

NOAA Atlas 14

Precipitation-Frequency Atlas of the United States

Volume 5 Version 3.0: Selected Pacific Islands

Sanja Perica, Bingzhang Lin, Deborah Martin, Fenglin Yan, Daniel Brewer, Carl Trypaluk, Michael Yekta, Lillian Hiner, Sarah Heim, Sarah Dietz, Tye Parzybok, Li-Chuan Chen, Kazungu Maitaria, Ruiming Chen, Ishani Roy, Dale Unruh, Tan Zhao, John Yarchoan, Geoffrey Bonnin

U.S. Department of Commerce

National Oceanic and Atmospheric Administration

National Weather Service

Silver Spring, Maryland, 2009 Revised 2011

NOAA Atlas 14

Precipitation-Frequency Atlas of the United States

Volume 5 Version 3.0: Selected Pacific Islands

Sanja Perica, Bingzhang Lin, Deborah Martin, Fenglin Yan, Daniel Brewer, Carl Trypaluk, Michael Yekta, Lillian Hiner, Sarah Heim, Sarah Dietz, Tye Parzybok, Li-Chuan Chen, Kazungu Maitaria, Ruiming Chen, Ishani Roy, Dale Unruh, Tan Zhao, John Yarchoan, Geoffrey Bonnin

U.S. Department of Commerce

National Oceanic and Atmospheric Administration

National Weather Service

Silver Spring, Maryland, 2009 revised 2011

Library of Congress Classification Number G1046 .C8 U6 no.14 v.5 (2011)

Table of Contents

1. Abstract	1
2. Preface to Volume 5	1
3. Introduction	3
3.1. Objective	3
3.2. Approach and deliverables	3
4. Precipitation frequency analysis	5
4.1. Project area	5
4.2. Data	6
4.2.1. Data sources	6
4.2.2. Initial data screening	7
4.3. Annual maximum series extraction	11
4.3.1. Series selection	
4.3.2. Criteria for extraction	
4.4. AMS screening and quality control	14
4.4.1. Record length	14
4.4.2. Outliers	
4.4.3. Inconsistencies across durations	
4.4.4. AMS correction factors for constrained observations	16
4.4.5. AMS trend analysis	16
4.5. Precipitation frequency estimates with confidence intervals at station	s 17
4.5.1. Overview of methodology and related terminology	
4.5.2. Delineation of homogeneous regions	
4.5.3. AMS-based frequency estimates	
4.5.4. PDS-based frequency estimates	
4.5.5. Confidence limits	
4.6. Derivation of grids	
4.6.1. Mean annual maxima	
4.6.2. Precipitation frequency estimates	
4.6.3. Confidence limits	
5. Precipitation Frequency Data Server	29
6. Peer review	
7. Comparison with previous NWS studies (n/a)	30
Acknowledgments acknowl	
A.1 List of stations used to prepare precipitation frequency estimates	A.1-1
A.2 Annual maximum series trend analysis	A.2-1
A.3 Regional L-moment ratios	A.3-1
A.4 Regional heterogeneity measures	A.4-1
A.5 Regional growth factors	A.5-1
A.6 PRISM report	A.6-1
A.7 Peer review comments and responses	
A.8 Temporal distributions of annual maxima	
A.9 Seasonality	
A.10 Update to Version 3.0	
Glossary	
References	

1. Abstract

NOAA Atlas 14 contains precipitation frequency estimates for the United States and U.S. affiliated territories with associated 90% confidence intervals and supplementary information on temporal distribution of annual maxima, analysis of seasonality and trends in annual maximum series data, etc. It includes pertinent information on development methodologies and intermediate results. The results are published through the Precipitation Frequency Data Server (http://hdsc.nws.noaa.gov/hdsc/pfds).

The Atlas is divided into volumes based on geographic sections of the country. The Atlas is intended as the U.S. Government source of precipitation frequency estimates and associated information for the United States and U.S. affiliated territories.

2. Preface to Volume 5

NOAA Atlas 14 Volume 5 contains precipitation frequency estimates for selected durations and frequencies with 90% confidence intervals and supplementary information on temporal distribution of annual maxima, analysis of seasonality and trends in annual maximum series data, etc., for selected Pacific Islands. The results are published through the Precipitation Frequency Data Server (http://hdsc.nws.noaa.gov/hdsc/pfds).

NOAA Atlas 14 Volume 5 was developed by the Hydrometeorological Design Studies Center within the Office of Hydrologic Development of the National Oceanic and Atmospheric Administration's National Weather Service. Any use of trade names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Citation and version history. This documentation and associated artifacts such as maps, grids, and point-and-click results from the PFDS are part of a whole with a single version number and can be referenced as:

Sanja Perica, Bingzhang Lin, Deborah Martin, Fenglin Yan, Daniel Brewer, Carl Trypaluk, Michael Yekta, Lillian Hiner, Sarah Heim, Sarah Dietz, Tye Parzybok, Li-Chuan Chen, Kazungu Maitaria, Ruiming Chen, Ishani Roy, Dale Unruh, Tan Zhao, John Yarchoan, Geoffrey Bonnin (2011).

NOAA Atlas 14 Volume 5 Version 3, *Precipitation-Frequency Atlas of the United States, Selected Pacific Islands*. NOAA, National Weather Service, Silver Spring, MD.

The version number has the format P.S where P is a primary version number representing a number of successive releases of primary information. Primary information is essentially the data. S is a secondary version number representing successive releases of secondary information. Secondary information includes documentation and metadata. S reverts to zero (or nothing; i.e., Version 2 and Version 2.0 are equivalent) when P is incremented. When new information is completed and added (such as draft documentation) without changing any prior information, the version number is not incremented.

The primary version number is stamped on the artifact or is included as part of the filename where the format does not allow for a version stamp (for example, files with gridded precipitation frequency estimates). All location-specific output from the PFDS is stamped with the version number and date of download.

Table 2.1 lists the version history associated with the NOAA Atlas 14 Volume 5 precipitation frequency project and indicates the nature of changes made.

Table 2.1. Version history of NOAA Atlas 14 Volume 5.

Version no.	Date	Notes
Version 1.0	July 2009	Draft data used in peer review
Version 2.0	December 2009	Final data and documentation released
Version 3.0	June 2011	Estimates: scaling factors for n-minute durations adjusted; temporal distribution files updated (see Appendix A.10 for more details). Documentation: Section 5 rewritten to reflect updated PFDS, order of appendices changed to match format of Volumes 5 and 6, minor changes to text.

