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ABSTRACT

Ensemble forecasting systems often contain systematic biases and spread deficiencies that can be corrected

by statistical postprocessing. This study presents an improvement to an ensemble statistical postprocessing

technique, called ensemble kernel density model output statistics (EKDMOS). EKDMOS uses model output

statistics (MOS) equations and spread–skill relationships to generate calibrated probabilistic forecasts. The

MOS equations are multiple linear regression equations developed by relating observations to ensemble

mean-based predictors. The spread–skill relationships are one-term linear regression equations that predict

the expected accuracy of the ensemble mean given the ensemble spread. To generate an EKDMOS forecast,

theMOS equations are applied to each ensemblemember. Kernel density fitting is used to create a probability

density function (PDF) from the ensemble MOS forecasts. The PDF spread is adjusted to match the spread

predicted by the spread–skill relationship, producing a calibrated forecast. The improved EKDMOS tech-

nique was used to produce probabilistic 2-m temperature forecasts from the North American Ensemble

Forecast System (NAEFS) over the period 1 October 2007–31 March 2010. The results were compared with

an earlier spread adjustment technique, as well as forecasts generated by rank sorting the bias-corrected

ensemble members. Compared to the other techniques, the new EKDMOS forecasts were more reliable, had

a better calibrated spread–error relationship, and showed increased day-to-day spread variability.

1. Introduction

Ensemble forecasting systems benefit operational

forecasters by predicting a range of possible forecast

outcomes. An ensemble contains multiple members,

each a separate run of a numerical weather prediction

(NWP) model. With a well-constructed ensemble, the

ensemble mean is on average more accurate than the

individual members (Leith 1974). Likewise, the spread

of the ensemble may correlate with the expected accu-

racy of the ensemble mean (Kalnay and Dalcher 1987;

Whitaker and Loughe 1998). The ensemble members

sample the various sources of error that degrade NWP

forecasts. To quantify the error in the underlying

analysis, the ensemble members are initialized with

perturbed initial conditions. Over the years, a range of

perturbation techniques have been proposed including

the breeding method (Toth and Kalnay 1997), singular

vectors (Palmer et al. 1998), and the ensemble transform

Kalman filter (Wang and Bishop 2003). The numerical

model itself is also a source of error because it must

parameterize subgrid-scale processes and only approx-

imates the true atmosphere. Thus, to quantify the nu-

merical model uncertainty, the ensemble members may

use the same parameterization schemes with varied con-

stants or have stochastic parameterizations (Houtekamer

et al. 1996; Buizza et al. 1999).

Many operational meteorological centers run en-

sembles, including the National Centers for Environ-

mental Prediction’s (NCEP) Global Ensemble Forecast

System (GEFS; Toth et al. 2001), the Short-Range En-

semble Forecast System (SREF; McQueen et al. 2005),

the CanadianMeteorological Centre’s (CMC) ensemble

(Charron et al. 2010), the European Centre for Medium-

Range Weather Forecasts’ (ECMWF) ensemble (Buizza

1997), and the U.S. Navy’s Fleet Numerical Meteorology

and Oceanography Center’s (FNMOC) ensemble (Peng

et al. 2004).

Unfortunately, there are often systematic errors in

the near-surface weather elements predicted directly by
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ensembles. In addition, the spread of the ensemble mem-

bers is often too small and underestimates the true

forecast error. To correct these deficiencies, numerous

statistical postprocessing techniques have been sug-

gested, including ensemble dressing (Roulston and

Smith 2003; Wang and Bishop 2005), Bayesian Model

Averaging (BMA;Raftery et al. 2005;Wilson et al. 2007),

Nonhomogeneous Gaussian Regression (NGR; Gneiting

et al. 2005; Wilks 2006; Wilks and Hamill 2007), en-

semble regression (Unger et al. 2009), variance inflation

techniques (Johnson and Bowler 2009), and shift-and-

stretch calibration (Eckel et al. 2012). The Meteorologi-

cal Development Laboratory (MDL) of the National

Weather Service (NWS) has used a technique called

model output statistics (MOS; Glahn and Lowry

1972) for decades to statistically postprocess numer-

ical models. Typically, MOS has been applied to output

from a single numerical model. More recently, MDL

developed a MOS-based technique called ensemble

kernel density MOS (EKDMOS; Glahn et al. 2009a)

which can generate calibrated probabilistic forecasts

from ensembles.

Calibrating the ensemble spread is important for en-

semble postprocessing. The original EKDMOS meth-

odology explained by Glahn et al. (2009a) used an

empirical spread-adjustment factor to calibrate the final

predicted spread. Overall, the technique produced sta-

tistically reliable results; however, the spread calibration

lacked station specificity as the same spread adjustment

factor was applied to all stations. In addition, the

method did not attempt to leverage a possible spread–

skill relationship between the ensemble spread and

the expected accuracy of the ensemble mean to condi-

tionally calibrate the spread. Many studies have found

that ensembles do contain a spread–skill relationship

(Kalnay and Dalcher 1987; Buizza et al. 2005; Whitaker

and Loughe 1998; Barker 1991). That is, the spread of the

ensemble positively correlates with the expected error

of the ensemblemean. Some postprocessing techniques

explicitly account for a spread–skill relationship. For

example, NGR models the predicted error variance as

a linear function of the ensemble member variance.

