A Review of Recent Observing System Experiments

Jason Sippel

NOAA AOML/HRD (**)

Contributions from Sarah Ditchek

Intro to OSEs

With a model that performs well (e.g., HWRF), one can effectively evaluate observing-system experiments (OSEs)

Recent OSE Work

Example: "End-point" dropsondes added to C-130 missions in 2018

Dropsonde Impact on HWRF Intensity

OK, but how do dropsondes affect the forecast... overall?

 We know they improve the track forecast

We also know they cost \$

A lot of unknowns

What happens in HWRF if we take away ALL dropsondes?

OVERALL IMPACT OF DROPSONDES IN HWRF

- Some benefits for track and intensity
- Big benefits for significant wind radii(!)
- What's up with R64?

Dropsonde Impact on R64

What's up with R64?

- R64 degraded in 2017 only (left)
- Poor near-core coverage in 2017 (right)
- Improved impacts and coverage starting in 2018

Number of obs assimilated

Can we say anything about how different dropsondes affect the forecast differently? **YES!**

Example: What are the relative impacts of environmental and over-vortex dropsondes?

Comparing environmental vs. over-vortex dropsonde impacts

Comparing environmental vs. over-vortex dropsonde impacts

Turning back to that USAF pattern....

TWO QUESTIONS:

- 1. What happens if we ONLY HAVE inner-core dropsondes
- 2. What happens if we TAKE AWAY inner-core dropsondes

ONLY HAVE Inner-core (Major Hurr.)

% Improvement (VMAX) **FORECAST BETTER** Baseline = NO drops **FORECAST WORSE** -20 -3.06% Day 1 Day 3 Day 5

REMOVE Inner-core (Major Hurr.)

- 1. ONLY inner-core sondes: Inner-core sondes degrade forecast (left)
- Good sonde sampling: Inner-core sondes **improve** forecast (right)

For optimal sampling, we need either:

Significantly more dropsondes; or

Remote sensing

Conclusions

- Dropsondes improve most aspects of the forecast, particularly significant wind radii
- Weak storms benefit most from added dropsondes
- Gaps in coverage degrade the forecast (and can make it worse than having NO dropsondes at all)
- Optimum coverage targets all aspects of interest (e.g., significant wind radii) and argues for supplemental remote sensing observations

BONUS SLIDES

Dropsondes in R64 region

- R64 degraded in 2017 only
- Degradation corresponds with poor nearcore coverage
- Improved coverage and impacts starting in 2018

- R64 degraded in 2017 only
- Degradation corresponds with poor near-core coverage
- Improved coverage and impacts starting in 2018

Dropsonde Obs in R64 region

2017: 916 2019: 2947

2018: 2471 2020: 2583

FOR INTENSITY (VMAX):

- Over-vortex in all storms
 (HUGE benefit for weak storms)
- Environment in weak storms

WEAK STORMS STRONG STORMS Environment Over-vortex

Least benefit

FOR TRACK:

Moderate benefit

- Environment in weak storms
- Over-vortex in strong storms

A closer look at strong storms:

- Observed R50 lies in the "over vortex" region
- Observed R34 near the vortex/environment border
- Sondes *either* in environment or over-vortex can improve R34, but neither region dominates

Recent OSE Work

Example 2: G-IV "Inner circumnav" added in 2018

G-IV dropsondes for Hurricane Florence

Inner Circumnav Bonus: