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ABSTRACT

AutoNowcaster (ANC) is an automated system that nowcasts thunderstorms, including thunderstorm

initiation. However, its parameters have to be tuned to regional environments, a process that is time

consuming, labor intensive, and quite subjective. When the National Weather Service decided to explore

using ANC in forecast operations, a faster, less labor-intensive, and objective mechanism to tune the

parameters for all the forecast offices was sought. In this paper, a genetic algorithm approach to tuning

ANC is described. The process consisted of choosing datasets, employing an objective forecast verifi-

cation technique, and devising a fitness function. ANC was modified to create nowcasts offline using

weights iteratively generated by the genetic algorithm. The weights were generated by probabilistically

combining weights with good fitness, leading to better and better weights as the tuning process proceeded.

The nowcasts created by ANC using the automatically determined weights are compared with the

nowcasts created by ANC using weights that were the result of manual tuning. It is shown that nowcasts

created using the automatically tuned weights are as skilled as the ones created through manual tuning. In

addition, automated tuning can be done in a fraction of the time that it takes experts to analyze the data

and tune the weights.

1. Introduction

High quality nowcasts of thunderstorms have the po-

tential to be a tremendous benefit to the general public.

Properly integrated as a critical impact factor into man-

agement of this country’s air space, they could help reduce

the lengthy air traffic delays commonly experienced

during the spring and summer in the United States.

According to economic statistics published by theNational

Oceanic and Atmospheric Administration (NOAA; in-

formationonline atwww.weather.gov/com/2004_economic_

statistics1.pdf), 70% of air traffic delays are attributed to

weather.

Since 2006, the National Weather Service (NWS), in

collaboration with the National Center for Atmospheric

Research (NCAR), has been testing an automated system

for nowcasting thunderstorms at the Dallas/Fort Worth

Weather Forecast Office (WFO), hereafter referred to

as FWD. The system, known as AutoNowcaster (ANC;

Mueller et al. 2003; Wilson and Mueller 1993; Wilson
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et al. 1998) was also recently installed at the Melbourne,

Florida, WFO.

ANCuses a fuzzy logic algorithm based on conceptual

models of storm initiation, storm growth, and storm

dissipation. The system assimilates a variety of datasets

to analyze characteristic features of the atmosphere as-

sociated with prestorm environments, and to produce

60-min nowcasts of storm initiation, growth, and dissi-

pation. These analyses include evaluation of convective

instability, moisture convergence, and trigger mecha-

nisms to produce interest fields (Table 1) that are used as

inputs into the fuzzy logic algorithm. The interest fields

used in the storm initiation algorithm are converted into

dimensionless likelihood fields using fuzzy membership

functions. These likelihood fields have a dynamic range

from 21 to 1 with increasing positive values used to

indicate regions of increasing likelihood of storm initi-

ation. The various likelihood fields are weighted using

values determined by human experts, and the weighted

likelihood fields are summed to produce a combined

likelihood field that is then filtered and smoothed. Re-

gions with values greater than 0.7 in the combined fil-

tered and smoothed likelihood field are indicative of

storm initiation in the next 60 min. An example of an

ANCnowcast of convective initiation is shown later (see

Fig. 2c). For a detailed description of the AutoNow-

caster system, the reader is directed to Mueller et al.

(2003) and Wilson and Mueller (1993).

Forecasters guide ANC by drawing boundaries along

which convection is anticipated and by selecting a con-

vective regime such as cold front or dryline. For each

regime it is possible to have a different set of predictor

fields, membership functions, and weights.

ANC uses an idealized conceptual framework to tune

the weights of the various interest fields used to nowcast

storm initiation for each convective regime. The tuning

is done manually using a limited set of cases by visually

examining results for each regime to determine if the

predictor fields are applicable or in need of adjustment.

The time required for an expert to visually inspect the

nowcasts and up to 17 different predictor fields for a

representative sample of data for each regime makes

manually tuning ANC impractical. Additionally, it is un-

realistic to assume that an expert will be able to come up

with the optimum set of weights because convective

initiation is fairly complex and representative datasets

are relatively large.

The NWS is currently exploring a concept of op-

erations for ANC with the goal of providing valuable

thunderstorm nowcasts to the aviation community and

the public. To enable deployment of ANC nationwide,

an automatic way of tuningANC is necessary. In the rest

of this paper, we describe the development of an auto-

mated tuning mechanism for ANC. This approach de-

scribed here may be applicable to the tuning of other,

multiparameter, complex systems for operational uses.

TABLE 1. Descriptions of the different ANC nowcast interest fields, their spatial resolutions (Dx and Dy in km), sizes (Nx 3Ny pixels),

the update rate (Dt in min), themaximum amount of time in the past fromwhich they can be retrieved to generate a nowcast (Tmax inmin).

The check marks (Ps) indicate ANC convective weather regimes in which the parameter is an input. The weather regimes are cold front

(CF), dryline (DL), mesoscale convective system (MC), mixed (MX), pulse storm (PS), and stationary–warm front (SW). It can be noted

that four of the interest fields (areas along human-denoted boundaries, lifting area associated with colliding boundaries, vertical motion

along boundaries, and steering flow relative to boundaries) are directly related to forecaster-drawn boundaries: these tend to be very

important.