Grimit and Mass (2007) proposed a technique that

modeled the spread–skill relationship in a probabilistic

sense. They used a stochastic model to simulate en-

semble forecasts and binned the forecasts by ensemble

spread. For each bin, they computed the corresponding

ensemble mean standard error and showed there was a

linear relationship between the ensemble member

standard deviation and the ensemble mean standard

error. They suggested a linear function could be fit to

the data and used to calibrate future forecast. Other

studies have applied similar spread-dependent calibration

techniques to a variety of weather elements including 2-m

temperature (Eckel et al. 2012) and upper-level winds

(Kolczynski et al. 2009).

Building upon the work of earlier studies, we have

improved the EKDMOSmethod by including a spread–

skill relationship within the multiple linear regression

framework. In keeping with the Glahn et al. (2009a)

methodology, we develop MOS equations with ensem-

ble mean-based predictors. In addition, we develop

spread–skill relationships that conditionally calibrate

the predicted spread. We model the spread–skill re-

lationship with a simple one-term linear regression

equation that uses the ensemble spread to predict the

expected accuracy of the ensemble mean. We have

found we can improve the linearity of the relationship

between spread and the expected error by applying

variance stabilizing transforms (see Box et al. 2005,

p. 320) to our predictor and predictand. Our technique

resembles NGR in that we model the predictive error

variance as a linear function of the ensemble spread.

However, unlike NGR, we fit the statistical model ana-

lytically rather than iteratively. Our method also avoids

the Grimit and Mass (2007) approach’s requirement to

bin and sort data.

The remainder of this paper is organized as follows: in

section 2 we discuss the numerical models and obser-

vational datasets used to perform this work. In section 3

we give an overview of EKDMOS and explain our im-

proved methodology. In section 4 we present verification

results for independent cross-validated data. Finally,

section 5 finishes with a discussion and conclusions.

2. Data

We used numerical model forecasts from the North

American Ensemble Forecast System (NAEFS; Candille

2009). NAEFS is the suite of 42 ensemble-member

forecasts that combines the CMC’sGlobal Environment

Multiscale Model (GEM) and NCEP’s GEFS. The op-

erational centers distribute a matched set of model out-

put fields from their respective ensembles on the same

18 3 18 latitude–longitude grid. The CMC ensemble has

a control run and 20 members that use varied physical

parameterizations. Table 1 of Charron et al. (2010) lists

additional details regarding the operational configuration

of the CMC ensemble. The GEFS also has a control and

20 perturbationmembers, but unlike the CMC ensemble,

the ensemble members use an identical set of physical

parameterizations (Zhu et al. 2007). MDL maintains an

archive of operational NAEFS forecasts from July 2007

to the present.

We used station-based observations from an archive

maintained byMDL.Weapplied theEKDMOS technique
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to 2303 stations distributed throughout the conterminous

United States (CONUS), Canada, Alaska, Hawaii, and

Puerto Rico. For testing, we generated 2-m temperature

forecasts, which we verified at a subset of 335 stations that

MDL has judged to have reliable observations. Figure 1

shows a map of these stations.

3. EKDMOS method

For convenience, we present here a brief overview of

the EKDMOS technique that is described in full by

Glahn et al. (2009a). Separate sets of MOS equations

were created for the GEFS and CMC with ensemble

mean-based predictors. MOS uses forward screening

multiple linear regression to relate observations (i.e.,

predictands) to model-based predictors. Typically, the

regression selects model fields closely related to the

predictand. For example, for hourly 2-m temperature,

the most common predictors were model forecasts

of 2-m temperature and geopotential thickness. Har-

monics, such as the cosine and sine of the day of the

year, were also offered as predictors, and became im-

portant in the later projections. MOS equations were

developed for each projection, station, cycle, and ele-

ment. We applied the MOS equations to each ensemble

member to generate 42 ensemble MOS forecasts. We

constructed a probability density function (PDF) from

the 42 ensemble MOS forecasts with kernel density fit-

ting (Wilks 2011). Following Glahn et al. (2009a) we

used Gaussian kernels with a standard deviation equal

to the standard error estimate predicted by the MOS

equation. At this point, the spread of the PDF from

kernel density fitting is uncalibrated and will be adjusted

later.

As mentioned previously, we developed MOS equa-

tions with ensemble mean-based predictors and applied

those equations to the ensemble members. Unger et al.

(2009) argues that this is theoretically sound if the en-

semble member forecasts represent equally likely out-

comes. For each forecast case, one ensemble member

will be ‘‘best’’; however, it is impossible to identify the

best member beforehand. Unger et al. (2009) demon-

strates that the expected coefficients for the best mem-

ber regression equation are identical to those obtained

by developing a regression equation with the ensemble

means as predictors. Since the GEFS is composed of

random perturbations of the same model, the assump-

tion of equally likely members seems plausible. How-

ever, as the CMC members contain different model

physics and parameterizations, greater caution must be

exercised. We tested developing 2-m temperature MOS

equations for each CMC ensemble member versus

developing CMC ensemble mean-based equations. Ex-

amining three years of independent cross-validated re-

sults, we found that forecasts generated by applying the

mean-based equations to each member were more ac-

curate, asmeasured bymean absolute error (MAE), at all

projections. Therefore, for both GEFS and CMC, we

develop MOS equations with the ensemble means and

apply those equations to the members.

a. Original Spread-Adjustment technique

For clarity, we refer to the original second moment

calibration technique, described by Glahn et al. (2009a),

as Spread-Adjustment. To review, the Spread-Adjustment

technique computes a spread-adjustment factor x given by

x5
3(smin1smax)1 SF(Fmax2Fmin)

3(smin1smax)1 (Fmax2Fmin)
, (1)

where Fmin and Fmax are the smallest and largest en-

semble member MOS forecasts, respectively; smin and

FIG. 1. Map of the 335 stations used for verification.
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smax are the associated standard errors predicted by the

MOS equations, respectively; and SF is an empirical

spread-adjustment factor. The standard deviation of

the final PDF will differ from the original by a factor of

(1 2 x). Glahn et al. (2009a) found that the kernel

density fitting technique produced overdispersive PDFs.

They performed testing with dependent EKDMOS

GEFS forecasts and found that a spread-adjustment

factor of SF 5 0.5 optimized reliability by reducing the

spread. Our own testing with dependent EKDMOS

NAEFS forecasts suggested a spread-adjustment factor

of SF5 0.4 was optimal. The smaller spread-adjustment

factor indicates the NAEFS required more spread re-

duction following the kernel density fitting compared to

theGEFS. For this study, we generated a set of EKDMOS

NAEFS forecasts with a spread adjustment factor of

SF 5 0.4, which we refer to as Spread-Adjustment.

b. EKDMOS Spread-Skill calibration

Rather than use the spread-adjustment factor from (1)

we instead develop station-specific spread–skill relation-

ships to calibrate the final forecast PDF. Following the

general formulation for multiple linear regression, MOS

fits the linear model

yi 5b01b1x1i 1b2x2i1⋯1bkxki1 «i , (2)

where for each forecast case i, the predictand yi is re-

lated to a set of k predictors x1i . . . xki via the coefficients

b0 . . . bk, with residual error «i. Inmatrix form, (2)may be

written as

Y5Xb1 e , (3)

where Y is the vector of predictand values and X is the

design matrix containing the predictors. The least

squares estimate of the regression coefficients vector b

can be obtained via

b̂5 (X0X)21X0Y . (4)

The vector of fitted values Ŷ is given by

Ŷ5Xb̂ , (5)

and the vector of residual error values e by

e5Y2 Ŷ . (6)

The error variance estimate of the regression residuals is

given by

ŝ2 5
e0e

n2 k2 1
, (7)

where n is the sample size. If we assume the regression

residuals are normally distributed, the standard error

(s.e.) of a future response is given by

s. e. (ŷ j x*1 «)5 ŝ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 x*(X0X)21x*

q
. (8)

Here, ŝ is the regression residual standard error from (7)

and x* is the vector of current predictor values. Equa-

tion (8) could be used to calibrate the forecast PDF;

however, in practice, the predicted standard error from

(8) varies little day-to-day because MOS typically uses

large development samples containing several years of

data. Likewise, the spread predicted by (8) is not

a function of the ensemble spread.

We should note that if the residual errors are not

normally distributed, the MOS equation still provides

the least squares estimate of a future response given the

current predictor values, but the predicted standard

error from (8) may not yield statistically reliable fore-

casts. Our experience with 2-m temperature suggests

assuming normally distributed error is reasonable at

most stations.

To include a spread–skill relationship, we perform

a second regression step and model the regression

residual error in (6) as a function of the ensemble

spread. As mentioned previously, we apply the MOS

equations to each ensemble member to obtain 42 en-

semble MOS forecasts. For each case i, we calculate

the standard deviation of the 42 ensemble MOS

forecasts si as

si5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
K

k51

( fki 2 f i)
2

K2 1

vuuut
, (9)

where fki is the MOS forecast for member k, f i is

the mean of the ensemble MOS forecasts, and K is the

number of ensemble members.We have found that if we

apply variable transformations to si and the residual

errors «iwe can model the spread–skill relationship with

linear regression. Specifically, we compute the square

root of the absolute error of the ensemble mean MOS

forecast
ffiffiffiffiffiffiffij«ij

p
and the square root of the standard

deviation of the ensemble MOS forecasts
ffiffiffiffiffiffijsij

p
. We

specify a linear relationship between
ffiffiffiffiffiffiffij«ij

p
and

ffiffiffiffiffiffijsij
p

according to

ffiffiffiffiffiffiffi
j«ij

q
5a01a1

ffiffiffiffi
si

p
. (10)

2470 MONTHLY WEATHER REV IEW VOLUME 141



The term
ffiffiffiffiffiffiffij«ij

p
is simply an alternative measure of the

ensemble mean MOS forecast accuracy for case i. To

estimate the parameters a0 and a1, we define S to be

the vector of transformed ensemble MOS standard de-

viations:

S5

0
BB@

ffiffiffiffi
s1

p

..

.

ffiffiffiffiffi
sn

p

1
CCA , (11)

E to be the vector of transformed ensemble mean MOS

forecast errors:

E5

0
BB@

ffiffiffiffiffiffiffiffij«1j
p

..

.

ffiffiffiffiffiffiffiffij«nj
p

1
CCA , (12)

and a to be the vector of coefficients to estimate

a5 (a0 a1) . (13)

Here, n is the number of forecast cases. We use linear

regression to estimate a according to

â5 (S0S)21SE . (14)

The relationship defined by the parameters â is called

a spread–skill relationship because it relates the spread

of the ensemble MOS to the expected accuracy of the

ensemble mean MOS forecast. The spread–skill rela-

tionship will predict the expected value of the square

root of the absolute error, Expected[
ffiffiffiffiffiffij«jp

]; however, to

use the spread–skill relationship within the regression

framework we wish to know the expected standard error

s. We can find an approximate back transformation to

convert from Expected[
ffiffiffiffiffiffij«jp

] to s if we assume the er-

rors « are normally distributed withmean 0 and variance

s2. We use the general formula for expected value to

write

Expected[
ffiffiffiffiffiffi
j«j

p
]5

ð1‘

2‘

ffiffiffiffiffiffij«jp
ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p exp

�
2

«2

2s2

�
d« . (15)

The integral on the right-hand side of (15) cannot be

solved analytically; however, we can substitute trial

values for s and numerically evaluate the integral to

obtain values of Expected[
ffiffiffiffiffiffij«jp

]. This allows us to build

a lookup table to perform the back transformation. The

lookup table is general and can be used for any element

with normally distributed errors.

Using the subscript SS to denote Spread-Skill we can

write

ffiffiffiffiffiffiffiffiffiffi
j«SSj

q
5 â01 â1

ffiffiffiffiffiffiffiffiffiffiffi
sMem

p
, (16)

and

ŝSS 5G(
ffiffiffiffiffiffiffiffiffiffi
j«SSj

q
) , (17)

where G is a function, in this case a lookup table, that

performs the back transformation.

Substituting ŝSS for ŝ in (8) yields

s. e. (ŷ j x*1 «)5 ŝSS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 x*(X0X)21x*

q
. (18)

Now, the ensemble spread influences the predictive

standard error via the spread–skill relationship. When

generating a forecast, we adjust the spread of the final

PDF so that its spread equals the standard error estimate

from (18). We refer to these forecasts as Spread-Skill.

In practice, we enact several quality control criteria to

ensure that reasonable spread–skill relationships are

developed. First, we require the slope parameter â1 in

(16) to be positive. Second, we use an F test to test the

hypothesis that â1 is significantly different from 0 and

require the resulting p value to be less than 0.25. If the

spread–skill relationship fails either criteria we reject it

and use the standard error estimate from (8).

c. Justification for variable transformations

The reason for applying the square root trans-

formation above is, perhaps, not immediately clear. For

simplicity, we wish to fit the spread–skill relationship

with standard linear regression; however, to be optimal,

the regression theory assumes the errors are normally

distributed with constant variance. One might fit a re-

gression line between the ensemble member standard

deviation and the ensemble mean absolute error, but

clearly, this will violate the regression assumptions. In

such situations, a common strategy is to apply variable

transformations, such as the square root, to stabilize the

variance and improve the normality of errors (see Box

et al. 2005, p. 320).

In Fig. 2, we demonstrate pragmatically why the

square root transformation works well for ensemble

forecasts. To begin, we assume the errors of the en-

semble mean e are normally distributed with mean 0

and variance s that is proportional to ensemble spread,

e ; N(0, s). A few hypothetical distributions of e for

different values of s are shown in Fig. 2a. As the en-

semble standard deviation increases along the abscissa,
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the variance of the errors e also increases. Taking

the absolute value of e transforms the data to the half-

normal distributions shown in Fig. 2b. At this point, a

regression line could be fit between the ensemble stan-

dard deviation and the ensemble mean absolute error

because the expected absolute error is proportional

to the original error variance. However, the basic re-

gression assumptions of normally distributed error and

constant variance are not valid. If instead, we compute

the square root of the absolute errors (i.e., computeffiffiffiffiffiffijejp
), the data become more normally distributed with

less heteroscedasticity (Fig. 2c). The mean of the new

distribution is still proportional to the original error

variance, thus a regression fit will produce a spread–skill

relationship. In practice, the ensemblemember standard

deviation may also be transformed by taking the square

root. We have found that doing so improves the re-

gression reduction of variance (not shown).

d. Example EKDMOS Spread-Skill forecast

To further explain theEKDMOSSpread-Skillmethod,

we provide an example application with the 102-h day-

time maximum temperature forecast at the Baltimore/

Washington International Thurgood Marshall Airport.

First, MOS equations were developed with ensemble

mean-based predictors. Separate equations were de-

veloped for the GEFS and CMC ensembles. Table 1

summarizes the predictors and corresponding coefficients

chosen for these particular equations. The stepwise re-

gression selected more predictors for the CMC equation

than for the GEFS equation. The most common pre-

dictors were model forecasts of near-surface temperature

and zonal wind.

Next, we created a spread–skill relationship following

the procedure outlined in section 3b. Working with our

dependent dataset, we applied theMOS equations listed

in Table 1 to the ensemble members to generate 42

ensemble MOS forecasts. For each forecast case, we

calculated the ensemble mean MOS forecast, which was

simply the equally weighted average of the 42 ensemble

MOS forecasts. We also calculated the standard de-

viation of the ensemble MOS forecasts to quantify the

ensemble spread. Figure 3a compares the absolute error

of the ensemble mean MOS forecasts to the standard

deviation of the ensemble MOS forecasts. For each

forecast case, the standard deviation of the ensemble

MOS forecasts is plotted along the abscissa while the

absolute error of the ensemble mean MOS forecast is

plotted along the ordinate. As the spread of the en-

semble MOS forecasts increased, larger errors of the

ensemble mean MOS forecast tended to occur, in-

dicating there was a spread–skill relationship.

