*title change based on Testbed/NWS/NHC feedback re: priorities

The Impact of the G-IV and Non-Standard G-IV flight patterns on TC Forecasts in HAFS*

PI: Sarah Ditchek^{1,2}

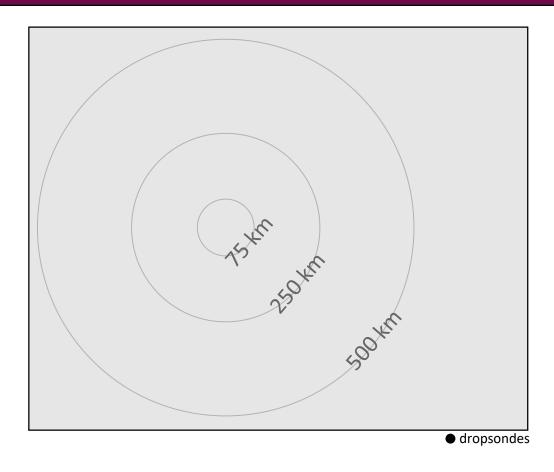
Collaborators: Ryan Torn³ & Lisa Bucci⁴

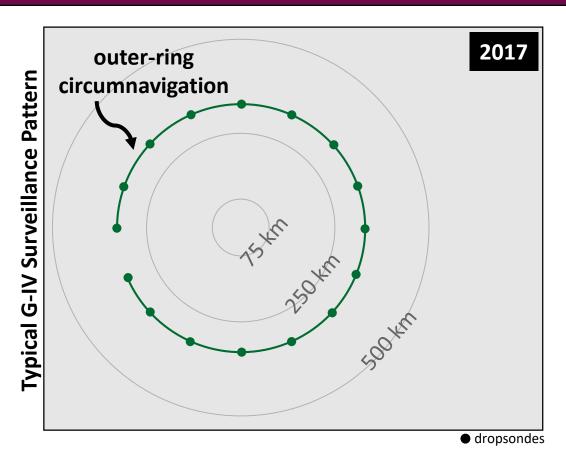
Testbed POCs: Wallace Hogsett⁴ & Jason Sippel²

NWS-Transition POCs: Wallace Hogsett⁴

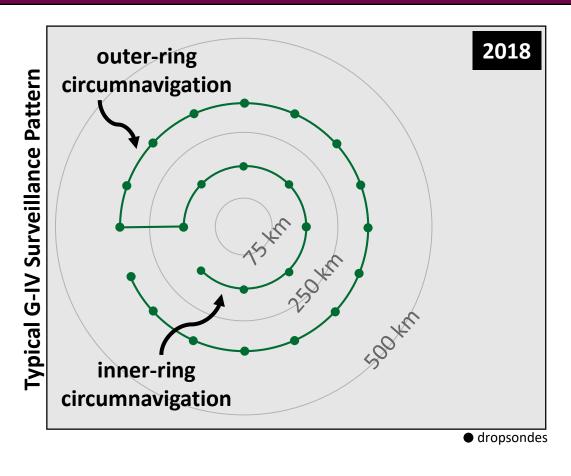
¹Cooperative Institute for Marine and Atmospheric Studies (CIMAS) | University of Miami (UM) ²Hurricane Research Division (HRD) | Atlantic Oceanographic and Meteorological Laboratory (AOML) ³Department of Atmospheric and Environmental Sciences | University at Albany, SUNY

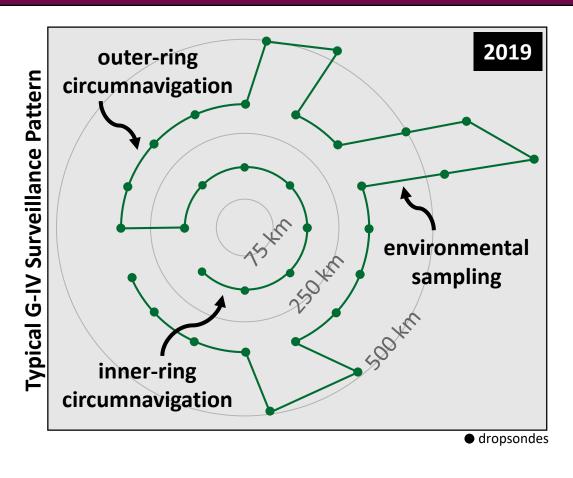
⁴National Hurricane Center (NHC)