Resolution, grid size, and timing Convective weather regime

Interest field Dx Dy Nx Ny Dt Tmax CF DL MC MX PS SW

CAPE 20 20 55 55 60 195 P P P P P
CIN 20 20 55 55 60 195 P P P P P P
Likelihood of frontal zone 20 20 55 55 60 195 P P P P P P
Relative humidity 20 20 55 55 60 195 P P P P P
Gradient of u� 20 20 55 55 60 195 P
Instability 1000–700 mb 20 20 55 55 60 195 P P P P P
Vertical velocity 700 mb 20 20 55 55 60 195 P P P P P
Surface mass convergence 10 10 400 400 5 20 P P P P P P
Lifting index 10 10 400 400 5 20 P P P P P P
Areas along human-denoted boundaries 2 2 360 330 6 14 P P P P P
Lifting area (colliding boundaries) 2 2 360 330 6 14 P P P P P P
Vertical motion along boundaries 2 2 360 330 6 14 P P
Steering flow relative to boundary 2 2 360 330 6 14 P P P P P P
Cloud-top temperature 1 1 1100 820 15 70 P P P P P P
Cloud-free areas 1 1 1100 820 15 70 P P P P P P
Areas with cumulus and congestus clouds 1 1 1100 820 15 70 P P P P P P
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Genetic algorithm

A genetic algorithm (Goldberg 1989) is a search-and-

optimization technique that is built to mimic the process

of Darwinian evolution by modeling processes such as

inheritance, mutation, selection, and crossover. Genetic

algorithms have been widely used in meteorology to find

breakpoints of fuzzy functions (Lakshmanan 2000), to

validate dispersion models (Haupt et al. 2006), to opti-

mize mesoscale models (O’Steen and Werth 2009), and

to find consensus forecasts from ensembles (Roebber

2010; Bakhshaii and Stull 2009).

Where genetic algorithms excel over traditional op-

timization techniques is in their ability to handle non-

differentiable error functions. Optimization techniques

based on gradient descent, for example, require that

the error function be a differentiable function of the

parameters to be tuned. Thus, gradient descent is a work-

able solution for backpropagation single-layer neural

networks where the error function is often a least squares

error and each prediction is a weighted sum of trans-

formed inputs with the transformation being an easily

differentiated function such as a logistic exponential

function. Genetic algorithms have no such restriction.

They can easily handle error functions that are nonlinear,

noncontinuous, and even completely unknown functions

of their inputs. This makes genetic algorithms a particu-

larly good choice to tune a ‘‘black box’’ system that only

exposes a few tunable parameters.

In a genetic algorithm, the search is carried out in

parallel, with a fixed number of potential solutions eval-

uated at each step. These potential solutions are termed

chromosomes, the iterations are called generations, and

the group of chromosomes at a generation is called a

population. Thus, a genetic algorithm consists of finding

better and better populations of chromosomes after

each generation. The chromosomes themselves consist

of ‘‘genes,’’ which are the tunable parameters. Instead of

an error function being minimized, the formulation is in

terms of the chromosome’s ‘‘fitness’’ being maximized.

In our genetic algorithm (GA), the weights (in the

range 0 to 1) of the different ANC predictor variables

are the genes. All the weights of all the predictor variables

together form the chromosome. Although it is conceiv-

able that the GA can also be used to tune the breakpoints

of the fuzzy membership functions, we did not do so.We

retained ANC’s ‘‘factory’’ settings for the membership

functions, and changed only the weights of the predictor

variables in order to attain good nowcasts for all of the

training cases. Also, although it is possible to tune the

weights for all the nowcasts produced by ANC, we

concentrate in this paper on the nowcast of convective

initiation.

A genetic algorithm improves the fitness of a pop-

ulation by applying Darwinian selection principles to

create the population at the next generation. The pop-

ulation at the next generation consists of chromosomes

that are formed mostly by crossing over a pair of chro-

mosomes at the current generation. Since the chromo-

somes are essentially just a list of tunable parameters,

crossover involves merely choosing some parameters

from the first chromosome and the remaining parame-

ters from the second one. This choice of parameters is

done randomly so that different children of the same

pair of chromosomes could be different. Optimization

occurs because of how the pair of chromosomes is cho-

sen: the best-fit individuals are chosen probabilistically;

that is, if we imagine a pie divided into slices, one for

each chromosome, the size of the slices is directly pro-

portional to the fitness of the chromosome (see Fig. 1a).

FIG. 1. (a) In a genetic algorithm, chromosomes are chosen probabilistically with better-fit

chromosomes more likely to be chosen. The numbers represent the fitness of the chromosome

corresponding to the slice. (b) Crossover involves creating a new chromosome that contains the

first part of the chromosome of one parent and the second part of the chromosome from an-

other parent. The split point is chosen randomly. The numbers here represent the parameters

being tuned (in our case, the weights of each of the interest fields). (c) Mutation involves

creating a new chromosome by modifying one of the genes of a parent chromosome.
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Thus, when a pair of chromosomes is randomly chosen,

higher-fit individuals are more likely to be chosen, with

the likelihood given by the fitness of the chromosome

relative to the average fitness of its generation. These

two chromosomes are then crossed over (i.e., some

genes selected from one chromosome and others from

the other chromosome; see Fig. 1b) to yield a new chro-

mosome whose fitness can be calculated.