TABLE 1. Summary of predictors and coefficients for theEKDMOS

102-h daytime maximum temperature MOS equations at the

Baltimore/Washington International Thurgood Marshall Airport.

Model Predictor Coef

CMC Intercept 22.09

2-m temperature, 90 h 1.08

2-m temperature, 102 h 20.48

925-hPa temperature, 96 h 0.42

1000-hPa U wind, 90 h 0.23

GEFS Intercept 22.55

2-m temperature, 90 h 1.02

10-m U wind, 90 h 0.28

FIG. 2. Examples illustrating how the square root transformation improves the normality and stabilizes the variance of the ensemble

mean error distribution. (a) The distribution of the original ensemblemean error, (b) the absolute ensemblemean error, and (c) the square

root of the absolute ensemble mean error are shown.
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To fit the spread–skill relationship we applied variable

transformations to the data. Specifically, for each case,

we computed the square root of the absolute ensemble

mean MOS forecast error and the square root of the

standard deviation of the ensemble MOS forecasts.

As shown in Fig. 3b, the transformations reduced the

heteroscedasticity and normalized the error distribution.

The black line in Fig. 3b is a regression fit to the trans-

formed data. Although the scatter about the regression

line is large, the p value for the regression slope pa-

rameter is highly statistically significant (�0.001). A

check of the regression residuals plotted against the

explanatory variable (Fig. 4a) does not show any sys-

tematic pattern that would cause alarm. In Fig. 4b,

a normal Q–Q plot compares the distribution of the

standardized regression residual with those of a theo-

retical normal distribution. Each point on a Q–Q plot

is the quantile of one distribution plotted against the

quantile of a comparison distribution. If both sets of

data follow the same distribution then the points will

form a straight, diagonal line. Examining Fig. 4b, we

see that this was generally the case, suggesting the

regression residuals were at least approximately nor-

mally distributed.

To demonstrate the generation of an actual forecast

we use the 102-h daytime maximum temperature fore-

cast created from the 0000UTC 1December 2009 run of

the NAEFS. The MOS equations were applied to each

FIG. 3. Scatterplots demonstrating the spread–skill relationship for the 102-h daytime maximum temperature

forecast at the Baltimore/Washington International Thurgood Marshall Airport. (a) The standard deviation of the

ensemble MOS forecasts versus the absolute error of the ensemble mean MOS forecast is shown. (b) The trans-

formed data are shown.

FIG. 4. The standardized regression residuals after fitting (a) the spread–skill relationship and (b) a normalQ–Q plot

of the standardized regression residuals.

JULY 2013 VEENHU I S 2473



member to generate 42 ensemble MOS forecasts. The

standard deviation of those forecasts was calculated and

used to evaluate the spread–skill relationship and cor-

responding back transformation. As shown in Fig. 5a,

a normal kernel was fit to each ensemble MOS forecast.

For clarity we only plot a subset of the 42 kernels. Kernel

density estimation was used to sum the area under the

individual kernels and obtain the PDF shown by the

dashed curve in Fig. 5a. The PDF spread was adjusted to

match the standard error estimate predicted by the

spread–skill relationship. In Fig. 5b, the dashed curve is

the original PDF from kernel density fitting while the

solid curve is the PDF after spread calibration. For this

case, the final PDF was sharper than the original PDF.

The vertical black line indicates the verifying observa-

tion of 488F (;98C).

e. Baseline for spread calibration evaluation

EKDMOS probabilistic forecasts should be better

calibrated than the raw ensemble. To verify this, we

computed a set of probabilistic forecasts whose spread

was dependent on the original ensemble spread. A cu-

mulative distribution function can be constructed from

the raw ensemble by rank sorting the ensemble mem-

bers. However, near-surface weather forecasts from

ensembles will often be poorly calibrated simply due to

systematic model biases. To provide a more competitive

candidate for evaluation, we first performed some lim-

ited postprocessing to correct the systematic bias before

computing the CDF. Here we used a modification of an

approach suggested by Hamill (2007). For each station-

based forecast, we found the direct model output

(DMO) ensemble mean and the ensemble mean MOS

forecast.We computed the difference between the DMO

and ensemble mean MOS forecast and added the dif-

ference to each DMO ensemble member. This centered

the DMO ensemble members around the EKDMOS

mean but preserved their original scatter. A CDF was

computed from the relocated DMO ensemble mem-

bers using the Tukey plotting position estimator (see

Wilks 2011, p. 41),

Pr(F# f )5
Rank(f )2 1/3

(K1 1)1 1/3
, (19)

which determines the probability that the verifying

observation F will be less than or equal to ensemble

member forecast f, where Rank( f) is the rank of the

ensemble member forecast within the ensemble. These

forecasts are hereafter referred to as the bias correction

rank sorted (BC-Sorted) forecasts.

4. Verification results

To evaluate our EKDMOS Spread-Skill technique,

we generated 2-m temperature forecasts using NAEFS

data covering the period 1October 2007–31March 2010.