3. Introduction

3.1. Objective

NOAA Atlas 14 Volume 5 provides precipitation frequency estimates for selected islands and atolls in the Pacific Ocean that are part of the following seven countries or territories: the Commonwealth of Northern Mariana Islands, the Territory of Guam, the Republic of Palau, the Federated States of Micronesia, the Republic of the Marshall Islands, Wake Island and the Territory of American Samoa.

The Atlas provides precipitation frequency estimates for 5-minute through 60-day durations at average recurrence intervals of 1-year through 1,000-year. The results are provided at high spatial resolution and include confidence limits for the estimates. The Atlas also includes information on temporal distributions and seasonal information for annual maxima data used in frequency analysis. In addition, the potential effects of climate change as trends in historic annual maximum series were examined.

3.2. Approach and deliverables

The approach used in this project for calculating precipitation frequency estimates largely follows the index-flood regional frequency analysis approach based on L-moment statistics described in Hosking and Wallis (1997). This section provides an overview of the approach; greater detail is provided in Section 4.

The annual maximum series used in the precipitation frequency analysis were extracted from precipitation measurements recorded at daily, hourly and n-minute time intervals from various sources. The table in Appendix A.1 gives detailed information on all stations whose data were used in the frequency analysis. The annual maximum series data were screened for erroneous measurements. The 1-day annual maximum series were also analyzed for potential trends (Appendix A.2).

To support the regional frequency analysis approach, homogeneous regions with respect to annual maximum series precipitation characteristics were delineated. Adjustments were made in the definition of regions based on statistical tests and underlying climatology. Regional estimates of relevant L-moment statistics, regional homogeneity measures and regional growth factors for hourly and daily durations are shown in Appendices A.3, A.4 and A.5, respectively.

A variety of probability distribution functions were examined for each region and duration and the most suitable distribution was selected based on the results of goodness-of-fit tests. AMS-based precipitation frequency estimates for a selected distribution were determined at each station based on the mean of the annual maximum series at the station and the regionally determined higher order L-moment ratios for each duration. Partial duration series-based precipitation frequency estimates were calculated indirectly from AMS results.

A Monte-Carlo simulation approach was used to produce upper and lower bounds of the 90% confidence intervals for the precipitation frequency estimates. Due to the small number of stations recording data at less than 1-hour intervals, precipitation frequency estimates and confidence intervals for durations below 1-hour (n-minute durations) were computed using an average ratio between the n-minute and 1-hour frequency estimates as determined based on available data.

Gridded estimates of precipitation frequency estimates and 90% confidence intervals were determined based on the mean annual maxima grids and the regionally determined higher order L-moment ratios. The mean annual maxima grids for the 1-day duration were derived from mean annual precipitation grids or through direct spatial interpolation of at-station mean annual maxima for regions where no relationship between mean annual maxima and mean annual precipitation was found. The 1-day mean annual maxima grids were then used to estimate mean annual maxima grids

at other durations. Higher order L-moments were smoothed across durations to ensure consistency in estimates. Both spatially interpolated and point estimates were subject to external peer reviews (see Section 6 and Appendix A.7).

Temporal distributions of annual maximum series data for selected durations were calculated for the project area; they are shown in Appendix A.8. The seasonality analysis was done by tabulating the number of annual maxima exceeding precipitation frequency estimates for several selected threshold frequencies in each climate region delineated in the precipitation frequency analysis (Appendix A.9).

NOAA Atlas 14 Volume 5 precipitation frequency estimates for any location in the project area are available in a variety of formats through the Precipitation Frequency Data Server (PFDS) at http://hdsc.nws.noaa.gov/hdsc/pfds (via a point-and-click interface); more details are provided in Section 5. Additional types of results and information available there include:

- ASCII grids of partial duration series-based and annual maximum series-based precipitation frequency estimates and related confidence intervals for a range of durations and frequencies with associated Federal Geographic Data Committee-compliant metadata;
- cartographic maps of partial duration series-based precipitation frequency estimates for selected frequencies and durations;
- annual maximum series used in the analysis;
- temporal distributions;
- seasonality analysis of annual maxima.

Cartographic maps were created to serve as visual aids and are not recommended for estimating precipitation frequency estimates. Users are advised to take advantage of the PFDS interface or the underlying ASCII grids for obtaining precipitation frequency estimates. Precipitation frequency estimates from this Atlas are estimates for a point location and are not directly applicable for an area.

4. Precipitation frequency analysis

4.1. Project area

The project area, shown in Figure 4.1.1, includes selected islands and atolls in the Pacific Ocean that are part of the following territories or states: the Commonwealth of Northern Mariana Islands, the Territory of Guam, the Republic of Palau, the Federated States of Micronesia, the Republic of the Marshall Islands, Wake Island and the Territory of American Samoa. Listed below are all islands and atolls for which precipitation frequency estimates are available; these islands or atolls had at least one precipitation recording station that passed all screening criteria (described in subsequent sections):

- Commonwealth of the Northern Mariana Islands: Rota, Saipan, Tinian
- Territory of Guam: Guam
- Republic of Palau: Angaur, Babelthuap, Koror
- Federated States of Micronesia, State of Yap: Yap Islands (Gagil-Tamil, Maap, Rumung, Yap), Ulithi, Woleai
- Federated States of Micronesia, State of Chuuk: Lukunor, Weno
- Federated States of Micronesia, State of Pohnpei: Nukuoro, Pingelap, Pohnpei
- Federated States of Micronesia, State of Kosrae: Kosrae
- Republic of the Marshall Islands: Ailinglapalap, Enewetak, Jaluit, Kwajalein, Majuro, Mili, Utirik, Wotje
- Wake Island
- Territory of American Samoa: Tutuila.