Although crossover is the main mechanism by which

the next population of chromosomes is formed, a few

other evolutionary principles are added because it has

been shown (Goldberg 1989) that inheritance, mutation,

and diversity improve the performance of a genetic

algorithm. Some individuals are formed not by cross-

ing over a pair of chromosomes from the previous

generation, but by simply copying over a well-fit in-

dividual from the previous generation (‘‘inheritance’’).

As a special case of inheritance, the best-fit member of

a population is always retained in the next generation, so

as not to lose the best parameters discovered during the

search. Mutation is carried out by taking a crossed-over

or inherited chromosome and slightlymodifying some of

its genes (see Fig. 1c). This enables the search space to

be locally expanded. The average fitness of a population

converges rapidly when successive populations are car-

ried out using the evolutionary paradigm. However,

there is no guarantee that this convergence is to a global

optimum. Therefore, it is usually worthwhile to keep the

search space as wide as possible, to take advantage of the

parallel local search afforded by a genetic algorithm.

Thus, in addition to choosing chromosomes probabilis-

tically based on fitness, a diversity penalty is added so

that the size of the slice in the probability pie decreases

once a chromosome has been chosen from it. Finally,

because the genetic algorithm is guaranteed to con-

verge, but not even to the local maxima, we periodically

carried out simulated annealing (Metropolis et al. 1953),

a local search and optimization technique, around the

population to push each member of the population to its

local maximum. Because of this, one sees all the chro-

mosomes in the population pushed to the local maxi-

mum at any generation where simulated annealing is

carried out (see Fig. 4).

In our genetic algorithm implementation for this

study, we initialized the population by randomly gen-

erating the chromosomes. Each population consisted of

200 chromosomes. The crossover probability was 0.7,

the mutation probability was 0.005, and 75% of the

population was randomized after simulated annealing,

which was carried out every 10 generations. The genetic

algorithm process was carried out until the fitness im-

provement was below 0.001 for 30 generations or for 100

generations.

2. Method

Over the past few years, scientists at NCAR, in close

collaboration with FWD, have collected case studies

to be used for tuning ANC. The case studies cover the

primary convective regimes that affect north Texas

during the course of a normal convective season. Some

of these cases, as well as the data collected during a

5-week intensive operations period conducted at FWD

by the NWS’s Meteorological Development Laboratory

(MDL) between 19 April and 23May 2010, were used in

this study. The cases studied are classified per convective

regime and human involvement with ANC as shown in

Table 2.

Prior to the implementation of ANC at FWD, the sys-

tem was running with only one set of fuzzy logic rulesets.

The system was modified to allow the forecaster to select

one of the multiple logic rulesets that are tailored to

different synoptic regimes typically experienced in Texas.

Currently, the system is implemented with six convec-

tive regimes: the default regime referred to as the mixed

regime, cold front, dryline, stationary–warm front, pulse

storm, and advecting mesoscale convective system. The

mixed regime served as the basis for the development of

the rulesets for all the other regimes. The mixed regime

is selected when the forcing of convection is unclear or

a variety of forcing possibilities is expected within the

domain.

a. Forecast verification

A critical element to iteratively tuning ANC is to de-

termine whether, with a new set of weights, the system’s

nowcasts are improved. This is determined by running

TABLE 2. The nowcast dates and times used in this study, subdivided

by ANC convective weather regime.

Regime Date Time (UTC)

CF 27 Aug 2006 1400–2100

13 Jul 2008 1900–2200

15 Jul 2008 1900–2300

DL 24 Apr 2007 1600–2300

31 Mar 2008 1700–2300

14 May 2010 0400–1800

MC 30 Apr 2007 0400–2300

30 Jul 2008 2000–2300

31 Jul 2008 1900–2300

MX 21 Jul 2007 0700–2300

1 Aug 2007 1700–2300

8 Oct 2007 1300–2300

PS 12 May 2007 1700–2300

3 Sep 2007 1300–2300

8 Jul 2008 1700–2300

SW 2 May 2007 0100–2300

6 May 2007 1000–2300

27 May 2007 0100–2300
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ANC with the new set of weights and comparing the

resulting nowcast fields with ground truth (i.e., with

what actually happened 60 min later).

Comparing the forecast field with ground truth is

known as forecast verification and is an extensively

researched issue in meteorology. Sophisticated methods

of forecast verification are needed because straight-

forward pixel-to-pixel measures of error suffer from a

double-penalty issue whereby forecasts are unduly pe-

nalized for displacement errors. Many of the methods

of forecast verification that have been proposed in the

literature can be broadly categorized (Gilleland et al.

