NWS Mobile, Alabama Wet Microburst Pre-Storm Evaluation Technique Performance Results during the Summer of 2006

Jeffrey M. Medlin NOAA-NWS Forecast Office Mobile, Alabama

ABSTRACT

Since 1998, the NWS in Mobile, AL has routinely assessed the daily risk of wet microburst occurrence. To more formally address the prediction issue this phenomena, a detailed examination of early Summer afternoon Eglin Air Force Base sounding data (1998-2004) was undertaken. Uniquely, the soundings sampled the troposphere during a period (1700-2100 UTC) of weak vertical wind shear (0-2 km, $\leq .003 \text{ s}^{-1}$), peak boundary layer mixing and thermodynamic instability prior to the deep convective release. Mean soundings were generated to operationally distinguish between wet microburst event and non-event days [see Medlin and Cullen (2006), *NWA Digest*, **Vol 30**, pp 61-67].

A performance assessment of a local wet microburst evaluation technique is presented. Eightythree forecasts were made in the 25 May-5 September 2006 period. For each day, points for each predictor (mixed-layer convective available potential energy, surface-freezing level lapse rate, surface-900 mb mean mixing ratio and precipitable water) were awarded as $[68\% (+/-1\sigma); 95\% (+/-2\sigma); and 99\% (+/-3\sigma);$ following the Empirical Rule in an assumed normal distribution] on a 0-5 point scale. The predictors were then linearly averaged to derive upon the daily risk. Based on the number of Severe Thunderstorm Warnings (SVRs), which were used a proxy for verification, the correlation coefficient (r^2) between the number of SVRs and the computed daily relative risk assigned by the evaluation technique point scale was significant at the 99% level (.4004 using n-2 = 81 degrees of freedom). r^2 values were also computed between the number of SVRs and the four main predictors themselves. With the exception of the surface-900 mb mean mixing ratio, each were found to be statistically correlated at the 95% or higher level.

Probability of Detection, False Alarm Ratio and the Critical Success Indices were computed for each risk category (i.e., Unlikely, Low, Moderate, High and Likely). Major findings include: (1) the Unlikely forecast was perfect; (2) only (2/13) Low Risk Category forecasts were missed (i.e., verified with at least one SVR issued); (3) (11/13) High Risk Category forecasts events were verified; (4) the upper half of the Moderate Risk Category verified roughly twice as many days (i.e., at least one SVR being issued), compared to (2/12) for the lower half.

Remaining tasks include: (1) closer examination of technique failures when precipitable water values are high (and correspondingly sfc-900 mb mean mixing ratio values), but yet, surface-freezing level lapse rates are more stable (accounted for too many false alarms in Moderate Risk Category); (2) detailed examination of case-by-case '*non-event bursts*' for High Risk Category; (3) use 2005-2006 data cases to update the 1998-2003 research results; (4) perform detailed ML- and MUCAPE validation studies while paying particular attention to distribution of moisture with height within the lower troposphere.