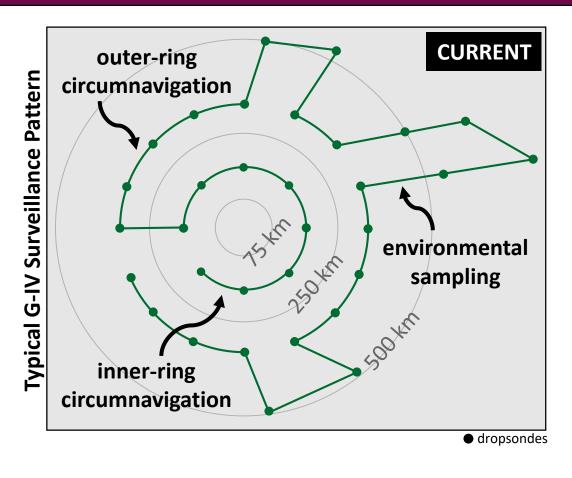


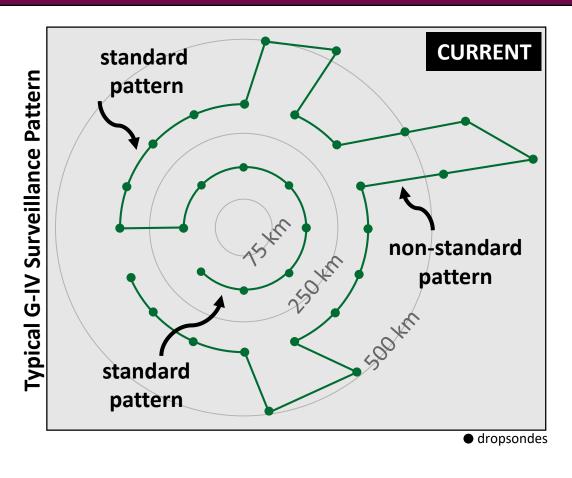

Funding: NOAA Award NA22OAR4590534

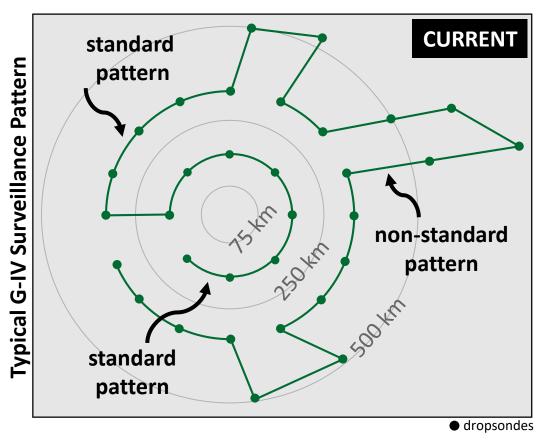
NOAA's Gulfstream IV-SP (G-IV) flight-track strategy changed in recent years.


NOAA's Gulfstream IV-SP (G-IV) flight-track strategy changed in recent years.


NOAA's Gulfstream IV-SP (G-IV) flight-track strategy changed in recent years.


NOAA's Gulfstream IV-SP (G-IV) flight-track strategy changed in recent years.


NOAA's Gulfstream IV-SP (G-IV) flight-track strategy changed in recent years.


NOAA's Gulfstream IV-SP (G-IV) flight-track strategy changed in recent years.

NOAA's Gulfstream IV-SP (G-IV) flight-track strategy changed in recent years.

NOAA's Gulfstream IV-SP (G-IV) flight-track strategy changed in recent years.

The impact of these changes on TC forecasts need to be quantified and ways to further optimize the strategy should be assessed!