We stratified our sample into warm (1 April–30 Sep-

tember) and cool (1 October–31 March) seasons. We

performed cross validation (Wilks 2011) whereby we

FIG. 5. Example EKDMOS forecast for the 102-h daytime maximum temperature at the Baltimore/Washington

International ThurgoodMarshall Airport from the 0000UTC 1Dec 2009 run of the NAEFS. (a) The solid curves are

the individual member kernels and the dashed curve is the kernel density estimated PDF. (b) The dashed curve is the

original PDF and the solid curve is the Spread-Skill adjusted PDF with the verifying observation indicated by the

vertical dashed line.

2474 MONTHLY WEATHER REV IEW VOLUME 141



developed MOS equations and spread–skill relationships

with two years of data, withholding the third year for

independent verification. The results presented are for

cross-validated cool season forecasts. Unless otherwise

stated, all verification scores were computed at a subset

of 335 stations distributed uniformly throughout the

CONUS,Alaska,Hawaii, and PuertoRico and judged by

MDL to have reliable data (Fig. 1).

a. Spread–skill relationships

We investigated how successful we were at develop-

ing spread–skill relationships. We attempted to develop

spread–skill relationships at a total of 2303 stations. Figures

6 and 7 present the percentage of stations, by projection,

that passed the quality control criteria mentioned in sec-

tion 3b and received a spread–skill relationship. The values

ranged between 50%–95% depending on the element and

projection. Coastal and marine stations along the western

CONUS most commonly failed to receive a spread–skill

relationship. At these sites, the cold ocean sea surface

temperature likely suppresses the day-to-day temperature

variability and weakens the spread–skill relationship. For

hourly 2-m temperature and dewpoint therewas a diurnal

cycle, with the percentage peaking during the daytime

hours. The percentage of stations that received a spread–

skill relationship was less for nighttime minimum tem-

perature compared to daytime maximum temperature

(Fig. 7), suggesting the ensemble spread was a poorer

predictor of accuracy at the nocturnal hours. For all four

weather elements, the percentages peaked at the mid-

range forecast projections between 74 and 192 h. At the

earlier projections the spread–skill relationships may be

weak because the ensemble spread is mostly due to the

random perturbations used to initialize the ensemble. At

the later projections, after 216 h, the percentage may

decrease because, when model skill is low the MOS

equations reduce spread variability by hedging toward

the development sample mean.

b. Spread-Skill 2-m temperature forecasts

We compared EKDMOS Spread-Skill 2-m tem-

perature forecasts with those generated by the Spread-

Adjustment and BC-Sorted methods. Figure 8 shows

probability integral transform (PIT) histograms for the

48-, 120-, and 168-h forecast projections. PIT histograms

measure ensemble consistency and are similar to rank

histograms (see Wilks 2011, p. 371). Here, we define

consistency to mean that for each forecast case, the

verifying observation and ensemble MOS forecasts are

drawn from the same probability distribution. A PIT

histogram has multiple bins that correspond to discrete

percentile ranges on the forecasted CDF. If the ensem-

ble is consistent, then the verifying observation should

be equally likely to fall within any bin. Thus, after

sampling many cases, the PIT histogram should be uni-

formly flat with bin heights near unity.

To assess statistical significance we constructed box-

plot PITs with a bootstrap technique following Marzban

et al. (2011). We individually verified the 18 months of

our independent dataset and randomly sampled the re-

sults with replacement 10 000 times. The boxplot whis-

kers in Figs. 8a–i are the 95% confidence intervals for the

bin means. Examining Figs. 8a–c, we see that the BC-

Sorted forecasts were underdispersive at all forecast

projections. The Spread-Adjustment (Figs. 8d–f) and

Spread-Skill (Figs. 8g–i) PIT histograms were much

flatter, indicating better consistency. Spread-Skill was

more consistent than Spread-Adjustment because the

95% confidence intervals more often straddled unity.

Cumulative reliability diagrams (CRD) also diagnose

ensemble consistency. CRDs are similar to reliability

diagrams; however, the CRD probabilities are cumu-

lative from below (see Wilks 2011, p. 334). Relative

frequency to the left of the dashed reference line in-

dicates underforecasting while relative frequency to

the right implies overforecasting. We computed 95%

confidence intervals for each point on our CRDs with

FIG. 6. Percentage of stations receiving a spread–skill relation-

ship by projection. Results for 2-m temperature (Temp) and 2-m

dewpoint (Dew).

FIG. 7. As in Fig. 6, but for daytime maximum temperature (‘‘Max

T’’) and nighttime minimum temperature (‘‘Min T’’).
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the bootstrap technique described above. The CRDs

confirmed that the BC-Sorted forecasts were unreli-

able; the individual points often differed significantly

from the diagonal reference line (Figs. 9a–c). The BC-

Sorted curves did however cross the diagonal reference

line near the 0.5 percentile point, indicating the bias

correction successfully relocated the center of the PDFs.

Therefore, underdispersionmost likely caused the poor

reliability. For each projection, the Spread-Adjustment

(Figs. 9d–f) and Spread-Skill (Figs. 9g–i) cumulative

frequency curves were close to the diagonal reference

line.

We also computed the continuous ranked probability

score (CRPS; Matheson and Winkler 1976; Unger 1985;

Hersbach 2000) which is the continuous analog of

the ranked probability score (Epstein 1969). CRPS is a

negatively oriented score that evaluates the resolution

and reliability of the forecasted CDF. Figure 10a shows

the 2-m temperature CRPS for BC-Sorted, Spread-Skill,

and Spread-Adjustment. For all methods, the CRPS

values were quite similar. To test statistical significance

we used a bootstrap technique. We computed the CRPS

for each of the 18 months in our independent sample.

