasts in real time.
While the smoothed thresholds are usually quite
near to the exact values, they are not fully
recursive and will not precisely reflect the obser-
vations.

A general strategy to produce reliable
thresholds is to make multiple passes through a
dependent data set as required to allow thresholds
to converge. Each pass is treated as additional
data, so, for example, 10 passes through a single
season {s equivalent to 10 seasons of data.

From an arbitrary initial guess, a very
coarse adjustment (high gain, light smoothing) 1ig
made for the first few Seasons. A stronger smooth-
er is then used with a high gain to obtain average
threshold values for a long series of data, (Usual-
ly the equivalent of about 5 to 10 seasons.) At
that point, the smoothed threshold values usually
will produce forecasts with nearly the requested
bias. Each unsmoothed threshold i{s then assigned
the value of its corresponding smoothed threshold.
The ATEP filter is uged with fine adjustment
control constants for approximately another 10 sea-
sons to further refine the thresholds. 1In prac-
tice, the precise values of the control parameters

TH REGIONAL ADJUSTMENT

Many times a single set of threshold values
is applied to forecasts for many locations within
4 regional area, Regional threshold values are
found on historical data by combining all forecasts
within a region to form a single series of data.
The threshold set, adjusted by the forecast and
observacion of one stacion, 1is used to make the

best category forecast for the nexc station. The - -

Ce— i —— .

filter then becomes recursive in both the time and
space domains.  Smoothing fis applied after all
regional adjustments have been made for a particu-
lar valid time, so that the low Pass filter oper-
ates only in the time domain.

6. REAL TIME OPERATION.

One potential use for the ATEP is to contin-
uously adjust the thresholds in real time. Real-
time adjustments can be used to allow thresholds to
adapt to changes in forecast environment. Continu-
ous adjustment is not without hazard, however,
Thresholds can respond to unusual forecast perfor-
mance during a persistent weather regime, for
example, to produce misleading results when that
regime ends. Problems may also result from phase
errors in the threshold time series. Since the
threshold values will always lag the input signal,
periodic changes in forecast performance may
produce perpetually misadjusted threshold values.
For a seasonal cycle, for example, threshold values
will most closely approach stable values near the
end of one season, leaving thresholds misadjusted
for the beginning of the next. The filter control
constants must be carefully chosen to minimize such
problems.

In real time, best category forecasts are
made from the smoothed threshold values. The
probability forecasts are stored until the verify-
ing observations arrive. Intermediate categorical
forecasts are then made from the unsmoothed thresh-
olds specifically for the ATEP adjustment. New
smoothed thresholds are calculated from the updated
unsmoothed values before the next forecasts are
made.

For regional thresholds, all forecasts
within the region are made from the latest smoothed
thresholds. The ATEP adjustments ‘are then made
from the probability forecasts as described in
Section 5,

7. AN EXAMPLE

7.1 LAMP Visibility Forecasts

The LAMP visibility forecasts will be used
to illustrate the derivation of thresholds from
ATEP. LAMP forecasts are produced from regression
equations that specify the probability of visi-
bility occurrence in each of six categories at the
hourly observation time. The forecasts are pro-
duced from regional LAMP equations developed for
the Southern Plains area of the u.s.

While actual LAMP thresholds are derived for
the same regions for which the equations apply, a
single station threshold set was used here to
illustrate the ATEP performance on a manageably
small amount of data. The 2000 UTC LAMP cool
season (October-March) visibility forecasts for
Oklahoma City, Oklahoma (OKC) were selected for
threshold derivacion, These forecasts update the
1200 uTC Mos guldance with information from the
2000 UTC observations. The 16-h projection was
examined for this demonstration so that the valid
time, 1200 UTC, would occur in early morning at OKC
when visibility restrictions are most frequenc.
The forecasts were obtained from the developmental
sample used to derive the LAMP equations. A tocal
of 1576 forecasts were available from the 10 sea-
sons of data beginning in October 1980.

s



The category definitions, means and multiple
correlation coefficients for the regional equations
are shown in Table 1 along the sample mean frequen-
cies of visibility at OKC.

Table 1. CACegbry definitions, means, and correla-
tion coefficiants, C, for LAMP visibility equa-
tions for the Southern Plains region and the
sample means for the OKC data.

Definition Equation OKC
Cat, (mi) Mean C Mean Cases
1 less than .5 .022  .200 .030 47
2 .5 - .99 .015  .155 .013 19
3 1.0 - 2.99 .062 .325 .034 54
4 3.0 - 4.99 .062 .248 .043 68
5 5.0-6.0 L0711 .204 .056 89
6 greater than 6. |.769 521 .824 1299

7:2 Threshold Convergence

The ATEP filter was used to estimate unit
bias thresholds for all categories. The ATEP
control constants are displayed in Table 2. The
threshold values were inicially set to .02 for all
categories. The constants used for the smoother
were designed to heavily damp frequencies with
periods of less than about 1 season (a = .9944) and
less than 5 seasons (a = .9989). The number of
times the ATEP filter passed through 10-season
sample {s shown along with the wvalue of the
smoothed thresholds at the end of each pass. The
exact threshold values found by iterative searching
and elimination are also shown.

Table 2. Thresholds for the 5 visibility catego-
rles at the end of each stage in ATEP adjusc-

ments. The number of passes, and the ATEP
control constants for each adjustment period are
shown, NP
Smoothed Threshold

Adjustment{Passes A a 1 2 3 4 3
Coarse 1 .03 -9944 | (1151 .1603 .3110 L3875 4481
1 .02 .9989 | .1156 .1515 .2932 .3652 .4312
Fine 2 -005  ,9989 | .1069 .1l444 .2743 3575 4185
Very Fine 5 .001  .9989 | .1027 .1397 .2677 L3507 .4112
g 20 .0001 0 .0998 .1361 .2682 .3450 L4073

Exact - - - -0987 .1356 .2687 .3435 .4080

From Table 2, it is evident thac the thresh-
olds quickly approached the exact values, but only
slowly converged once the System was in approximate
balance. To assure convergence, A was reduced to
a very small value and the smoother was effectively
removed by setting a = 0, (Smoothing {s unneces-
sary since there is very little noise in cthe
unsmoothed thresholds when the gain is set so low.)