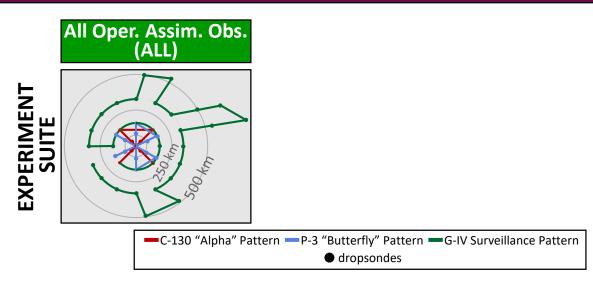
0

0

Project Plan Snapshot

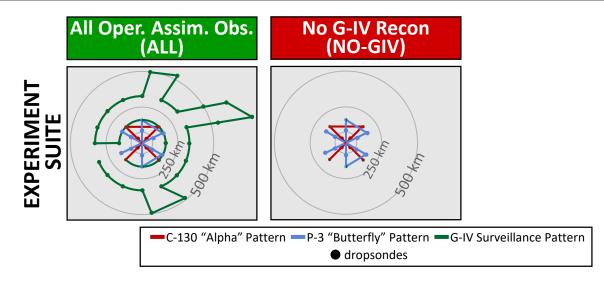
OBJECTIVE: To quantify the impact of the G-IV on TC forecasts of track, intensity, and significant wind radii by using HAFS to assess

1) the overall G-IV impact & 2) the impact of the non-standard G-IV flight pattern

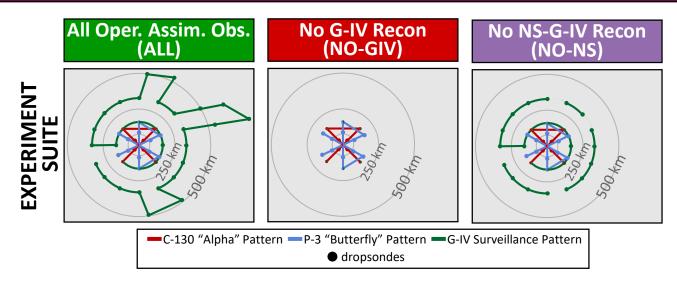

OBJECTIVE: To quantify the impact of the G-IV on TC forecasts of track, intensity, and significant wind radii by using HAFS to assess

1) the overall G-IV impact & 2) the impact of the non-standard G-IV flight pattern

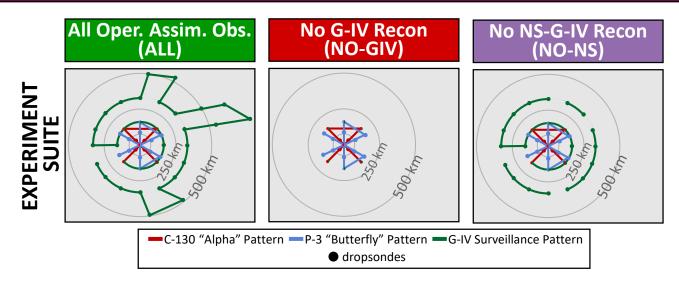
EXPERIMENT SUITE


OBJECTIVE: To quantify the impact of the G-IV on TC forecasts of track, intensity, and significant wind radii by using HAFS to assess

1) the overall G-IV impact & 2) the impact of the non-standard G-IV flight pattern

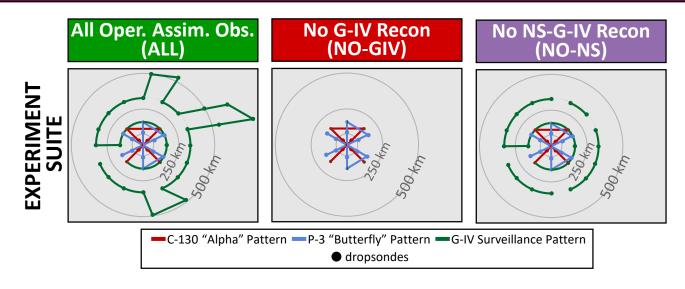

OBJECTIVE: To quantify the impact of the G-IV on TC forecasts of track, intensity, and significant wind radii by using HAFS to assess

1) the overall G-IV impact & 2) the impact of the non-standard G-IV flight pattern


OBJECTIVE: To quantify the impact of the G-IV on TC forecasts of track, intensity, and significant wind radii by using HAFS to assess

1) the overall G-IV impact & 2) the impact of the non-standard G-IV flight pattern

OBJECTIVE: To quantify the impact of the G-IV on TC forecasts of track, intensity, and significant wind radii by using HAFS to assess


1) the overall G-IV impact & 2) the impact of the non-standard G-IV flight pattern

EXPERIMENT SCOPE

OBJECTIVE: To quantify the impact of the G-IV on TC forecasts of track, intensity, and significant wind radii by using HAFS to assess

1) the overall G-IV impact & 2) the impact of the non-standard G-IV flight pattern

5	Year	TCs	Cycles	G-IV Missions
> ₾	2020	Isaias, Laura, Marco, Delta, Zeta, & Eta	249	22
	2021	Elsa, Henri, Ida, & Sam	175	10
	2022	Fiona, Ian, Nicole	107	13
Ä	3 years	<u>13 TCs</u>	531 cycles	45 missions

all TCs with tasked G-IV missions

0

0

Model Choice

0

*Available early/mid Feb 2023 – run by Andy Hazelton using GROOT

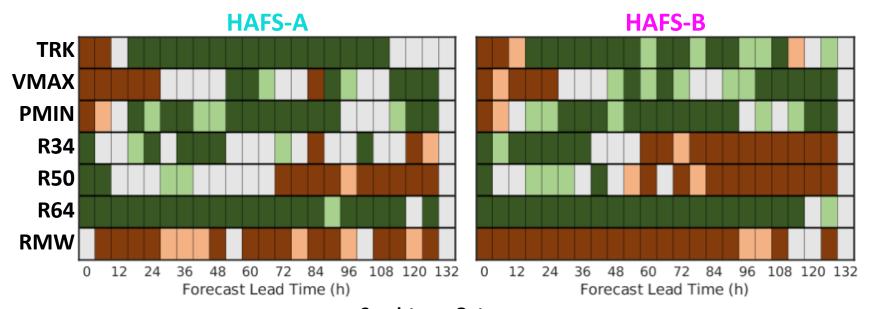
0

0

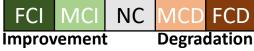
Model Choice

Reviewed* results from the HAFS IOC 2020-2022 retrospectives for both HAFS versions (HAFS-A & HAFS-B)

*Available early/mid Feb 2023 – run by Andy Hazelton using GROOT


0

0


Model Choice

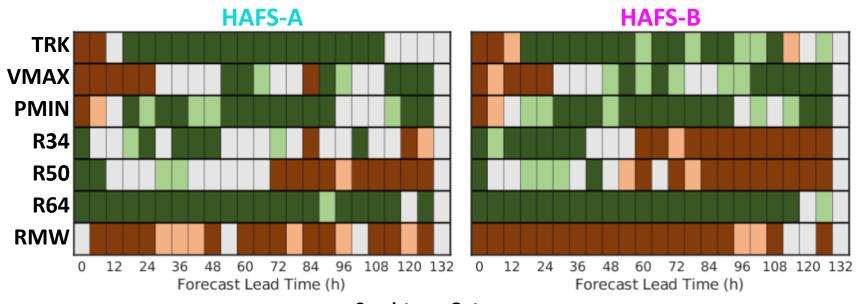
Reviewed* results from the HAFS IOC 2020-2022 retrospectives for both HAFS versions (HAFS-A & HAFS-B)

NATL CONSISTENCY SCORECARDS

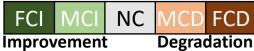
Consistency Outcome

Sample Sizes @ 0/126 h: 1050/217 (TRK, VMAX, PMIN, RMW), 1808/430 (R34), 987/376 (R50), & 630/245 (R64)

*Available early/mid Feb 2023 – run by Andy Hazelton using GROOT


0

0


Model Choice

Reviewed* results from the HAFS IOC 2020-2022 retrospectives for both HAFS versions (HAFS-A & HAFS-B)

NATL CONSISTENCY SCORECARDS

Consistency Outcome

HAFS-A will be used for this assessment.

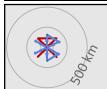
Sample Sizes @ 0/126 h: 1050/217 (TRK, VMAX, PMIN, RMW), 1808/430 (R34), 987/376 (R50), & 630/245 (R64)

0

Identified each cycle with a G-IV flight and recorded the timestamps of the segments of both standard and non-standard flight patterns.

Identified each cycle with a G-IV flight and recorded the timestamps of the segments of both standard and non-standard flight patterns.