2009) into filtering-based methods that operate on the

neighborhood of pixels (e.g., Ebert 2009), displacement-

based methods that rely on features (e.g., Davis et al.

2006), and displacement methods that rely on field de-

formation (e.g., Keil and Craig 2007). Newer methods

such as that of Lakshmanan and Kain (2010) blur these

categories somewhat, as does the verification method

described in this paper.

We need to determine whether ANC’s nowcast of

convective initiation over the next 60 min is correct.

This is harder than verifying, say, precipitation forecasts

because there is no direct observation of initiation.What

we do have are radar reflectivity images that cover

ANC’s domain (see Fig. 2). Images 60 min apart have to

be examined to find where new convection has hap-

pened. We do this by warping the past observation to

best align it with the current observation, using a cross-

correlation optical flow method (Barron et al. 1994;

Wolfson et al. 1999) to determine the warp. Essentially,

this involves finding a smooth motion field based on the

two images and then advecting the second grid back-

ward to align it with the first. Once the two images have

FIG. 2. (a) Radar observation at 1715 UTC 14 May 2010. The domain is centered on the DFW WSR-88D (KFWS) and (b) the radar

observation 1 h later. (c) The 60-min initiation nowcast at 1715 UTC by manually tuned ANC and (d) the 60-min initiation nowcast at

1715 UTC by autotuned ANC.
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been aligned, pixels that were below the convective

threshold (we used 35 dBZ to fit with ANC’s definition

of convection) that are now greater than the convective

threshold are considered to be convective initiation.

However, such a direct pixel-to-pixel match would lead

to too many pixels on the boundaries of storms being

marked as having initiated. Therefore, we searched in

a 53 5 neighborhood (approximately 5 km3 5 km) and

considered a pixel above the convective threshold as

having initiated only if there was no above-threshold

pixel in the 53 5 neighborhood of this pixel. Using such

a distance threshold provides some leeway for small

errors in the motion estimate. Thus, the formulation of

our truth field involved both warping and neighborhood

processing.

After aligning the pair of images, we classified each

pixel of the radar image into one of these categories:

d new convection, where the pixel in the second image is

above the convective threshold and there is no pixel in

a 53 5 neighborhood of this pixel in the (aligned) first

image that is above the convective threshold;
d ongoing convection, where the pixel in the second

image is above the convective threshold but there is at

least one pixel in a 53 5 neighborhood of this pixel in

the (aligned) first image that is above the convective

threshold; and
d not convective, where the pixel in the second image

is not above the convective threshold. In Fig. 3c, we

show four categories, but decayed convection is lumped

in with not convective for purposes of verification

since our scoring will treat them the same way.

This field created by aligning the pair of images and

classifying the pixels is termed the verification field.

Once the verification field has been created from

pairs of radar reflectivity images spaced 60 min apart,

a nowcast of convective initiation can be compared

against the verification field valid for the time of the

nowcast. To do this, we create a contingency table (Wilks

1995) considering every grid point of the nowcast field

and classify each pixel in the domain into one of these

categories:

d do not care—a pixel that is ongoing convection in the

verification field is classified as being one that we do

not care about; ANC was neither penalized nor re-

warded for categorizing ongoing convection as convec-

tive initiation (CI);
d hit—the nowcast pixel is CI and there is new convection

in the verification field within a 5 3 5 neighborhood;
d false alarm—the nowcast pixel is CI but there is no

new convection in the verification field within a 5 3 5

neighborhood;

d miss—the pixel in the verification field is new convec-

tion and no nowcast pixel in a 5 3 5 neighborhood is

CI; and
d null—none of the above categories.

Once the hits, misses, false alarms, and nulls are de-

termined, the contingency table is complete and can be

used to compute a skill score.

FIG. 3. (a) Radar observation at 1715 UTC 14 May 2010 (detail

from Fig. 2a; the location of the radar is marked as KFWS).

(b) Radar observation 1 h later. (c) Verification field created by

warping the image at 1715 UTC and looking for new convection.

The purple shades show decayed convection, reds are ongoing

convection, and yellow is new convection.
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b. Fitness function

The best ANCweights are those weights that produce

good nowcast skill across a diverse set of training cases.

Consequently, the skill score was computed in two ways:

on a single-nowcast basis and on the training set as a

whole. The critical success index (CSI; Donaldson et al.

1975), for example, was computed in twoways: by taking

into account the hits, misses, and false alarms for all the

pixels in a single nowcast and by taking the hits, misses,

and false alarms for all the pixels in all the nowcasts.

The fitness score was defined as

f 5 0:3CSIall 1 0:3CSIavg 1 0:3CSImin1 0:1HSSall ,

(1)

where

CSI5
hits

hits1misses1 false_alarms
(2)

and CSIall is computed by considering the hits over all

the pixels in all the training cases while CSIavg and

CSImin refer to the average and minimum of the CSI

computed for each of the nowcasts used for training.

While it is possible for the CSIall to be high just by get-

ting a few of the training cases right, the use of CSIavg
and, especially, CSImin rewards the genetic algorithm for

choosing weights that work well on all the training cases.

