

CURRENT STATUS AND PLANS FOR THE LOCALIZED AVIATION MOS PROGRAM (LAMP)

FOR AVIATION FORECASTING*

Judy E. Ghirardelli¹, Jerome P. Charba¹, Fred G. Samplatsky¹, Michael Allard¹, Gordana Sindic-Rancic¹, Bob Glahn¹, Chenjie Huang², Andrew J. Kochenash², and Adam D. Schnapp² ¹NOAA/NWS/OSTI/MDL ²NOAA affiliate, KBRwyle, Inc.

A.42

Background

- LAMP provides objective forecast guidance for the aviation community
- LAMP is produced hourly in NWS operations
- LAMP uses the most recent surface observations to bridge the gap between the observations and the MOS forecast
- LAMP provides station-based guidance of sensible weather, including ceiling height and visibility, out 25 hours for 1678 stations in the CONUS, AK, HI, and Puerto Rico
- Gridded LAMP (GLMP) provides gridded guidance for:
 - Lightning (at least one CTG ltg strike)
 - Convection (at least one CTG strike and/or radar reflectivity of at least 40 dBZ)
 - 2-m Temperature
 - 2-m Dewpoint
 - Ceiling Height
 - Visibility
 - **Sky Cover** Wind Speed & Dir
 - Wind Gusts
 - Ceiling Probabilities
 - Visibility Probabilities

Jun. 2016!!

Oct. 2015!!

New:

New:

 Improvements to LAMP/GLMP have been achieved via incorporation of data from the High Resolution Rapid Refresh (HRRR) model, Multi-Radar/Multi-Sensor System (MRMS) data, and Total Lightning (TL) data from Earth Networks, Inc. (ENI)

Examples of New GLMP Guidance Elements:

Examples of New GLMP Guidance Elements:

Prob Ceiling < 1000 ft

Prob Visibility < 3 mi

LAMP Ceiling & Visibility (C&V)

Improvement Approach

- Statistically Blending LAMP data with HRRR data → LAMP+HRRR Meld
- Regression Analysis:
 - Predictand Data: METAR Observations
- Predictor Data:
- LAMP Cumulative C&V Probabilities
- Computed probabilities from previous 3 HRRR runs
- Observations
- Generalized Operator Approach → many cases

GLMP Meld Example: Ceiling < 1000 feet

Meld Case Example for Ceiling

Verification

LAMP Convection & Lightning *

Improvement Approach

- Predictand Definitions:
 - Lightning: One or more total lighting (TL) flashes
 - Convection: MRMS reflectivity 40 dBZ or higher and/or one or more total lighting (TL) flashes
- Statistically Blending:
 - MRMS observed and advected grids
 - Total Lightning observed and advected grids
 - HRRR Model Output
 - GFS MOS and NAM MOS
- Development details:
- 1-h valid periods instead of 2-h periods
- Probabilities produced on 10-km grid

Contribution of Predictors:

- Obs predictors dominate from 1 - 4 hrs
- HRRR predictors dominate from 4 - 17 hrs
- GFS and NAM MOS probability predictors dominate from 15 - 25 hrs

Convection Case Example

Future Work

- Update station lists to add new stations to LAMP
- Redevelop LAMP station-based T/D/Winds/Ceiling/Vis
- Produce LAMP rapidly updating C&V every 15 mins 0-2
- Develop GLMP via the "Meld" approach for additional elements such as 1-h PoPs and precipitation type

Schedule

- GLMP Probabilistic C&V Grids: Added Jun. 2016
- LAMP/HRRR/MRMS C&V and Convection & Lightning implementation: Planned Mar. 2017
- LAMP rapidly updating C&V: Planned Jun. 2017
- Updating station list and redevelop LAMP station-based T/Td/W/C/V: Planned Dec. 2018

Conclusions

- LAMP ceiling and visibility:
- Post-processing HRRR and LAMP together yields improved guidance
- Improvement expected at stations and on the grid from second order LAMP+HRRR Meld equations
- LAMP convection and lightning:
- Improved via incorporation of HRRR, MRMS, TL
- Increased spatial and temporal resolution

Contact: Judy.Ghirardelli@noaa.gov * See poster A.41 for more information