ALL keep as is


Identified each cycle with a G-IV flight and recorded the timestamps of the segments of both standard and non-standard flight patterns.

ALL keep as is

NO-GIV

1) removed all G-IV dropsonde data & 2) removed all G-IV HDOB data

NO-GIV

0

Identified each cycle with a G-IV flight and recorded the timestamps of the segments of both standard and non-standard flight patterns.

ALL keep as is

NO-GIV

1) removed all G-IV dropsonde data & 2) removed all G-IV HDOB data

Dropsondes
1) untarred file, 2) removed all G-IV data, 3) retarred file

(tarred files) processed 140 files

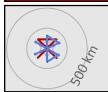
0

Identified each cycle with a G-IV flight and recorded the timestamps of the segments of both standard and non-standard flight patterns.

ALL keep as is

1) removed all G-IV dropsonde data & 2) removed all G-IV HDOB data Dropsondes (tarred files) 1) untarred file, 2) removed all G-IV data, 3) retarred file processed 140 files removed* all G-IV data from existing bufr files processed 536 files removed 48,277 G-IV observations across 116 files

*bufr-modification scripts provided by Kathryn Sellwood (CIMAS/AOML)


0

Identified each cycle with a G-IV flight and recorded the timestamps of the segments of both standard and non-standard flight patterns.

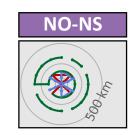
ALL keep as is

NO-GIV			
1) removed all G-IV dropsonde data & 2) removed all G-IV HDOB data			
Dropsondes 1) untarred file, 2) removed all G-IV data, 3) retarred file			
(tarred files)	processed 140 files		
HDOBs	removed* all G-IV data from existing bufr files		
	processed 536 files		
(bufr files)	removed 48,277 G-IV observations across 116 files		
TDR original data			
(bufr files)	will turn off G-IV obstype in HAFS namelist		

NO-GIV

*bufr-modification scripts provided by Kathryn Sellwood (CIMAS/AOML)

0


NO-NS: Remove Entire Non-Standard G-IV Pattern

0

NO-NS: Remove Entire Non-Standard G-IV Pattern

1) removed all NS G-IV dropsonde data
2) merged standard G-IV HDOB data with the new NO-GIV bufr files

0

NO-NS: Remove Entire Non-Standard G-IV Pattern

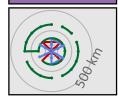
1) removed all NS G-IV dropsonde data
2) merged standard G-IV HDOB data with the new NO-GIV bufr files

Dropsondes 1) untarred file, 2) removed only the NS G-IV data, 3) retarred file (tarred files) processed 140 files

NO-NS

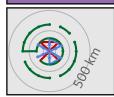
0

NO-NS: Remove Entire Non-Standard G-IV Pattern 1) removed all NS G-IV dropsonde data				
2) merg	2) merged standard G-IV HDOB data with the new NO-GIV bufr files			
Dropsondes	1) untarred file, 2) removed only the NS G-IV data, 3) retarred file			
(tarred files)	processed 140 files			
HDOBs (bufr files)				


NO-NS

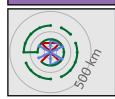
0

NO-NS: Remove Entire Non-Standard G-IV Pattern 1) removed all NS G-IV dropsonde data			
2) merged <i>standard</i> G-IV HDOB data with the new NO-GIV bufr files			
Dropsondes	1) untarred file, 2) removed only the NS G-IV data, 3) retarred file		
(tarred files)	processed 140 files		
HDOBs	1) kept only raw data files that had standard G-IV data removed 2150 raw data files and kept 592 files modified QC in remaining files to retain only standard G-IV data		
(bufr files)			


NO-NS

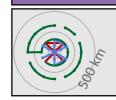
0

NO-NS: Remove Entire Non-Standard G-IV Pattern 1) removed all NS G-IV dropsonde data 2) merged standard G-IV HDOB data with the new NO-GIV bufr files				
Dropsondes 1) untarred file, 2) removed only the NS G-IV data, 3) retarred file				
(tarred files)	processed 140 files			
HDOBs (bufr files)	1) kept only raw data files that had standard G-IV data removed 2150 raw data files and kept 592 files modified QC in remaining files to retain only standard G-IV data 2) combined modified files by cycle (i.e., ±3 h of cycle time) resulted in 59 cycles			