Using each monthly result, we computed the difference

FIG. 8. Boxplot probability integral transform (PIT) histograms comparing (a)–(c) BC-Sorted, (d)–(f) Spread-Adjustment, and (g)–(i)

Spread-Skill forecasts. The whiskers are the 95% confidence interval for the bin height.
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between Spread-Skill and Spread-Adjustment, and the

difference between Spread-Skill and BC-Sorted. The

difference was computed as the comparison method

minus Spread-Skill, thus, since CPRS is negatively ori-

ented, positive (negative) values imply Spread-Skill

was better (worse). We sampled the 18 monthly dif-

ferences 10 000 times with replacement and computed

the 95% confidence interval for the difference in means.

At most projections, the difference between Spread-Skill

and Spread-Adjustment was not statistically significant

(Fig. 10b). In contrast, Spread-Skill was significantly

better than BC-Sorted at all projections (Fig. 10c).

c. Spread-error verification diagrams

To further test the calibration, we grouped 2-m tem-

perature forecasts with similar predicted spread and

computed the corresponding standard error of ensemble

mean MOS forecast. If the forecast spread was cali-

brated, then on average the standard deviation of the

predicted PDF should match the standard error of the

FIG. 9. Cumulative reliability diagrams (CRD) comparing (a)–(c) BC-Sorted, (d)–(f) Spread-Adjustment, and (g)–(i) Spread-Skill

forecasts. The 95% confidence interval for each point is shown in red.
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ensemble mean MOS forecast (Van den Dool 1989;

Grimit and Mass 2007; Eckel et al. 2012). Such spread-

error verification diagrams are shown in Fig. 11 for the

120-h, 2-m temperature forecast. We present both an

overall spread-error verification diagram constructed

using the 335 stations, as well as three single-station di-

agrams. For each figure, the standard deviation of the

forecasted PDF is plotted along the abscissa while the

standard error of the verified ensemble mean MOS

forecast is plotted along the ordinate. The data points

were formed by grouping cases with similar predicted

spread into equal case count bins. For the overall dia-

gram (Fig. 11a) there were approximately 43 000

forecast cases per bin while for the single-station di-

agrams (Figs. 11b–d) there were approximately 130. For

each bin, we computed the 95% confidence interval for

the ensemble mean MOS forecast standard error by

comparing the estimated value with the critical values of

a chi-squared distribution.

In Figs. 11a–d, Spread-Skill forecasts are shown in red,

Spread-Adjustment forecasts are shown in blue, and BC-

Sorted forecasts are shown in green. In each figure, if

there is a spread–skill relationship, the points will spread

along the abscissa and form a positively sloped curve. If

the spread–skill relationship is weak, the points will either

tightly cluster along the abscissa or the slope of the curve

may be close to zero. In all cases, the points should fall

along the dashed diagonal reference line if the forecast

spread is calibrated.

Examining Fig. 11a, we observe that all three tech-

niques produced a spread–skill relationship. The BC-

Sorted spread–skill relationship was underdispersive

and poorly calibrated; the dashed diagonal reference

line is outside the 95% confidence interval for each

point. In contrast, Spread-Skill and Spread-Adjustment

were better calibrated. In agreement with the PIT dia-

grams, the Spread-Adjustment points fell to the right of

the reference line suggesting overdispersion while the

FIG. 10. (a) Continuous ranked probability score (CRPS) for Spread-Skill, Spread-Adjustment,

and BC-Sorted 2-m temperature forecasts. Testing the difference in means between (b) Spread-

Adjustment and Spread-Skill and (c) BC-Sorted and Spread-Skill forecasts. The dashed lines are

95% confidence intervals.
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Spread-Skill points were to the left, suggesting under-

dispersion.

Since Fig. 11a presents station-pooled results it does

not guarantee the spread–skill relationships were well

calibrated at individual stations. Therefore, we also

constructed station-specific diagrams, three of which we

show in Figs. 11b–d. Typically, we found that the BC-

Sorted performed worst while Spread-Skill was best. In

addition, we found Spread-Skill produced greater day-to-

day spread variability, compared to Spread-Adjustment,

which is apparent because the points were more widely

distributed along the abscissa.

To quantify the reliability and strength of the spread–

skill relationship at individual stations, we created two

verification scores. We computed the first, which we call

the spread-error reliability score, by finding the squared

difference between the ensemble mean MOS forecast

standard error and the predicted standard deviation

for each bin. We summed the results for all bins and

then took the square root. The score was computed in-

dividually for each station and then averaged over all

stations. The score is negatively oriented and measures

how closely the predicted spread matched the observed

standard error.

FIG. 11. Spread-error verification diagrams for (a) 335 stations and (b)–(d) select individual stations. Spread-Skill is

plotted in red, Spread-Adjustment in blue, and BC-Sorted in green. The error bars are the 95% confidence intervals

for each point estimate.
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The second score measures day-to-day spread vari-

ability. At each station, we created a histogram of the

predicted spread from all the cases in our sample and

computed the histogram interquartile range. We aver-

aged the interquartile ranges for all stations and dubbed

this metric the spread-error resolution score. The score

is positively oriented; larger values indicate greater day-

to-day spread variability, and perhaps, a greater ability

to distinguish between low and high forecast confidence.

