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1. INTRODUCTION 
 

The National Weather Service’s Meteorolo-
gical Development Laboratory (MDL) has developed 
a technique called Updatable Bayesian Model 
Averaging (UBMA) that combines multiple numerical 
weather prediction (NWP) forecasts into a single 
probabilistic consensus.  Our technique is based on 
the Bayesian Model Averaging (BMA) method 
proposed by Raftery et al. (2005).  Our technique, 
however, is easier to implement operationally, and 
despite its simplicity, creates accurate and reliable 
consensus forecasts. 

 
Like the original BMA formulation, we dress 

each model with a probabilistic kernel and combine 
the kernels to create a calibrated probability 
distribution.  The kernel shape depends on the 
climatological distribution of the element being 
postprocessed.  For each model, the kernel location 
is determined by the bias corrected model forecast, 
while the kernel scale is controlled by the model’s 
performance over a recent training period.  More 
skillful models are given a more pronounced kernel 
and will ultimately have a stronger influence on the 
final forecast. 

 
To implement BMA, we must estimate the 

kernel parameters for each model.  Raftery et al. 
(2005) originally used the Expectation Maximization 
(EM; Dempster el al. 1977) algorithm.  In operations 
however, the EM algorithm may be problematic for 
several reasons.  Since the EM algorithm is iterative, 
the entire training set must be kept on hand which 
may not be feasible, especially when training to a 
high resolution gridded analysis.  Likewise, Hamill 
(2007) demonstrated that the EM algorithm may 
overfit the training data if only a short training 
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period is used.  Overfitting causes unstable para-
meter estimates and poor performance when the 
algorithm is applied to independent data. 

 
Instead of the EM, we use a decaying 

average algorithm that continuously updates the 
parameters based on recent performance.  The 
specific details of our approach are explained below 
along with verification. 
 
2. METHODOLOGY                         
 

As mentioned previously, we must estimate 
a set of model-specific kernel parameters.  The 
details of the parameters depend on the chosen 
kernel shape.  Here, we use a normal kernel, which is 
appropriate for elements such as temperature.  The 
final BMA forecast probability density function (PDF) 
can then be expressed as 
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Here the term N(t|fk,σ) is the value of a normal 
density at point t with mean fk and standard 
deviation σ.  The term wk is the weight for model k 
and K is the total number of models in the system.  
Thus, the probability that the temperature t takes 
any particular value is equal to the weighted sum of 
the probability from each model-specific kernel.  We 
should note, if certain models are substantially more 
skillful, it may be advisable to estimate a unique 
standard deviation σ for each model. However, we 
have found estimating a single σ is adequate for the 
models we have tested. 
 

To create probabilistic forecasts with (1) we 
must find a set of model-specific weights and an 
appropriate value for σ.  For this work, we estimate a 
unique set of weights and standard deviations for 
each station, element, and time projection.  In 
general, our computations closely follow Raftery et 
al. (2005); however, we use a decaying average 
algorithm to fit the parameters rather than the EM 
algorithm.  Note that BMA assumes each model 



forecast has been bias corrected prior to fitting the 
kernel parameters.  Here, we apply a simple 
decaying average bias correction to each model 
which is similar to the algorithm used by Cui et al. 
(2012). 

 
We initialize the system by equally 

weighting each model and set the standard 
deviation equal to standard error of the ensemble 
mean forecast over the preceding 30 days.  Each 
day, a new observation arrives which we use to 
verify previously made forecasts and adjust the 
weights and standard deviation accordingly. To 
begin the update we compute 
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Here   
 

 can be interpreted as an instantaneous 

estimate of the weight for model k at time j based 
on how well the model predicted the single 
observation x.  The superscript j denotes the present 
time, while j-1 indicates values from the last time we 
ran the algorithm.  So, w

j-1
 and σ

j-1
 are the older 

parameter estimates we seek to update. 
 

The term fk is the bias-corrected forecast for 
model k.  The function N(x|fk,σ

j-1
) is the height of a 

normal distribution with mean fk and standard 
deviation σ

j-1
 at the observation x.  This term is 

multiplied by the weight w
j-1

 which is our previous 
estimate for that model’s weight.  In essence, we are 
examining each bias-corrected model forecast and 
computing how much probability that model -- along 
with its kernel -- gave to the observation that 
actually occurred.  A model that gave a high 

probability will be rewarded with a larger   
 
 

value.  The term in the denominator normalizes the 

values so the   
 
 values for all models sum to unity. 

 
The instantaneous weights from (2) are 

quite noisy from day-to-day because even an 
inaccurate model may occasionally make the best 
forecast.  Therefore we use a decaying average 
algorithm to smooth the instantaneous weight 
estimates as follows 
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where the latest stable estimate of the weight   
 
 is 

equal to the previous estimate multiplied by 1 minus 
the decaying weight α plus the instantaneous 

estimate   
 
 multipled by α.  We have found an α 

value of 0.05 works well and indicates that ~95% of 
the training is determined by the previous 60 days. 
 

Recall we must also find a value for the 
standard deviation in (1).  Our strategy is similar to 
that for updating the weights however the specific 
computations are different.  Each day, when a new 
observation arrives we compute 
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where   
 
 is our latest estimate of the weight for 

model k and x is the observation that verifies the 
bias-corrected forecast fk.  The term s

j
 can be viewed 

as an instantaneous estimate of the standard 
deviation parameter. Again, we use a decaying 
average algorithm to find a stable σ

j
 estimate  
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where we use the decaying weight β to combine our 
instantaneous estimate s

j
 with the previous estimate 

σ
j-1

.  A value of 0.05 for β has been found to work 
well. 
 

We use the algorithm sketched above to 
maintain reasonable estimates of the weights and 
standard deviation in (1).  In our operational 
implementation, when the latest model runs are 
available and ready for postprocessing, we create a 
UBMA probabilistic consensus forecast by dressing 
each model with the appropriate kernel and 
evaluating (1) to create the forecast PDF.  To actually 
distribute the probabilistic information, we compute 
several points along the cumulative distribution 
function (CDF) by integrating the PDF.  We also 
compute and distribute the weighted mean forecast 
and the standard deviation of the PDF. 

 
3. VERIFICATION RESULTS 
 

To test the UBMA algorithm, we created a 
consensus probabilistic MOS product by combining 
MDL’s MOS guidance from the GFS, NAM, ECMWF, 
and EKDMOS (an ensemble-based product derived 
from the NAEFS; Glahn et al. 2009, Veenhuis 
2013).  We applied the technique to station-based 
forecasts at 335 stations distributed throughout the 
CONUS, Alaska, Hawaii, and Puerto Rico.  We 
generated station-based UBMA forecasts for 2-m 
temperature for the 6-hr to 192-hr projections valid 
every 6 hours.  The algorithm was initialized 



1 October 2011, and forecasts evaluated over the 
period from 1 November 2011 to 31 March 2012.  
Decaying average bias correction has been shown to 
improve the accuracy of MOS forecast (Glahn 2014) 
and was applied to each MOS product prior to 
running the UBMA algorithm. 

 
Figure 1 shows the mean absolute error 

(MAE) of the 2-m temperature forecasts for each 
individual MOS product, as well as the UBMA 
consensus mean.  UBMA was always slightly more 
accurate than the best individual MOS product for all 
projections. 

 
To judge the statistical reliability of the 

UBMA forecasts we created cumulative reliability 
diagrams (CRD; Fig. 2).  CRDs are similar to the more 
familiar reliability diagrams; however, here the 
probabilities are cumulative from below.  If the 
probabilistic forecasts are reliable, the points should 
fall along the diagonal reference line which indicates 
the predicted cumulative probability matched the 
observed frequency.  At both projections the UBMA 
forecasts were well calibrated. 

 
We have also applied UBMA to the Short 

Range Ensemble Forecast (SREF) system.  Specifically 
we used UBMA to calibrate the spread of upper air 
temperature and layer thickness forecasts.  These 
products give a reliable estimate of the forecast 
uncertainty associated with thermal profile of the 
atmosphere and help forecasters determine 
precipitation type. 

 
The SREF contains 21 members but only 3 

separate model cores.  Members with the same core 
should have the same skill and bias characteristics, 
therefore we only estimated 3 distinct weights (one 
for each core) and a single standard deviation.  We 
used the North American Mesoscale (NAM) Data 
Assimilation (NDAS) gridded analysis as our proxy for 
truth.  We interpolated both the SREF forecasts and 
the NDAS to stations and applied a simple decaying 
average bias correction prior to UBMA.  We 
initialized the algorithm 15 November 2012 and 
evaluated the performance over the period 15 
December 2012 to 10 February 2013. 

 
For brevity, we only present results for 850-

hpa temperature from the 0900 UTC cycle of the 
SREF.  Figure 3 shows the continuous ranked 
probability score (CRPS) which is a negatively 
oriented score that verifies the predicted CDF.  The 

UBMA CRPS was lower than that obtained by 
forming a CDF from the raw members.  Probability 
integral transform (PIT) histograms comparing the 
raw members to UBMA at the 48-hr projection are 
shown in Figure 4.  The raw members were 
underdispersed while the UBMA forecasts were 
much more reliable. 

 
We produce SREF-based UBMA guidance in 

real-time on an experimental basis. The UBMA 
products and additional documentation are available 
online at: 
http://www.mdl.nws.noaa.gov/~BMA-SREF/ 
BMAindex.php 

 
4. CONCLUSIONS 
 

MDL has developed a technique called 
Updateable Bayesian Model Averaging (UBMA) 
which creates statistically reliable probabilistic 
consensus forecasts from multiple inputs.  UBMA is 
similar to the BMA technique proposed by Raftery et 
al. (2005) but uses a decaying average algorithm to 
update the statistical model parameters rather than 
an iterative algorithm.  UBMA is easier to implement 
operationally because less data must be retained for 
training.  For example, to calibrate an operational 
global model we must only store previous model 
forecasts for 16 days (assuming the model is 
integrated to 384-hr) but can effectively train to a 
much longer sample size by choosing a small 
decaying weight. 

 
Despite the algorithm’s simplicity, we have 

shown UBMA can improve forecast accuracy and 
reliability.  The UBMA consensus MOS forecasts 
were more accurate than any individual MOS 
product.  Likewise, UBMA-calibrated SREF forecasts 
were more reliable than the raw ensemble.  

 
A limitation of UBMA and BMA in general is 

that the technique can only increase the ensemble 
spread which may be problematic if the raw 
ensemble is overdispersed.  We have also only used 
UBMA to calibrate normally distributed elements 
such as temperature.  Future work should explore if 
UBMA or a similar technique can be applied to non-
normal elements such as wind speed or precipitation 
amount. 
 
 
 
 

http://www.mdl.nws.noaa.gov/~BMA-SREF/BMAindex.php
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Fig. 1.  Mean absolute error (MAE) for the individual MOS products and for the UBMA consensus. 
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Fig. 2.  Cumulative reliability diagrams (CRD) for the 48-hr (a) and 102-hr (b) 2-m UBMA temperature forecasts. 
  



 
Fig. 3.  Continuous ranked probability score (CRPS) comparing the skill of the raw members (red) to the UBMA 
forecasts (blue). 
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Fig. 4.  Probability integral transform (PIT) histograms comparing the reliability of the raw members (a) to that of 
the UBMA forecasts (b). 