NO-NS

0

NO-NS: Remove Entire Non-Standard G-IV Pattern 1) removed all NS G-IV dropsonde data 2) merged standard G-IV HDOB data with the new NO-GIV bufr files Dropsondes 1) untarred file, 2) removed only the NS G-IV data, 3) retarred file (tarred files) processed 140 files 1) kept only raw data files that had standard G-IV data removed 2150 raw data files and kept 592 files modified QC in remaining files to retain only standard G-IV data 2) combined modified files by cycle (i.e., ±3 h of cycle time) **HDOBs** resulted in 59 cvcles 3) created* new bufr files for each cycle (bufr files) resulted in 59 files - 1 per cycle


NO-NS

*bufr-modification scripts provided by Kathryn Sellwood (CIMAS/AOML)

NO-NS: Remove Entire Non-Standard G-IV Pattern 1) removed all NS G-IV dropsonde data 2) merged standard G-IV HDOB data with the new NO-GIV bufr files Dropsondes 1) untarred file, 2) removed only the NS G-IV data, 3) retarred file (tarred files) processed 140 files 1) kept only raw data files that had standard G-IV data removed 2150 raw data files and kept 592 files modified QC in remaining files to retain only standard G-IV data 2) combined modified files by cycle (i.e., ±3 h of cycle time) **HDOBs** resulted in 59 cvcles 3) created* new bufr files for each cycle (bufr files) resulted in 59 files - 1 per cycle 4) combined new bufr files with corresponding NO-GIV bufr files combined 11,840 standard G-IV observations with their corresponding **NO-GIV** bufr files

NO-NS

*bufr-modification scripts provided by Kathryn Sellwood (CIMAS/AOML)

0

NO-NS: Remove Entire Non-Standard G-IV Pattern 1) removed all NS G-IV dropsonde data 2) merged standard G-IV HDOB data with the new NO-GIV bufr files				
Dropsondes 1) untarred file, 2) removed only the NS G-IV data, 3) retarred file				
(tarred files)	processed 140 files			
	1) kept only raw data files that had standard G-IV data			
	removed 2150 raw data files and kept 592 files			
	modified QC in remaining files to retain only standard G-IV data			
	2) combined modified files by cycle (i.e., ±3 h of cycle time)			
HDOBs	resulted in 59 cycles			
(bufr files) 3) created* new bufr files for each cycle				
	resulted in 59 files - 1 per cycle			
	4) combined new bufr files with corresponding NO-GIV bufr files			
	combined 11,840 standard G-IV observations with			
	their corresponding NO-GIV bufr files			
TDR	original data			
(bufr files)	non-standard patterns by default do not have TDR			

*bufr-modification scripts provided by Kathryn Sellwood (CIMAS/AOML)

0

0

Experiment Est. & Act. Progress

Experiment Est. & Act. Progress

Started running all 3 experiments simultaneously on Orion!

Experiment Est. & Act. Progress

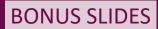
Started running all 3 experiments simultaneously on Orion!

Year	TCs	Cycles	# of G-IV Missions	Est. Completion (MM/YY)
2020	Isaias, Laura, Marco, Delta, Zeta, & Eta	249	22	4-8 months (06/23-10/23)
2021	Elsa, Henri, Ida, & Sam	175	10	3-6 months <i>(09/23-04/24)</i>
2022	Fiona, Ian, Nicole	107	13	2-4 months (11/23-08/24)
3 years	<u>13</u> <u>TCs</u>	<u>531</u> cycles	45 missions	9-18 months (11/23-08/24)

Experiment Est. & Act. Progress

Started running all 3 experiments simultaneously on Orion!