The CSI is used even though its shortcomings are well

known [see Marzban (1998) for a discussion] because it

was the measure of performance used in earlier valida-

tion studies of ANC. The CSI by itself is inappropriate

for genetic algorithm training because chromosomes

with extremely bad parameters will result in CSIs of zero

(all of which have no hits) and hence it is not possible

to rank the chromosomes at the beginning of the train-

ing cycle (when we start with a population of random

chromosomes). Therefore, we incorporated the Heidke

skill score (HSS; Heidke 1926) into our fitness function.

The HSS is defined as

HSS5
2(nulls)(hits-misses)(false_alarms)

(false_alarms1 hits)(false_alarms1 nulls)1 (nulls1misses)(misses1hits)
(3)

and is used so that the nulls play a small role in the

verification measure. Since the CSIs are weighted sig-

nificantly higher, the HSS contributes mostly when CSI

is near zero. In such situations, the relative number of

false alarms and nulls play a factor in the ranking of

chromosomes because of the HSS.

c. Data

The data used to tune ANC came from an archival

store of ANC-generated nowcast interest fields kept at

NCAR. The geographical area covered by the data in-

cludes FWD; the range of dates spanned by the data is

27 August 2006–14 May 2010. This domain was chosen

because it provides a convenient way to compare the

results of automated tuning with the performance of

ANC tuned by human experts (Nelson et al. 2005).

Part of the role of the forecaster in ANC is to choose

the convective weather regime and to indicate where

boundaries are present. ANC convective weather re-

gimes were selected during the days of the forecasts by

the forecasters at FWD. The convective weather regimes

that ANC allows for selection are cold front (CF), dry-

line (DL), mesoscale convective system (MC), mixed

(MX), pulse storm (PS), and stationary–warm front

(SW). It is important to note that the MX regime is

meant to be selected when a forecaster either cannot

identify the mode of convection or cannot select a

clearly dominantmode of convection frommultiplemodes

that are present.

Each of ANC’s convective weather regimes is pa-

rameterized by the set of nowcast interest fields that are

thought to play the greatest roles in the development of

convective initiation in that regime. Table 1 provides a

description of these interest fields and shows in which

regimes each field is a parameter.

Because the input fields differ in spatial resolution,

every field is interpolated to the smallest, highest-

resolution grid among the set of fields, that is, to the

common area covered by all the inputs (1-km resolution

covering FWD’s domain). Temporally, ANC allows for

the fact that fields may not be calculated at their ex-

pected frequency. For example, failed network con-

nectivity to the raw data servers could prevent model

output from being available for more than 1 h. In such

circumstances, ANC uses the closest-in-time prior fields

that it can retrieve within allowed, field-dependent max-

ima of time. Table 1 shows these time-retrieval maxima. If

it so happens that a field is both not currently available

and not retrievable within the maximum allowed time in

the past, no nowcast is generated.

Exploratory tuning scenarios were investigated in

order to determine the optimal methodology to use
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for conducting this study. The final methodology is as

follows.

(i) The dates of interest were divided into groups; each

group represented those dates for which one and

only one ANC convective weather regime was

considered to be present.

(ii) For each date within a group, nowcast times were

chosen solely from the time frame of convective

initiation or, if that time frame was not available,

from the time frame of active weather.

(iii) From the selected time frame, the nowcast times

that both (a) obeyed the relation HH 1 15 min #

nowcasttime,HH1 30 min, where HH indicates

the top of the hour of the nowcast, and (b) were the

earliest times at which all of the fields were avail-

able, and none of the fields needed to be retrieved

from a prior hour, were chosen. Thus, for any given

HH, only a single nowcast time was selected (if at

all). The above restrictions are considered valid

because multiple exploratory tuning scenarios that

differed solely with respect to the number and time

distribution of nowcasts in an hour yielded sufficient

evidence to conclude that, for the purpose of tuning

ANC automatically, only one nowcast per hour was

necessary, and nowcasting at or shortly after the first

quarter-hour would allow for the latency at which

real-time model nowcasts are available.

It is important to note that methodology elements

one through three guarantee neither an equal

number of nowcast dates per convective weather

regime nor an equal number of nowcast times per

date. The latter consequence is considered unim-

portant. However, the former consequence bore on

the need to have as consistent a methodology as

possible across regimes. The process of tuning

requires not only nowcast dates and times with

which to tune but also nowcast dates and times to

use for independent testing of the tuning’s results.

Thus, two further restrictions were placed.

(iv) For each regime, only three nowcast dates were

used for tuning.

(v) For each regime, three tuning scenarios were run.

Each scenario used two of the three nowcast dates

for tuning; the third date was used as the indepen-

dent control.

The final sets of nowcast dates and times per ANC

convective weather regime are shown in Table 2.

For verification purposes, the radar reflectivity field

closest in time to the nominal time of the nowcast (i.e.,

60 min from the nowcast time) was used. The time dis-

crepancy between the nowcast field and the verification

was never more than 7 min.