We used a bootstrap technique to build confidence

intervals for both scores. We randomly sampled from

the total set of possible verification dates with replace-

ment 10 000 times. For each iteration, we computed the

spread-error reliability and spread-error resolution

scores as outlined above with the random date list. We

sorted the results to find the 95% confidence interval.

In terms of the spread-error reliability score, Spread-

Skill and Spread-Adjustment forecasts were more reli-

able than BC-Sorted forecasts (Fig. 12a). Here we

overlay the 95% confidence intervals in black. The

Spread-Skill and Spread-Adjustment scores were not

significantly different between 6 and 72 h. Spread-Skill

was better between 72 and 192 h; however, after 192 h

Spread-Adjustment was better. Both Spread-Skill and

Spread-Adjustment were significantly better than BC-

Sorted at all projections.

Examining the spread-error resolution score (Fig.

12b), we found that BC-Sorted had the greatest spread

variability, but as we showed previously, the spread was

uncalibrated. The Spread-Skill spread variability was

around twice that of Spread-Adjustment, and as we

demonstrated, the spread was well calibrated. For all

methods, the 95% confidence intervals indicated the

differences were statistically significant.

5. Discussion

This study described recent modifications to the

EKDMOS statistical postprocessing technique. We

explained how we improved the technique by including

a spread–skill relationship within the multiple linear

regression framework. Our new EKDMOS statistical

FIG. 12. (a) Spread-error reliability score and (b) spread-error resolution score. Spread-Skill is

plotted in red, Spread-Adjustment in blue, and BC-Sorted in green.
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model was fit in two stages. First, we generated ensemble

mean-based MOS equations with forward screening

multiple linear regression. Second, to produce flow-

dependent spread variability, we created spread–skill

relationships that model the predictive standard error as

a function of the ensemble member standard deviation.

We used square root variable transformations to im-

prove the linearity between ensemble mean accuracy

and ensemble spread, and fit the spread–skill relation-

ship with a one-term linear regression equation. When

applied to 3 years of operational NAEFS forecasts, the

technique produced statistically consistent probabilistic

forecasts.

The EKDMOS methodology presented here re-

sembles other postprocessing methods, such as NGR,

because we explicitly include a spread–skill relationship

in the statistical model. In the case of NGR, the statis-

tical model is fit with an iterative technique that mini-

mizes the CRPS. In contrast, the EKDMOS statistical

model is fit via two closed-form regression steps. Since

the EKDMOS spread–skill relationship is a one-term

regression equation, the relationship could be derived

from accumulated information and incorporated into an

updateable MOS system such as the one proposed by

Wilson and Vallée (2002). Thus, we could train the

statistical model with large samples but only have to

retain a small dataset.

We did not attempt to unequally weight the ensemble

members when fitting the MOS equations. Rather, we

developed separate MOS equations for each ensemble

system and later joined the equally weighted MOS

forecasts with kernel density fitting. From an operational

perspective, this approach is desirable in case an ensemble

member is missing for a given day, or if one of the oper-

ational models undergoes a major change that requires

redeveloping theMOS equations. However, weighting

could be readily incorporated into the technique. For

example, Bayesianmodel averaging (Raftery et al. 2005)

or mean absolute error (MAE)-based (Woodcock and

Engel 2005) weights could be applied to the ensemble

MOS forecasts prior to kernel density fitting.

The PIT histograms, CRDs, and CRPS results sug-

gested that there was little difference in calibration be-

tween Spread-Skill and Spread-Adjustment. In contrast,

the station-specific spread-error verification diagrams

and accompanying spread-error reliability and spread-

error resolution scores demonstrated that Spread-Skill

was in fact superior. The Spread-Skill forecasts were

comparable to the original Spread-Adjustment tech-

nique in terms of calibration but produced a much

greater range in day-to-day predicted spread. Thus, the

Spread-Skill forecasts better discriminate between low

and high forecast-confidence situations.

The verification results we presented were for 2-m

temperature cool season forecasts. We have also suc-

cessfully used the EKDMOS technique to postprocess

dewpoint, daytime maximum temperature, and night-

time minimum temperature in both the warm and cool

seasons. Preliminary work suggests the technique may

also be used for probabilistic apparent temperature fore-

casts and other reasonably normally distributed elements.

NAEFS-based EKDMOS forecasts have been oper-

ationally implemented on the NCEP Central Comput-

ing System (CCS) beginning with the 1200 UTC 29 May

2012 run of the NAEFS. The current implementation

uses a slightly different method to fit the spread–skill

relationship described by Veenhuis and Wagner (2012).

A future update to EKDMOS will use the methodology

from this study. Currently, EKDMOS produces fore-

casts at 2303 stations from the 0000 and 1200UTC run of

the NAEFS. The station-based forecasts are analyzed to

2.5-km grids covering the CONUS and Alaska with the

BCDG technique (Glahn et al. 2009b). Station-based

and gridded GRIB2 forecasts for 2-m temperature, dew-

point, daytime maximum, and nighttime minimum

temperature are available online (http://www.mdl.nws.

noaa.gov/;naefs_ekdmos/). Future implementations of

EKDMOS will include probabilistic guidance for addi-

tional elements.
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