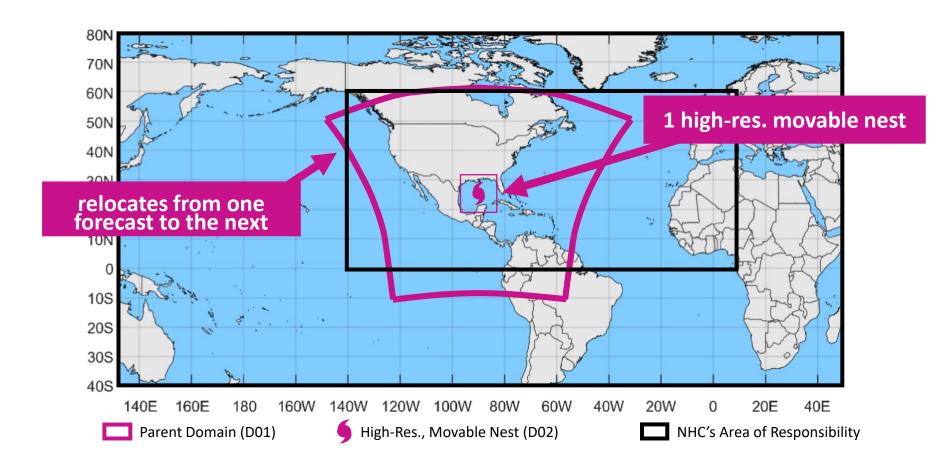
Year	TCs		# of G-IV Missions	Est. Completion (MM/YY)
2020	Isaias, Laura, Marco, Delta, Zeta, & Eta	249	22	4-8 months (06/23-10/23)
2021	Elsa, Henri, Ida, & Sam	175	10	3-6 months <i>(09/23-04/24)</i>
2022	Fiona, Ian, Nicole	107	13	2-4 months (11/23-08/24)
<u>3</u> years	<u>13</u> <u>TCs</u>	<u>531</u> cycles	45 missions	9-18 months (11/23-08/24)



THANK YOU FOR LISTENING!

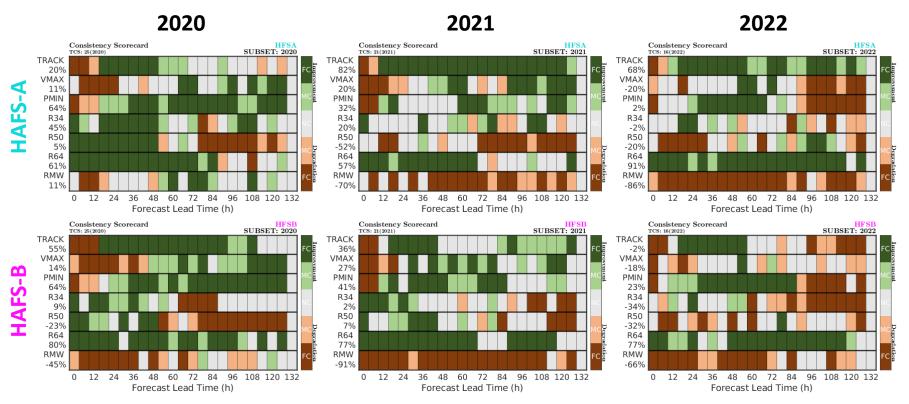
Dr. Sarah D. Ditchek

Email: sarah.d.ditchek@noaa.gov



HAFS IOC Version Differences

HAFSv1	HFSA	HFSB		
	Storm-centric regional Extended Schmidt Gnomonic (ESG)	grid based storm-following moving-nest configuration		
Grid	Parent: 6-km (1320x1200, ~78x75 degree)	Parent: 6-km (1200x1200, ~75x75 degree)		
	Nest: 2-km (600x600), ~12x12 degree		
Vertical Levels	L81 with a 2-hPa model top			
	90s time step			
Physics Timestep	Parent: k/n_split of 2/4			
	Nest: k/n_split of 4/10	Nest: k/n_split of 4/9		
IC/BC	GFSv16 LBC blending w	ith nrows_blend of 20		
Vegetation	VIIRS			
VI/VR/VM	Modernized VI including VR & automatically determined VM ba	ased on intensity, where warm-cycling intensity threshold is		
01, 010, 0101	50 kt	40 kt		
DA	High-resolution inner-core DA with 3-h FGAT 4E			
	Updated adaptive observation error coefficients for flight recon data Assimilates all obs ingested by HWRF & GFS/GDAS			
	hord_mt/vt/tm/dp/tr=6/6/6/6/-5 k			
Dynamics	Damping: tau=5, n_sponge = 24 rf_cutoff = 50.e2, sg_cutoff = -1. d2_bg_k1=0.20, d2_bg_k2 = 0.15 vtdm4 = 0.04, delt_max=0.008			
	full_zs_filter=.true. max_slope=0.1			
MP	GFDL	Thompson		
Radiation	RRTMG (720s time step)	RRTMG (1800s time step)		
PBL	Modified TKE-EDMF GFS PBL (sfc_rlm=1, d02 elmx/rlmx=250)	Modified TKE-EDMF GFS PBL (tc_pbl=1, d02 elmx/rlmx=75)		
СР	upgraded			
LSM	Noał			
Surface Model	GFS SFC with HWRF exc	•		
	Unified UG			
	ESMF/CMEPS based HYCON ocean cou			
Air-Sea	ATM → OCN: air-sea momentum, SH & LH fluxes, net SW & LW radiation fluxes, surface pressure, & precipitation OCN → ATM: SST			
Interaction	1/12-degree grid spacing with L41 vertical levels Ocean IC from RTOFSv2 with persistent oceanic LBC			
& Coupling	Atmospheric forcing from GFSv16 gri			
David David	One-way WW3 wave coupling for NHC/CPHC basins (AL, EP, CP)	No wave coupling		
Post-Processing	Latest UPP Upgraded	GFDL Vortex Tracker		
& Products				