The interest fields and verification fields were pro-

vided to the genetic algorithm that ran ANC to create

a variety of nowcasts, one for each chromosome in the

population. Based on the fitness of each set of weights

(chromosomes), the next population was created through

an evolutionary algorithm. At each generation, the pop-

ulation increased in fitness, as shown in Fig. 4. The fittest

chromosome after the genetic algorithm converged was

chosen as the final set of weights, hereinafter referred to as

the automatically tuned weights.

3. Results

Table 3 summarizes the results from the three tuning

scenarios for each convective weather regime. For each

scenario, both the nowcast dates used for tuning and the

corresponding control date are shown. Alongside these

is recorded the final overall fitness of the tuning dates’

nowcasts generated by the best-fit regime weights calcu-

lated by the genetic algorithm software. For the purpose

of comparing the prior, subjectively tuned, regime-specific

weights with the objectively tuned, regime-specific weights

output by the genetic algorithm software, the final overall

fitness of the control date’s nowcasts was calculated using

both sets of weights. The results of these calculations are

also shown in Table 3. The run time of each scenario is

also noted. All of the tuning scenarios were run on aDell

PowerEdge R710 server with 32 GB of memory; two

FIG. 4. The GA iteratively tries different weights to improve the

fitness. The solid line shows the fitness of the best member at each

generation while the dotted line shows the means of the fitness

values at each generation as training progresses. The sawtoothed

nature of the graph is a result of the periodic use of simulated

annealing to perform a local search around each member.
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2.93-GHz, hyper-threaded, dual-core Intel Xeon X5570

CPUs; and running the CentOS operating system.

From Table 3, it is clear that, for the CF, DL, and

MC regimes, the objectively tuned weights yield better

nowcasts than do the subjectively tuned weights. As

measured by the fitness values, the range of improve-

ment is between 5% and 110%. The MX, PS, and SW

regimes yielded mixed results. For the MX regime, only

one-third of the scenarios appear to yield better nowcasts

using the objectively tuned weights. Also, compared to

the fitness of the tuning dates’ nowcasts, there is a huge

dropoff in the fitness of the second scenario’s control

date’s nowcasts for both the subjectively and objectively

tuned weights. Such a dropoff is an indication, however,

that the control date’s data are rather unique and, as

such, should be included in the training dates, thus in-

creasing the size of the dataset. It appears that using just

two training cases is not enough for the mixed mode,

since this category captures a wide variety of ‘‘unclas-

sifiable’’ modes. The PS and SW regimes are similarly

constrained; more training cases are needed to capture

the full diversity of weather scenarios in these regimes.

A goal of this study is to investigate the sensitivity of

the MX regime’s weights to the modes of convective

initiation, that is, to determine whether or not a properly

tuned MX regime’s weights could be used to generate

statistically good enough nowcasts for every regime rather

than needing to have specific weights for each regime.

A driving force behind this avenue of investigation is

the idea that, were ANC to be deployed for nationwide

use, being able to use a single set of convective initiation

weights would be a welcome simplification. Noting again

that the selection of the MX regime by a nowcaster in-

dicates either an undetermined (singular) mode of con-

vection or an indeterminate dominant mode of convection

among multiple modes, it is to be understood that, un-

like the other regimes considered in this study, the MX

regime is not pure. Rather, it represents an amalgam-

ation of the other regimes and, as such, cannot neces-

sarily be tuned in the same manner. With reference to

Table 3’s firstMX regime scenario, it is entirely possible,

for example, that the dominant mode of convection on

the tuning dates was a dryline, whereas the dominant

mode of convection on the control date was a cold front.

It could be the case, then, that the objectively tunedMX

weights for this scenario would not nowcast the control

date’s environment as well as the CF regime’s objec-

tively tuned weights would, because the tuning dates’

data would contain no CF-related signal. This leads to

the hypothesis that, by using a combination of the pure

regimes’ data and the MX regime’s data to tune the MX

regime, the resulting set of weights will nowcast the

environments of the pure regimes well enough that we

would not need those separate regimes’ sets of weights.

To test this hypothesis, additional tuning scenarios were

created and run.

The first such scenario used all of the MX regime’s

nowcast dates, the second and third of the CF regime’s

TABLE 3. The results of the three tuning scenarios for each ANC convective weather regime. Each scenario is characterized by the

nowcast dates used for tuning, the corresponding control date, the final overall fitness of the nowcasts used for tuning, the final overall

fitness of the corresponding control date’s nowcasts using both the subjectively tuned and objectively tuned regime-specific weights, the

improvement seen by using the GA, and the time taken by the GA to tune.