The time series of the threshold values for
categories 2 and 3 for the first four passes are
shown in Fig. 2, along with the smoothed and exact
thresholds values, On the first pass, the noisy,
coarse-adjustment thresholds quickly reach the
vicinicy of their exact values and oscillate around
them while the smoothed thresholds approach the
exact values more slowly. It is very important
that the smoothed thresholds reach the middle
levels of the unsmoothed threshold’s range before
A is reduced, Thresholds take a very long time to
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Figure 2. Time series of ATEP thresholds for

visibility categories 2. and 3, along with their
smoothed values. Exact threshold values are
indicated by the horizontal lines.

converge unless they are very ciose to the stable
values once ‘A is very small. This is especially
true for rare events, since adjustments are made
only for forecast events or observations. (Since
the event is rare, most forecasts are correct.)

At the end of the second pass, the fine-
adjustment ATEP control constants were instaced.
With the noise greatly reduced, long term trends in
the data became apparent in the thresholds. There
was a distinct trend for both thresholds rto in-
crease with time on any given pass over the 10,
6-month seasons, indicating a systematic overfore-
casting. The patterns on the fourth pass were
similar to those on the third, suggesting that the
thresholds had reached stable levels by that time.

The thresholds at the end of the fourth pass
would most likely produce satisfactory results on
independent data: however, more passes were made to
demonstrate convergence. An additional 25 passes--
equivalent of 250 years--were made through the
data. The long time series was necessary because,
as the thresholds approached their exact values,
the bias imbalances amounted to only a few cases in
the entire 10-year sample. After 25 passes, the
thresholds were all within .001lS of the exact
values. : )

7.3 Simulated real-time performance.

In practice, the LAMP guidance will make
forecasts from fixed thresholds because we can use
the large amount of data available for equation
development to produce very accurate threshold
values. Categorical forecasts made from continu-
ously adjusted thresholds, however, were examined
Lo ascertain how a system that adjusts forecasts
"on-line” might perform.

Table 3 displays the Heidke skill scores and
bias by category for forecasts made from cthe
threshold values from the last pass of the coarse,
fine, and very fine adjustment periods. The Heidke
skill score measures the improvement in the fore-
casts over chance and is computed by the formula,
HS = (H-E)/(T-E), where H is the number of correct
forecasts, T {s the total number of forecasts, and
E refers to the number correct expected by chance
given the sample climatology and number of predict-
ed events for each category. Categorical forecasts
for the entire data sample made from threshold



values fixed throughout the sample were compared to
those which were allowed to vary with fine adjusct-
ment control parameters.

The skill scores for all systems tested are
approximately the same, which {s not surprising
since the probabilities used to make the categori-
cal forecasts are identical.

Table 3. Heidke skill scores and biases by cate-
gory for visibility forecasts made from final
threshold values of the specified adjustment
steps (see Table 2). Scores were computed from
both variable and fixed thresholds.

Bias by Category
Adjustment [Threshold |Skill 1 2 3 4 b 6

Coarse Variable .269| .83 1.10 .98 .91 1.06 1.01
[Fixad .258) .66 .63 .94 .77 1.06 1.03
Fine Variable .2561 .98 1.05 1.09 .90 1.03 1.00
Fixed .269) .87 .57 1.01 .85 1.09 1.01
Very Flne [Variable .247(1.06 1.32 1.03 1.03 .98 .99
[Fixed .250f .98 1.00 1.00 .97 1.02 1.00
Exact [Fixed -25111.02 1.00 1.00 1.00 .99 1.00

The small variations in skill score are
often due to the difference of a few cases in the
10-year sample. However, there is a distinct and
systematic improvement in the bias of the variable
system with respect to the fixed, unless, of
course, the fixed thresholds are very near to the
exact values. )

8. SUMMARY

An adaptive estimation procedure has been
developed to obtain threshold values that will
produce categorical forecasts with any desired
bias. ATEP uses a recursive time series approach
to adjust thresholds on a forecast by forecast
basis according to the verifying observations. The
filter uses three control constants: the desired
bias of the categorical forecasts; a filter gain
that controls influence of the most recent obser-
vation on the thresholds; and a smoothing constant
that controls the attenuation of high frequency
changes in threshold values.

The convergence properties of the ATEP
filter were demonstrated by passing through a
sample of visibility probability forecasts multiple

times. Thresholds were found to approach the exact -

values determined from the dependent data sample.
Careful choice of the filter control constants can
significantly accelerate convergence to the vicin-
ity of these values,

Forecasts made from thresholds that were
continuously adjusted were compared to those
produced from fixed values. The results indicacted
that real time adjustmencs with ATEP are feasible.
The skill of the forecasts was not greatly affecced
by the continuous ATEP adjustments, while the bias
characteristics were almost always improved unless
the initial thresholds exactly matched the sample.

Adaptive’ threshold estimation offers several
advantages to the alternative methods of finding
exact threshold values. The primary advantage is
that it enables bias control of more complex
classificaction strategies, such as the ratio method
presented here, or the method presented by Carroll
(1992). ATEP thresholds can also be tuned to
weight more recent data more heavily, thus retain-
ing information from trends in the forecast perfor-
mance . The ATEP thresholds can also be adjusted
in real-time to enable continuous calibration of
the best category forecasts.
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