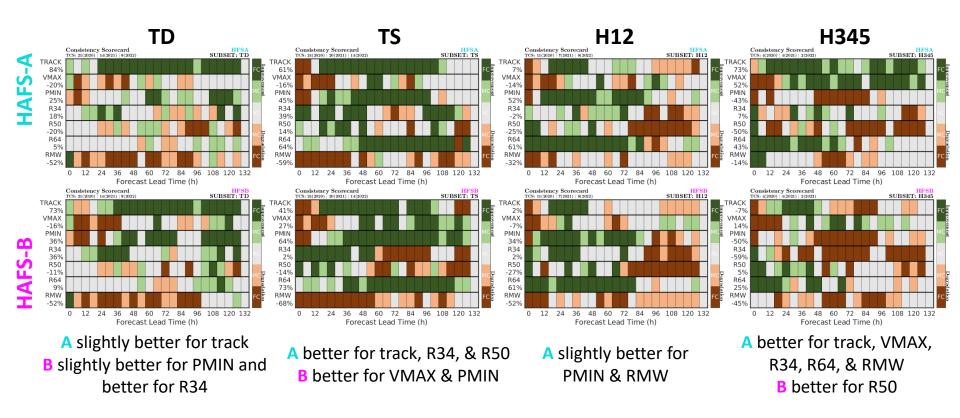

HAFS IOC Domain

Model Choice (1)

CONSISTENCY SCORECARDS Stratified By Year

A better for R34, R50 & RMW B better for track & R64 A better for track, R34, & RMW B better for R50 & R64 A slightly better for R50 and better for track, R34, & R64

B better for PMIN & RMW


Sample Sizes @ 0/126 h for 2020: 451/77 (TRK, VMAX, PMIN, RMW), 779/162 (R34), 384/139 (R50), & 206/65 (R64) Sample Sizes @ 0/126 h for 2021: 349/94 (TRK, VMAX, PMIN, RMW), 602/168 (R34), 379/158 (R50), & 275/125 (R64) Sample Sizes @ 0/126 h for 2022: 250/46 (TRK, VMAX, PMIN, RMW), 427/100 (R34), 224/79 (R50), & 149/55 (R64)

Model Choice (2)

CONSISTENCY SCORECARDS Stratified By Saffir-Simpson Category

Sample Sizes @ 0/126 h for TD: 170/40 (TRK, VMAX, PMIN, RMW), 0/71 (R34), 0/54 (R50), & 0/30 (R64) Sample Sizes @ 0/126 h for TS: 547/119 (TRK, VMAX, PMIN, RMW), 802/231 (R34), 106/195 (R50), & 0/132 (R64) Sample Sizes @ 0/126 h for H12: 215/25 (TRK, VMAX, PMIN, RMW), 614/68 (R34), 501/67 (R50), & 256/38 (R64) Sample Sizes @ 0/126 h for H345: 96/29 (TRK, VMAX, PMIN, RMW), 380/60 (R34), 380/60 (R50), & 374/45 (R64)