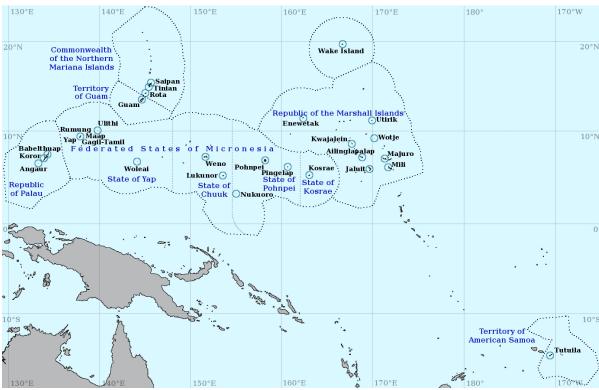


Figure 4.1.1. Project area for NOAA Atlas 14 Volume 5. Only islands or atolls with at least one recording station used in the precipitation frequency analysis are labeled.

Climatology of heavy precipitation. The selected Pacific Islands are located in the tropical region where temperatures remain moderate throughout the year and the weather pattern is dominated by northeast trade winds in the northern hemisphere and southeast trade winds in the southern hemisphere (American Samoa). The wet season typically lasts from November through April for American Samoa islands and from July through December for the other islands, although heavy precipitation events occur throughout the year. Heavy precipitation mechanisms include tropical disturbances, tropical depressions, tropical storms, and typhoons. These are collectively referred to as tropical cyclones. The rainfall from these events can be further enhanced by orographic effects such as on Pohnpei, Kosrae, and Tutuila. Islands closer to the equator see more heavy precipitation, especially during the wet season, due to their proximity to the Intertropical Convergence Zone (ITCZ). The ITCZ moves throughout the year, shifting north during the northern hemisphere summer and south during the northern hemisphere winter. In this zone, the northeast and southeast trade winds converge, producing areas of strong convection known as the trade wind trough. Farther west, the easterly trade winds clash with westerly (more equatorial) monsoon winds to produce the monsoon trough.

Thunderstorms associated with the monsoon trough can produce large amounts of precipitation over short durations. Sometimes these storms become more organized and a thunderstorm complex develops known as a tropical disturbance, which may last a day or more. These disturbances can develop cyclonic surface circulations and further strengthen into typhoons (hurricanes east of the Date Line, cyclones in the southern hemisphere), which can also be a major influence on heavy precipitation. Although typhoons are more prevalent during the wet season, they can form any time of year in the warm waters of the western North Pacific.

4.2. **Data**

4.2.1. Data sources

The annual maximum series used in the precipitation frequency analysis were extracted from precipitation measurements recorded at 1-day, 1-hour, 15-minute and various n-minute time intervals from several sources. The National Weather Service (NWS) Cooperative Observer Program's stations obtained from National Oceanic and Atmospheric Administration's (NOAA) National Climatic Data Center (NCDC) were the primary data source. Table 4.2.1 shows all potential data sources we were able to identify, grouped based on the data reporting intervals (data type), with links to web sites from which the data were downloaded when applicable. Additional data for recent years were also received from the National Weather Service Forecast Office in Guam and were used to extend records at several NCDC stations. The table shows the total number of stations obtained from each source and the number of stations that passed all screening criteria and were used in the frequency analysis (numbers shown in this table are before some stations were merged; see Section 4.2.2).

Table 4.2.1. Data sources with dataset names grouped by reporting interval and links to web sites from which the data were downloaded when applicable (web links as of May 2009). Also shown are

total number of stations and number of stations used in frequency analysis per source.

Data		Number o	of stations
reporting interval	Source of data and dataset name	total	used
	NCDC: TD3200 and TD 3206 datasets updated with data obtained from NWS Forecast Office in Guam (http://cdo.ncdc.noaa.gov/CDO/dataproduct)	113	59
1-day	USGS Pacific Islands Water Science Center: online database and paper records (http://hi.water.usgs.gov/studies/project_waterdata.htm)	17	7
	Environmental Verification and Analysis Center: Pacific Rainfall Data Base (PACRAIN) dataset (http://pacrain.evac.ou.edu/)	114	0
	NCDC: TD3240 dataset (http://cdo.ncdc.noaa.gov/CDO/dataproduct)	38	7
1-hour	USGS Pacific Islands Water Science Center database (http://hi.water.usgs.gov/studies/project_waterdata.htm)	14	3
15-min	NCDC: TD 3260 dataset (http://cdo.ncdc.noaa.gov/CDO/dataproduct)	11	11
n-min	NCDC: TD9649 dataset (5-min to 180-min monthly maxima for 1973-1997) and Automated Surface Observing System (ASOS) dataset (1-min data beginning in 1998)	10	7
	NASA: Tropical Rainfall Measuring Mission (TRMM) dataset (http://rmm-fc.gsfc.nasa.gov/trmm_gv)	27	0
TOTAL		344	94

4.2.2. Initial data screening

Initial data screening included the following steps: a) examination of geospatial data, b) screening for duplicate stations, c) screening for duplicate records at co-located daily, hourly, and/or 15-minute stations, d) extending records using data from co-located stations, e) merging data from two or more nearby stations. Further data screening for sufficient number of years with usable data and data quality control were done on annual maximum series extracted from precipitation records for a range of durations (see Section 4.4). Table 4.2.2 shows how many stations per duration were available for each island/atoll in the study area after all screenings were done. Only islands and atolls with at least one station used in frequency analysis are listed in the table.

Locations of stations used in the project are shown in Figure 4.2.1. More detailed information on each station used in the frequency analysis is given in Appendix A.1. The table in the appendix includes station sources, names, identification numbers and data reporting intervals, as well as their latitudes, longitudes, elevations, period of records and regional assignment (used in regional frequency analysis described in Section 4.5.2). Stations in the table are grouped by state/territory and by island. There was more than one version of name for several islands and atolls in the project area; names were adjusted to match one of currently accepted island/atoll names. Identification numbers shown in the table were assigned internally and, except for NCDC stations, do not match identification numbers assigned by agencies that provided the data.

