Improving Gridded Localized Aviation MOS Program (LAMP) Guidance by Using Emerging Forecast and Observation Systems

Judy E. Ghirardelli, Jerome P. Charba, Jung-Sun Im, Fred G. Samplatsky, Runhua Yang*, Andrew J. Kochenash**, Bob Glahn

National Weather Service Meteorological Development Laboratory

* NOAA affiliate, IM Systems Group, Inc.

** NOAA affiliate, Wyle, Inc.

Special Symposium on Model Post-processing and Downscaling

95th AMS Annual Meeting Phoenix, AZ January 7, 2015

Outline

- LAMP Convection, Lightning, Ceiling Height and Visibility: Background and Challenges
- Newly available datasets available to meet the challenges
- Preliminary verification of merging LAMP with HRRR for visibility
- Future work

Localized Aviation MOS Program (LAMP) Background

- LAMP is a system of objective analyses, simple models, regression equations, and related thresholds which together provide guidance for sensible weather forecasts
- LAMP acts as an update to MOS guidance
- LAMP bridges the gap between the observations and the MOS forecast
- LAMP outperforms persistence in the early period and trends towards MOS at the end of the period
- LAMP guidance covers the short-range period of 1- 25 hours
- Runs every hour in NWS operations

LAMP: Convection and Lightning Guidance

- Lightning Predictand: at least 1 Cloud to Ground (CG) lightning strike in a 2-hr period
- Convection Predictand: at least 1 CG lightning strike in a 2-h period and/or radar reflectivity of ≥ 40 dBZ
- Equations are developed on a grid
- The guidance is produced on a grid and interpolated to stations for inclusion in LAMP text bulletin

LAMP: Ceiling Height and Visibility Guidance

- The LAMP Ceiling and Visibility predictands are METAR observations, valid at stations
- The equations are developed at stations
- The guidance is produced at stations and analyzed to a grid

Current Challenges

LAMP Convection and Lightning:

- Aviation community needs increased spatial and temporal resolution in the very short term
- LAMP has no development/dissipation except via NAM/GFS predictors
- LAMP can be slow to pick up on Convection Initiation

LAMP Ceiling Height and Visibility:

Aviation community needs good gridded ceiling and visibility guidance

for: NWS forecasters - Digital Aviation Services; FAA – NextGen

- Too few (< 3,000) METAR station observations to adequately cover the CONUS grid; no mesonet data
- No observations of ceiling and visibility in the Atlantic or Pacific, some observations in the Gulf of Mexico

Ceiling height and visibility are very discontinuous fields

New Datasets

- Total Lightning (TL) data:
 - TL archive consists of in-cloud (IC) and cloud-to-ground (CG) flashes
 - Data provided by Earth Networks, Inc. (ENI)
 - Expect TL data to become operationally available to NWS in 2015
- Multi-Radar/Multi-Sensor System (MRMS) radar data:
 - Data provided by National Severe Storms Laboratory (NSSL)
 - Raw data has resolution ~ 1 km every 2 min
 - Operational in the NOAA/NWS Integrated Dissemination Program (IDP) - September 2014
- High Resolution Rapid Refresh (HRRR) model data:
 - Available on a 3 km grid, produced hourly in 1-hr time steps to 15 hours
 - Data provided by NOAA/ESRL/Global Systems Division
 - Operational on the NOAA/NWS Weather and Climate Operational Supercomputing System (WCOSS) - September 2014

ENI Mean Daily Flash Counts

Flash counts in 10-km grid boxes Warm season* (Apr – Sep) 2013-2014

CG Lightning

Total Lightning

~6.2 times more TL than CG lightning

* Warm seasons: 6/4/2013 - 9/30/2013; 4/1/2014 - 9/30/2014

MRMS Relative Frequencies* (RF) ≥ 40 dBZ Warm season* (Apr – Sep) 2013-2014

- RF of maximum Composite Reflectivity ≥ 40 dBZ in a 10-km gridbox at HH:00, where HH = 00, 01, 02, ..., 23 UTC (combining all hours of each day)
- Additional Quality Control needed and in progress

Approaches to improve Gridded LAMP guidance

LAMP Convection and Lightning:

	Current predictand/predictors	New predictand/predictors
Replace	RCM radar data	MRMS radar data
Replace	CG lighting	Total Lightning
Add		HRRR model output as a predictor

- LAMP Ceiling Height (CIG) and Visibility (VIS):
 - Develop regression equations to statistically merge: LAMP + HRRR

Improving LAMP CIG & VIS: HRRR Verification

Initial Verification:

- Verified at:
 - 1562 CONUS LAMP stations; 314 CONUS non-LAMP stations
 - Warm season (April Sept. 2013) and cool season (Oct. 2013– Mar. 2014).
 - 00 UTC LAMP vs 23 UTC HRRR;
 - 12 UTC LAMP vs 11 UTC HRRR

Results:

- ➤ HRRR had better Threat Scores (TS) than LAMP for VIS after the beginning period at LAMP stations at 00 UTC, and in general, much better scores at non-LAMP stations
- >HRRR showed less improvement over LAMP for CIG and in the 12 UTC comparison, even at non-LAMP stations
- HRRR had higher biases than LAMP at the lower visibility categories

Improving LAMP CIG & VIS: Regression Equation Development

- Regression Analysis:
 - First focus on visibility
 - Predictand Data: METAR Observations
 - Predictor Data: LAMP and HRRR VIS forecasts
 - Data Sample: Cool season development Oct. 2013 Mar.
 2014
 - 4 months for dependent data
 - 2 months for independent data
 - Generalized Operator Approach → many cases
 - Equations developed for 00 UTC:
 - o LAMP+HRRR Regression:
 - Using LAMP Cumulative Probabilities + HRRR Cumulative Binaries only

Improving LAMP Guidance: Summary

- Challenges still to overcome:
 - Only one season and cycle tested; short sample
 - Need to grid the regressed LAMP+HRRR forecasts and look at cases
 - Need to blend 1-14-hr Regressed LAMP+HRRR with LAMP/Gridded LAMP after 14 hours

• Plans:

- Convection & Lightning: Redevelopment using new datasets of TL, MRMS radar, and HRRR (FY15)
- Storm Tops: New Gridded Sto Top guidance using new datasets (FY16)
- Ceiling and Visibility:
 - Preliminary results show that post-processing HRRR and LAMP together yields very encouraging results (see forthcoming AMS extended abstract for more information).
 - Improvement expected at stations and on the grid from developing second order LAMP+HRRR Regression equations (visibility: FY15; ceiling height: FY16)

Questions?

LAMP Web site: http://weather.gov/mdl/lamp

Email: Judy.Ghirardelli@noaa.gov