Regime Tuning dates Control date

Fitness Fitness of control date

(train) Human GA Df (%) Time (h)

CF 27 Aug 2006, 13 Jul 2008 15 Jul 2008 0.195 0.106 0.112 5 20

13 Jul 2008, 15 Jul 2006 27 Aug 2006 0.177 0.149 0.156 5 18

27 Aug 2006, 15 Jul 2008 13 Jul 2008 0.168 0.122 0.185 51 23

DL 24 Apr 2007, 31 Mar 2008 14 May 2010 0.184 0.112 0.144 28 21

31 Mar 2008, 14 May 2010 24 Apr 2007 0.179 0.142 0.155 9 25

24 Apr 2007, 14 May 2010 31 Mar 2008 0.168 0.155 0.184 19 21

MC 30 Apr 2007, 30 Jul 2008 31 Jul 2008 0.144 0.045 0.092 105 25

30 Jul 2008, 31 Jul 2008 30 Apr 2007 0.188 0.035 0.070 99 18

30 Apr 2007, 31 Jul 2008 30 Jul 2008 0.135 0.088 0.185 111 25

MX 21 Jul 2007, 1 Aug 2007 8 Oct 2007 0.153 0.130 0.139 7 27

1 Aug 2007, 8 Oct 2007 21 Jul 2007 0.174 0.063 0.031 251 24

21 Jul 2007, 8 Oct 2007 1 Aug 2007 0.141 0.174 0.149 214 27

PS 12 May 2007, 3 Sep 2007 7 Aug 2008 0.139 0.159 0.164 3 17

3 Sep 2007, 8 Jul 2008 12 May 2007 0.149 0.164 0.130 221 17

12 May 2007, 8 Jul 2008 3 Sep 2007 0.176 0.076 0.075 21 16

SW 2 May 2007, 6 May 2007 27 May 2007 0.142 0.046 0.083 82 27

6 May 2007, 27 May 2007 2 May 2007 0.147 0.034 0.046 36 42

2 May 2007, 27 May 2007 6 May 2007 0.137 0.111 0.099 211 38
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nowcast dates, the first and second of the DL re-

gime’s nowcast dates, the first and third of the MC

regime’s nowcast dates, and the first and third of the SW

regime’s nowcast dates in order to tune theMX regime’s

weights. In this manner, a control date remained for

all of the ‘‘pure’’ regimes. Those control date nowcasts

were then generated using 1) the subjectively tunedMX

weights, 2) the objectively tunedMXweights previously

found by using MX-only data, and 3) the objectively

tuned MX weights found by using the aforementioned

combination of MX and ‘‘pure’’ regime data. The final

overall fitness of these nowcasts was then calculated.

The overall magnitude of the CSI1 is quite low, but this

is a limitation not of the tuning method, but of ANC

itself. As noted in Wilson et al. (2010), present-day

nowcasting systems do not possess a sufficient level of

accuracy to disseminate the nowcast to users without

human oversight. Instead, they are meant to be em-

ployed as decision aids.

From Table 1 it may be noted that the MX regime

does not incorporate two of the nowcast interest fields

which are used in some of the ‘‘pure’’ regimes. Because

the MX regime could be used, however, at times in

which such fields might play a role, a second additional

tuning scenario was run. This scenario was set up exactly

as the first, except that the MX regime was tuned using

all of the nowcast interest fields. As before, the control

date nowcasts were generated using the resulting weights,

and the corresponding overall fitness value calculated.

In manual tuning, no interest field is allowed to be

weighted less than 0.08. The same criterion was applied

to the automated tuning as well. A third additional

training scenario was thus run, in which no field’s con-

tribution was allowed to fall below 0.08.

The results of these three additional scenarios are sum-

marized in Table 4. In general, the automatically tuned

MX weights generated by including all the pure regimes,

using MX-only nowcast fields, and allowing for weights

less than 0.08 result in the best pure regime-specific now-

casts. The exception is the CF regime where the manually

tuned MX weights perform marginally better.

TABLE 4. Different MX regime tuning scenarios applied to ANC’s pure weather regimes on the control dates. The final overall fitness

values of the control date nowcasts using both manual tuning and automatic tuning four different ways are shown. The best method of

tuning is highlighted in boldface.

Regime

Control

date

Automated tuning scenario

Fitness CSI

Tuning

data

Interest

fields Weights

Tuning

data

Interest

fields $0.08?

CF 27 Aug 2006 MX only MX only No 0.129 0.075

All MX only No 0.130 0.082

All All No 0.144 0.097

All MX only Yes 0.126 0.077

Manual tuning 0.146 0.103

DL 14 May 2010 MX only MX only No 0.123 0.056

All MX only No 0.155 0.099

All All No 0.125 0.052

All MX only Yes 0.130 0.054

Manual tuning 0.116 0.031

MC 30 Jul 2008 MX only MX only No 0.169 0.098

All MX only No 0.185 0.110

All All No 0.182 0.111

All MX only Yes 0.176 0.015

Manual tuning 0.096 0.018

PS 12 May 2007 MX only MX only No 0.171 0.091

All MX only No 0.191 0.126

All All No 0.184 0.107

All MX only Yes 0.180 0.107

Manual tuning 0.166 0.102

SW 6 May 2007 MX only MX only No 0.104 0.017

All MX only No 0.117 0.037

All All No 0.103 0.020

All MX only Yes 0.098 0.016

Manual tuning 0.109 0.024

1 The fitness function is dominated by the CSI.
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Comparing the results in Table 3 with those in Table 4

(details behind the CSI are listed in Table 5), it is clear

that the regime-specific weights in Table 3 are not al-

ways better than the one-size-fits-all weights created

using the MX regime. Indeed, it could be argued that by

making it unnecessary for the forecaster to choose a re-

gime, always using only the MX regime makes ANC

easier to use.

The weights of the different interest fields when

manually tuned, and as obtained from the automated

tuning systemusing theMXweights, are shown inTable 6.

We wish to caution that the relative values of the

weights of interest fields are poor proxies for the im-

portance of any interest field, since these interest fields

are highly correlated. One way to determine the relative

importance of a field is to leave it out, tune the system,

and check if there has been any resulting decrease in

performance. We did not do this, so it is not clear how

important any of these fields are. The zero weights

indicate that, in the training dataset, the information

content provided by an interest field was probably al-

ready present in some of the other fields. Experts tuning

ANC often attempt to have nonzero weights for each of

the fields; such a constraint is one that we will experiment

with in future work. It should also be realized that these

weights are a result of training using data from the warm

season; adding training cases from the cold season will

presumably also affect the applicability of these weights.

4. Summary

From Table 3, it can be determined that the average

run time for the regime-specific tuning scenarios is on the

order of 24 h, completely unattended. Thus, the amount

of time, labor, and cost required to create objectively

tuned, regime-specific weights is substantially less than

the amount of time (several weeks) that is needed to

create subjectively tuned, regime-specific weights. In

addition, these objectively tuned weights outperform

subjective tuning by human experts in nearly all cases

and can easily be rerun, once datasets and member-

ship functions are identified, for new interest fields.

Following the objective tuning mechanism used in this

paper will, thus, enable the easy rollout of ANC to the

large number of forecast offices envisioned by the Na-

tional Weather Service.

We wish to emphasize that the automation is purely in

terms of the one-time tuning of ANC weights. Forecast

input is critical in choosing the training cases for auto-

mated tuning. In routine operation of ANC, forecaster

input is critical in that forecaster-drawn boundaries are

a key interest field for ANC.

Also, in this paper, we limited the tuning to optimizing

the weights of the various interest fields used by ANC.

The interest fields themselves are created by applying

a fuzzy membership function to model-derived or ob-

served meteorological variables. Forecasters should ex-

amine the membership functions to ensure that they are

reasonable for the dominant weather modes in their re-

gion. Lin et al. (2012) suggest that the fuzzy membership

functions themselves can be designed objectively using

univariate conditional probabilities obtained from a long-

term archive of data. Forecasters should also consider

TABLE 5.Using regime-specific weights sometimes improves the performance ofANCover always using theMXweights, but it is not clear

cut. Hence, it is possible that WFOs might choose to let ANC always operate in MX mode.

Regime

Control MX weights Regime-specific weights

date Fitness CSI POD FAR Fitness CSI POD FAR

CF 27 Aug 2006 0.130 0.082 0.787 0.916 0.156 0.108 0.729 0.888

DL 14 May 2010 0.155 0.099 0.381 0.883 0.144 0.084 0.15 0.843

MC 30 Jul 2008 0.185 0.110 0.872 0.888 0.185 0.116 0.825 0.881

PS 12 May 2007 0.191 0.126 0.742 0.868 0.130 0.063 0.882 0.936

SW 6 May 2007 0.117 0.037 0.856 0.963 0.099 0.013 0.722 0.987

TABLE 6. A comparison of the weights obtained as a result of

manual tuning and as a result of automated tuning. The autotuned

weight is the result of tuning on data consisting of all the regimes

and using the MX regime (i.e., it is not regime specific).

Interest field

Manually tuned

weight

Autotuned

weight

CAPE 0.20 0.12

CIN 0.12 1.00

Convergence 0.10 0.72

Likelihood of frontal zone 0.22 0.00

Areas along human-denoted

boundaries

0.20 0.32

Cloud-top temperature 0.10 0.23

Lifting index 0.20 0.28

Lifting area (colliding boundaries) 0.12 0.35

Relative humidity 0.18 0.50

Cloud-free areas 0.40 0.51

Areas with Cu and CuC clouds 0.12 0.00

Boundary-relative steering flow 0.18 0.00

Instability 1000–700 mb 0.12 0.00

Vertical velocity 700 mb 0.08 1.00
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incorporating other predictor variables if these variables

could help diagnose thunderstorm initiation.

We suggest that operational forecasters use this pro-

cess to customize ANC to their forecast area:

(i) verify that the ANC predictor variables and mem-

bership functions are reasonable for the predomi-

nant weather modes in their region,

(ii) choose a set of cases that illustrate the weather

scenarios where gridded nowcast guidance would

be helpful,

(iii) draw boundaries to guide ANC (forecaster-drawn

boundaries are a key interest field for ANC), and

(iv) use the automated system described in this paper to

tune ANC weights in MX mode.

If it is found that ANC does not perform well in some

scenario, we suggest that the forecaster add that case to

the training dataset and retuneANC.We strongly caution

against manually tuning ANC’s weights. An automated

algorithmwill be better able to balance the predictor field

weights so as to obtain good performance on all the

situations used in training. Finally, we suggest that there

is little incentive to separate convective regimes, because

the one-size-fits-all MX weights perform just as well as

the regime-specific weights.
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