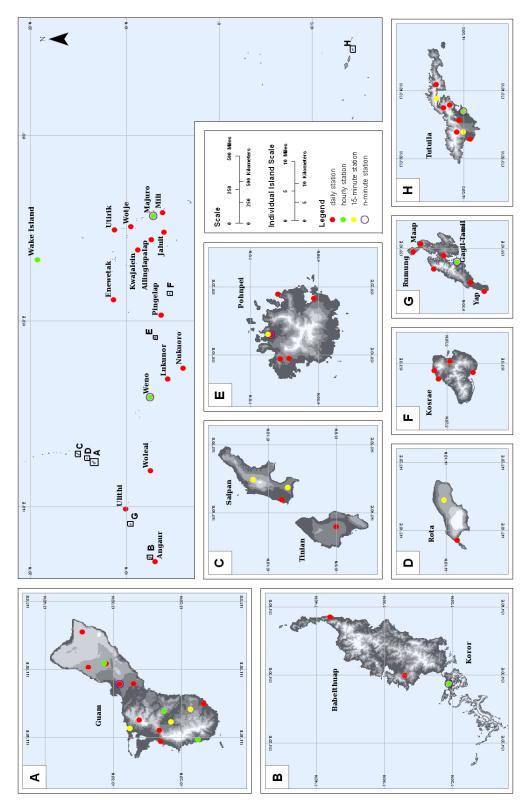


Figure 4.2.1. Map of stations recording at 1-day, 1-hour, 15-minute and various n-minute durations used in frequency analysis.

Table 4.2.2. Number of stations used in frequency analysis at various durations per island/atoll in each territory/state.

A 1. 1	T	•	Talandia in Caci			ons per du	ration
Abbr.	Territory/s	tate	Island/atoll	≥1 day	≥1hr	≥15min	<15min
CNMI	Commonwood	01410 0 C 410 0	Rota	2	1	1	0
	Commonwealth of the Northern Mariana Islands		Saipan	3	2	2	0
	Northern Wi	arrana isianus	Tinian	1	0	0	0
GU	Territory of	Guam	Guam	15	6	3	1
PW	V Republic of Palau		Angaur	1	0	0	0
			Babelthuap	2	0	0	0
			Koror	1	1	0	1
FSM	Federated	State of Chuuk	Lukunor	1	0	0	0
	States of		Weno	1	1	0	1
	Micronesia	State of Kosrae	Kosrae	4	0	0	0
		State of Pohnpei	Nukuoro	1	0	0	0
			Pingelap	1	0	0	0
			Pohnpei	6	1	1	1
		State of Yap	Gagil-Tamil	1	0	0	0
			Maap	1	0	0	0
			Rumung	1	0	0	0
			Ulithi	1	0	0	0
			Woleai	1	0	0	0
			Yap	4	1	0	1
RMI		the Marshall	Ailinglapalap	1	0	0	0
	Islands		Enewetak	1	0	0	0
			Jaluit	1	0	0	0
			Kwajalein	1	0	0	0
			Majuro	1	1	0	1
			Mili	1	0	0	0
			Utirik	1	0	0	0
			Wotje	1	0	0	0
WAKE			Wake Island	1	1	0	0
AS		American Samoa	Tutuila	9	3	2	1
TOTAL	1			66	18	9	7

Geospatial data. Latitude, longitude and elevation data for all stations used in the project were screened for errors. Several stations had to be re-located because they plotted in the ocean or were clearly misplaced based on inspection of satellite images and maps. Misplacement was typically the result of no seconds recorded in latitude and longitude data. There were also several stations with no elevation data; for those stations, elevation was estimated from high resolution DEM grids. All adjusted geospatial data are shown in bold text in the table in Appendix A.1.

Duplicate stations. In some instances, the same station was reported by more than one source (station identification numbers were often different). For example, a majority of NCDC stations were also included in the PACRAIN dataset. Duplicate stations were screened from the final dataset.

Co-located stations. Co-located stations are defined as stations that have the same metadata (primarily geospatial data but may also have the same identification numbers as in the case of NCDC stations), but report data at different time intervals. Screening of co-located stations was done as follows:

- If co-located 15-minute and hourly stations provided data for the same period and there were no differences in annual maximum series for constrained 1-hour maxima (15-minute data aggregated based on the clock hour), only the 15-minute station was retained and used to extract AMS for all longer durations. The majority of NCDC's 1-hour co-located stations in this project were deleted because they reported aggregated data from co-located 15-minute stations.
- If 15-minute or hourly station provided data for the same period as a co-located daily station and there were no differences in annual maximum series for constrained 1-day maxima (15-minute or 1-hour data aggregated from 0 to 24 hours), only the 15-minute or hourly station was retained and used to extract AMS for all longer durations.
- If periods of record at co-located stations were consistent but did not completely overlap, aggregated data from the station with the shorter reporting interval were used to extend datasets of the station with the longer reporting interval.
- If the station with the longer reporting interval had a longer period of record, then it was retained in the dataset in addition to the co-located station with the shorter reporting interval.

Data consistency across durations was ensured in later quality control procedures (see Section 4.4.3).

Nearby stations. For this project, nearby stations were defined as stations located within 1-mile distance and no more than 200-feet difference in elevation. They were considered for merging to increase record lengths. Double-mass curve analysis and *t*-tests at the 90% confidence level were used to ensure that the annual maximum series of stations considered for merging were from the same population. Table 4.2.3 shows basic information on stations that were merged. The metadata from first station in the group was retained in the dataset.

Table 4.2.3. Groups of stations that were merged to increase record lengths.

Croun	Island/atall	Station name	Source	Station	Station	Latituda	Longitude	Elev.	Period o	of record
Group	Islanu/aton	Station name	Source	type	ID	Latitude	Longitude	(ft)	before	after
1	TUTUILA	VAIPITO	NCDC	15MIN	91-4902	-14.2678	-170.6847	265	2000-2007	1979-2007
	TUTUILA	ATUU	NCDC	15MIN	91-4060	-14.2667	-170.6833	265	1979-2000	
2	SAIPAN	CAPITOL HILL1	NCDC	15MIN	91-4080	15.2032	145.7485	827	1986-2007	1980-2007
	SAIPAN	CAPITOL HILL	NCDC	15MIN	91-4075	15.2167	145.7500	672	1980-1986	
3	WENO	CHUUK WSO	NCDC	HLY	91-4111	7.4552	151.8376	5	1993-2008	1984-2008
	WENO	TRUK WSO AP	NCDC	HLY	91-4851	7.4552	151.8376	5	1984-1993	
4	GUAM	UMATAC	USGS	DLY	93-3766	13.2918	144.6622	5	1988-2008	1978-2008
	GUAM	UMATAC	NCDC	DLY	91-4885	13.2833	144.6667	190	1978-1988	
5	WENO	CHUUK WSO	NCDC	DLY	91-4111	7.4552	151.8376	5	1990-2008	1914-2008
	WENO	TRUK WSO AP	NCDC	DLY	91-4851	7.4552	151.8376	5	1956-1990	
	WENO	TRUK WB AP	NCDC	DLY	91-4551	7.4552	151.8376	8	1914-1955	
6	LUKUNOR	LUKUNOR	NCDC	DLY	91-4419	5.5135	153.8167	5	1986-2005	1962-2005
	SATOWAN	SATOWAN	NCDC	DLY	91-4814	5.3333	153.7333	9	1969-1976	
	SATOWAN	SATOWAN	NCDC	DLY	91-4811	4.3000	152.7000	4	1962-1968	
7	ULITHI	ULITHI	NCDC	DLY	91-4892	10.0204	139.7916	6	1989-2008	1954-2008
	ULITHI	ULITHI	NCDC	DLY	91-4185	10.0333	139.8000	6	1954-1989	

Cuoun	Island/atall	Station name	Course	Station	Station	Latituda	Langituda	Elev.	Period of record	
Group	isianu/aton	Station name	Source	type	ID	Latitude	Longitude	(ft)	before	after
8	JALUIT	JALUIT	NCDC	DLY	91-4304	5.9167	169.6432	6	1985-2005	1956-2005
	JALUIT	JABOR	NCDC	DLY	91-4300	5.9167	169.6432	0	1956-1962	
9	TUTUILA	LEONE	NCDC	DLY	91-4397	-14.3500	-170.7833	20	1967-1978	1955-1978
	TUTUILA	TAPUTIMU	NCDC	DLY	91-4873	-14.3500	-170.7667	49	1955-1967	
10	TUTUILA	PAGO PAGO	NCDC	DLY	91-4690	-14.3333	-170.7167	12	1966-2008	1956-2008
	TUTUILA	TAFUNA AP	NCDC	DLY	91-4869	-14.3333	-170.7167	10	1956-1966	

4.3. Annual maximum series extraction

4.3.1. Series selection

Precipitation frequency estimates can be obtained by analyzing annual maximum series (AMS) or partial duration series (PDS). AMS are constructed by extracting the highest precipitation amount for a particular duration in each successive year of record, whether the year is defined as a calendar or water year. Water year, starting on October 1 of the previous calendar year and ending on September 30, was used in this project. AMS inherently exclude other heavy precipitation cases that occur in the same year, regardless of whether they exceed maxima of other years. PDS include all amounts for a specified duration at a given station above a pre-defined threshold regardless of year and can include more than one event from any particular year. Differences in magnitudes of corresponding frequency estimates from the two series are negligible for average recurrence intervals greater than about 15 years, but notable at smaller average recurrence intervals (see Section 4.5.1 for more details). These differences may be important depending on the application. Because PDS can include more than one event in any particular year, the results from a PDS-based analysis are regarded as more suitable for designs based on more frequent events.

In this project, only AMS were directly extracted from the data. AMS-based precipitation frequency estimates where then converted to PDS-based frequency estimates using Langbein's formula (see Sections 4.5.1 and 4.5.4). The AMS were extracted for a range of durations varying from 5-minute to 60-day. AMS for the 1-day through 60-day durations were compiled from daily, hourly, or 15-minute records. Hourly and 15-minute data were aggregated to constrained 1-day (0 to 24 hour) values before extracting 1-day and longer duration annual maxima. Hourly and 15-minute data were also used to compile AMS for 1-hour through 12-hour durations. Again, 15-minute data were aggregated to constrained 1-hour (0 to 60 minute) values before extracting AMS. 15-minute data were used to compile AMS for 15-minute and 30-minute durations and n-minute data were used to compile AMS for durations from 5-minute to 60-minute.

4.3.2. Criteria for extraction

The procedure for developing an AMS from a precipitation dataset used specific criteria designed to extract only reasonable maxima if a year was incomplete or had accumulated data. Accumulated data occurred in some records where observations were not taken regularly, so recorded numbers represent accumulated amounts over extended periods of time. Since the precipitation distribution over the period is unknown, the total amount was distributed uniformly across the whole period. All annual maxima that resulted from accumulated data were flagged and went through additional screening to ensure that the incomplete data did not result in erroneously low maxima (see Section 4.4.2).

The criteria for AMS extraction was designed to exclude maxima if there were too many missing or accumulated data during the year and more specifically during critical months when rainfall

maxima were most likely to occur ("wet season"). The wet seasons for extraction purposes were assigned by inspecting histograms of annual maxima for the 1-day and 1-hour durations and by assessing the periods in which two-thirds of annual maxima occurred at each station. Although the wet season typically lasts from November through April for American Samoa islands and from July through December for the other islands, histograms of AMS show that heavy precipitation events occur throughout the year. Based on these assessments, a wet season that comprises the whole year was assigned to the entire project area for all durations for the extraction process. The flowchart below (Figure 4.3.1 with Table 4.3.1) depicts the AMS extraction criteria for all durations. Various thresholds for acceptable amounts of missing or accumulated data were applied to the year and wet season based on duration.

For example, regarding accumulations for the 10-day duration, if a year had more than 66% of days with accumulated data, then the maxima for that year for 10-day duration was (conditionally) rejected. If the year had between 33% and 66% of days with accumulated data, then it was further screened by assessing the lengths of the accumulated periods. If more than 66% of the accumulated data came from accumulation periods of 7 days or more, a maximum for that year was rejected. If the year had less than 33% of accumulated data, the extracted maximum was passed to another set of criteria for accumulations during its wet season, etc.

The extracted maximum amount for a given year had to pass through all of the criteria in Figure 4.3.1 to be accepted. All rejected maxima were compared with the accepted maxima; if they were higher than 95% of the maxima at that station, then they were kept in the record. Also, if a 1-day observation was higher than any other accumulated amount in a year, then it was retained. For the 1-day duration, annual maxima can also be extracted from datasets that contain records of only 1-day monthly maxima (although there were no such records in this project). Data quality flags were assigned to accepted and rejected maxima to assist in further quality control of AMS described in Section 4.4.

Table 4.3.1. Specific parameters applied during annual maxima extraction for different durations (as shown in Figure 4.3.1).

								Dura	ation							
Parameter	Min	utes	Hours			Days										
	15	30	1	2	3	6	12	1	2	4	7	10	20	30	45	60
X ₁ , X ₂ (%)	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
X ₃ (%)	0	66	0	66	66	66	66	0	66	66	66	66	66	66	66	66
X ₄ (%)	0	33	0	33	33	33	33	0	33	33	33	33	33	33	33	33
X ₅ (%)	0	15	0	15	15	15	15	0	15	15	15	15	15	15	15	15
X_{6}, X_{7} (%)	0	66	0	66	66	66	66	0	66	66	66	66	66	66	66	66
X ₈ (%)	33	33	33	33	33	33	33	20	20	20	20	20	20	20	20	20
D (min/hr/days)	15	15	1	2	3	5	8	1	2	4	6	7	12	15	18	18

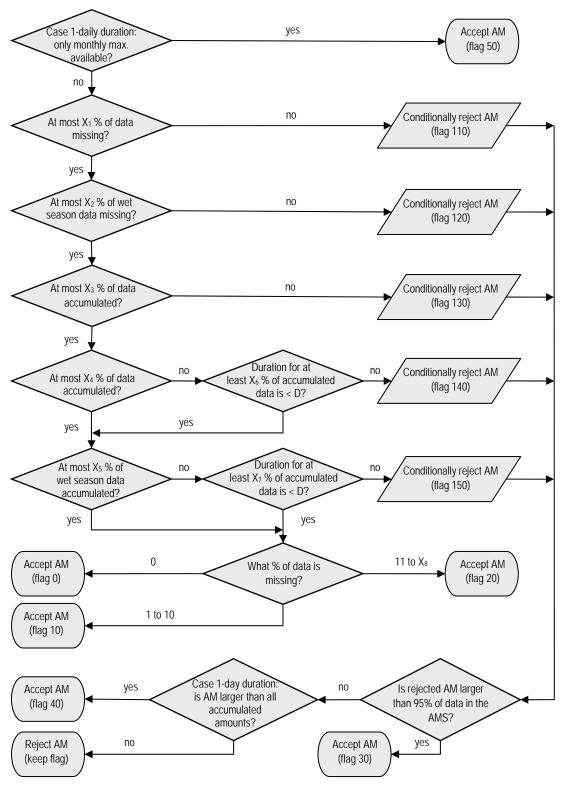


Figure 4.3.1. Flowchart depicting the criteria used to extract annual maxima. Data quality flags were assigned based on acceptance and rejection. Table 4.3.1 shows the parameter values (X_i and D) for each criterion and duration.

4.4. AMS screening and quality control

4.4.1. Record length

In NOAA Atlas 14, record length is characterized by the number of years for which annual maxima could be extracted (and is termed data years) rather than the entire period of record. Generally, only stations with at least 20 data years are used in precipitation frequency analysis. Because for this project area there were so few stations and many were extremely remote, this criterion was relaxed. Stations with at least 10 data years and no nearby stations with longer records were also considered for the precipitation frequency analysis. The average and median record lengths for 5-minute, 15-minute, 1-hour and 1-day durations, as well as corresponding ranges in record lengths are given in Table 4.4.1. The number of data years for other hourly and daily durations may vary slightly due to accumulated data and corresponding extraction rules. Figure 4.4.1 shows histograms for the number of stations within given ranges of data years for selected durations. Where available, the records extended through the end of 2008.

Duration	Number of	Record length (data years)						
Duration	stations	average	median	range				
1-day	66	27	23	10 - 58				
1-hour	18	20	21	12 - 28				
15-minute	9	23	25	16 - 28				

17

18

11 - 19

Table 4.4.1. Record length statistics for stations used in the analysis for different durations.

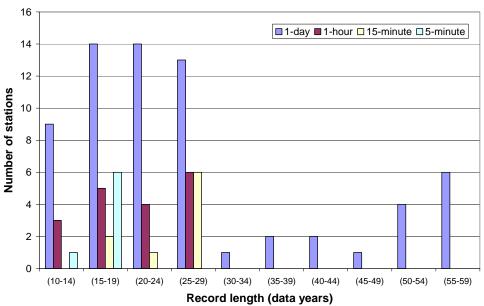


Figure 4.4.1. Number of stations used for precipitation frequency analysis grouped by record length for 1-day, 1-hour, 15-minute, and 5-minute durations.

5-minute

4.4.2. Outliers

For this project, outliers are defined as annual maxima which depart significantly from the trend of the remaining maxima at a given station for a given duration. Since data at both high and low extremities can considerably affect precipitation frequency estimates, they have to be carefully investigated and either corrected or removed from the AMS if due to measurement errors. The Grubbs-Beck (G-B) statistical test for outliers (Interagency Advisory Committee on Water Data, 1982) and the median +/- two standard deviations thresholds were used to identify low and high outliers for all durations (see an example of outlier examination in Figure 4.4.2).

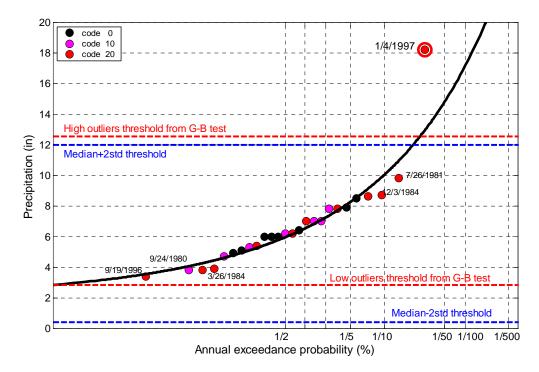


Figure 4.4.2. Outlier examination of 1-day AMS at station 91-4594 (Tutuila, AS).

Examination of low outliers indicated that almost all of them were from years with a significant percent of missing and/or accumulated data. They were presumed untrue maxima and were removed from the datasets. All values identified as high outliers were mapped with concurrent measurements taken at nearby stations. Values that were recommended for further investigation were then checked against original records, climatological bulletins, and/or local expertise at the National Weather Service Forecast Office in Guam. Depending on the outcomes of investigation, values were kept in the dataset, corrected and kept, or removed from the datasets. For example, the 1-day amount recorded on January 14, 1997 at station 91-4594, identified as a high outlier (as shown in Figure 4.4.2), was confirmed and kept in the dataset.

4.4.3. Inconsistencies across durations

Annual maxima were compared across durations for each year. If station data had a significant number of missing and/or accumulated data, cases could exist where extracted shorter duration annual maxima were greater than corresponding longer duration annual maxima. In those cases, shorter duration precipitation amounts were used to replace annual maxima extracted for longer durations.

Co-located stations. 1-hour AMS at co-located hourly and 15-minute stations were compared for overlapping periods of record. Similarly, 1-day AMS at co-located daily, hourly and 15-minute stations were compared for overlapping periods of record. Where corresponding AMS were significantly different, efforts were made to identify source of error and to correct erroneous observations across all durations that may be affected.

4.4.4. AMS correction factors for constrained observations

Daily durations. The majority of daily AMS data used in this study came from daily stations at which readings were taken once every day at fixed times (constrained observations). Due to the fixed beginning and ending of observation times at daily stations, it is likely that extracted (constrained) annual maxima were lower than the true (unconstrained) maxima. To account for the likely failure of capturing the true-interval 24-hour maxima, correction factors were applied to constrained AMS extracted from data recorded at daily stations or aggregated from hourly and 15-minute station data. Slope coefficients of zero-intercept regression models of concurrent (occurring within +/- 1 day) unconstrained and constrained annual maxima for a given duration at co-located stations were used to estimate correction factors. Correction factors for all daily durations are given in Table 4.4.2. As can be seen from the table, the effects of constrained observations were negligible for durations of 4 days or more.

	•
Duration (days)	Correction factor
1	1.10
2	1.05
4 or more	1.00

Table 4.4.2. Correction factors applied to constrained daily AMS data.

Hourly durations. Similar adjustment was needed on hourly AMS data extracted from hourly or aggregated 15-minute stations to account for the effects of constrained 'clock hour' to unconstrained 60-minute observations. Correction factors applied to hourly AMS are given in Table 4.4.3. Correction factors for durations of 3 hours or longer were approximately 1.0.

Table 4.4.3.	Correction	factors appl	lied to	constrained	hourly	' AMS data.

Duration (hours)	Correction factor
1	1.10
2	1.05
3 or more	1.00

N-minute durations. No correction factors were applied to 15-minute and 30-minute durations. 5-minute and 10-minute data were provided as unconstrained observations.

4.4.5. AMS trend analysis

Precipitation frequency analysis methods used in NOAA Atlas 14 volumes are based on the assumption of a stationary climate over the period of observation (and application). Statistical tests for trends in AMS and the main findings for this project area are described in more detail in Appendix A.2. Briefly, the stationarity assumption was tested by applying a parametric *t*-test and non-parametric Mann-Kendal test for trends in the annual maximum series data at 5% significance level.

Statistical tests were performed on stations with at least 30 years of data. Only 16 daily stations satisfied this requirement. The 1-day AMS at those stations were tested for trends. Statistical tests did not detect trends at most stations; the Mann-Kendall test identified a positive trend at one location, and the *t*-test identified a negative trend at one location. The relative magnitude of any trend in AMS for the project area as a whole (excluding American Samoa in southern hemisphere) was also assessed by linear regression techniques. AMS were rescaled by corresponding mean values and then regressed against time. The regression results were tested as a set against a null hypothesis of zero serial correlation. The null hypothesis of no trends in AMS data could not be rejected at 5% significance level. Because all tests indicated no trends in the data, the assumption of stationary climate was accepted for this project area and no adjustment of AMS was recommended.

4.5. Precipitation frequency estimates with confidence intervals at stations

4.5.1. Overview of methodology and related terminology

Precipitation magnitude-frequency relationships at individual stations have been computed using an index-flood regional frequency analysis approach based on L-moment statistics, as outlined by Hosking and Wallis (1997). Frequency analyses were carried out on annual maximum series (AMS) for the following n-minute durations: 5-minute, 10-minute, 15-minute, and 30-minute, for the following hourly durations: 1-hour, 2-hour, 3-hour, 6-hour, and 12-hour, and for the following daily durations: 1-day, 2-day, 4-day, 7-day, 10-day, 20-day, 30-day, 45-day and 60-day. AMS-based precipitation frequency estimates were converted to partial duration series (PDS) based frequency estimates using Langbein's formula that allows for conversion between AMS and PDS frequencies. To allow for assessment of uncertainty in estimates, 90% confidence intervals were constructed on AMS and PDS frequency curves using a simulation-based procedure described in Hosking and Wallis (1997).

<u>Frequency analysis</u> involves mathematically fitting an assumed distribution function to the data. Distribution functions commonly used to fit precipitation data include 3-parameter distributions such as Generalized Extreme Value (GEV), Generalized Normal (GNO), Generalized Pareto (GPA), Generalized Logistic (GLO) and Pearson Type III (PE3), the 4-parameter Kappa (KAP) distribution, and the 5-parameter Wakeby (WAK) distribution. When fitting a distribution to a precipitation annual maximum series extracted at a given location (and selected duration), the result is a frequency distribution relating precipitation magnitude to its <u>annual exceedance probability (AEP)</u>. The inverse of the AEP is frequently referred to as the <u>average recurrence interval (ARI)</u>, also known as <u>return period</u>. When used with the AMS-based frequency analysis, ARI does not represent the "true" average period between exceedances of a given precipitation magnitude, but the average period between years in which a given precipitation magnitude is exceeded at least once. Those two average periods can be considerably different for more frequent events. The "true" average recurrence interval (ARI) between cases of a particular magnitude can be obtained through frequency analysis of PDS.

Differences in magnitudes of corresponding frequency estimates (i.e., $\underline{\text{quantiles}}$) from the two series are negligible for ARIs greater than about 15 years, but notable at smaller ARIs (especially for ARI \leq 5 years). Because the PDS can include more than one event in any particular year, the results from a PDS analysis are generally considered to be more reliable for designs based on frequent events (e.g., Laurenson, 1987). To avoid confusion, we use the term AEP with AMS frequency analysis and ARI with PDS frequency analysis. The term 'frequency' is interchangeably used to specify the ARI and AEP.

<u>L-moments</u> provide an alternative way of describing frequency distributions to traditional product moments (conventional moments) or maximum likelihood approach. They are well suited for

analysis of precipitation data that exhibit significant skewness. Because sample estimators of L-moments are linear combinations of ranked observations, they are less subject to bias in estimation and are less susceptible to the presence of outliers in the data than conventional moments. Furthermore, it has been shown that L-moment estimators of GEV distribution parameters (which is the distribution found to be most representative in this project; see Section 4.5.3) compare favorably with parameter estimators obtained from either conventional moments or maximum likelihood approach, especially for small to moderate sized samples (Hosking and Wallis, 1997). L-moments that are typically used to describe various frequency distributions include 1st and 2nd order L-moments: L-location (λ_1) and L-scale (λ_2), and the following L-moment ratios: L-CV (τ), L-skewness (τ_3), and L-kurtosis (τ_4). L-CV, which stands for "coefficient of L-variation", is calculated as the ratio of L-scale to L-location (λ_2/λ_1). L-skewness and L-kurtosis are calculated as ratios of the 3rd order (λ_3) and 4th order (λ_4) L-moments to the 2nd order (λ_2) L-moment, respectively, and are therefore independent of scale.

One of the primary problems in frequency analysis is the need to provide frequency estimates for average recurrence intervals that are significantly longer than available records. The regional approach, which uses data from all stations that form a homogeneous region to obtain quantiles at a single station, has been shown to yield more accurate estimates of extreme quantiles than other approaches that use data from only a single station. The regional approach of choice for this project is the <u>index-flood regional frequency analysis approach</u>. The term 'index-flood' comes from its first applications in flood frequency analysis (Dalrymple, 1960), but the method is applicable to precipitation or any other type of data. The underlying assumption of the index-flood approach is that all stations in a homogeneous region have a common magnitude-frequency curve (<u>regional growth curve</u>) that becomes station-specific after applying a station-specific scaling factor (<u>index-flood</u>).

This underlying assumption is validated by testing discordancy and heterogeneity for each region (see below). The scaling factor is typically the mean of the data at a given location. Accordingly, the mean of the annual maximum series extracted from the precipitation record for a given station and selected duration was the scaling factor in this project. Station-specific estimates of L-location and regional estimates of L-CV, L-skewness and L-kurtosis are used to calculate distribution parameters and quantiles. Regional values of L-moment ratios are obtained from station-specific L-moment ratios weighted by record lengths. They are used to calculate quantiles of a regional dimensionless distribution, called regional growth factors (RGFs), for selected AEPs. Because the distribution parameters are constant for each region, there is a single set of RGFs for each region for a specified duration. The RGFs are then multiplied by the corresponding station-specific scaling factors to produce the quantiles at each frequency and duration for each station.

A frequency curve that is calculated from sample data represents some average estimate of the population frequency curve, but there is a high probability that the true value actually lies above or below the sample estimate. Confidence limits determine values between which one would expect the true value to lie with certain confidence. The width of a confidence interval between the upper and lower confidence limits is affected by a number of factors, such as the degree of confidence, sample size, exceedance probability, distribution selection, and so on. Simulation-based procedures were used in this project to estimate confidence limits of a 90% confidence interval on frequency curves.

Precipitation frequency estimates from this Atlas are <u>point estimates</u>, and are not directly applicable for an area. The conversion of a point to an areal estimate is usually done by applying an appropriate areal reduction factor to the average of the point estimates within the subject area. Areal reduction factors are generally a function of the size of an area and the duration of the precipitation. Since there are no areal reduction factors developed specifically for Pacific Islands, the depth-areaduration curves from the Technical Paper No. 43 (U.S. Weather Bureau, 1962), that are identical to

curves from the Technical Paper No. 29 (U.S. Weather Bureau, 1960) developed for the contiguous United States, could be used for that purpose.

4.5.2. Delineation of homogeneous regions

Initial delineation of regions. The K-mean nonhierarchical clustering method was used to initially group stations into homogenous regions. A single set of regions applicable to all durations was constructed. Regional groups obtained through cluster analysis were improved based on an analysis of selected statistical measures and the consideration of climatology of heavy events.

Nonhierarchical clustering algorithms start with predefined clusters that can be formed randomly. Cluster membership is reassigned based on the similarity between stations that is measured by the Euclidian distance in terms of the selected attribute variables (Everitt et al., 2001). Attribute variables selected for this project area were: latitude, longitude, mean annual precipitation and mean annual maximum precipitation at 1-hour and 1-day durations. Because cluster analysis is sensitive to differences in attribute variables' ranges, all variables were standardized to make their ranges comparable. After several iterations, eight clusters (regions) were determined to be the optimal number of clusters for this project area.

Refinement of regions. Homogeneity of eight regions delineated by the clustering procedure was further investigated using discordancy and heterogeneity measures (Hosking and Wallis, 1997), and by inspection of the evolution of station-specific L-location, L-CV and L-skewness moments with duration (see Section 4.6).

<u>Discordancy measure (D)</u> is used to determine if a station has been inappropriately assigned to a region. The measure is calculated for each station in a region and for each duration as the distance of a point in a 3-dimensional space represented by at-station estimates of three duration-specific L-moment ratios (L-CV, L-skewness and L-kurtosis) from the cluster center. The cluster center is defined using the un-weighted average of the three L-moment ratios from all stations within the region. The discordancy measure is most helpful for regions with at least 7 stations and cannot be used for regions with less than 5 stations. For that reason, it had a limited value for this project where several regions had only 1 to 4 stations.

Heterogeneity measures can be used to judge the relative homogeneity/heterogeneity of a proposed region as a whole based on L-moment ratios. Heterogeneity measures compare the variability of sample estimates of L-moment ratios in a region relative to their expected variability. Expected variability of L-moments is obtained through simulations using the Kappa distribution as the underlying population distribution. The Kappa distribution includes several 3-parameter distributions as special cases, so its results are less affected by the choice of distribution. The heterogeneity measure, H1 that examines the variability of sample estimators of L-CV was used in this project to judge the relative heterogeneity in the proposed regions. H1 is generally accepted to be the most reliable among potential heterogeneity measures in discriminating between homogeneous and heterogeneous regions. A region is generally considered homogenous if H1 is less than 2.0.

Regional homogeneity was further tested by inspection of changes in station-specific L-moment statistics across durations with corresponding changes in regional estimates. Stations with changes in statistics that were significantly different from the rest of the stations in the region were considered for reassignment to different regions. This investigation resulted in some interesting findings on evolution of L-moment statistics with duration, which was heavily used later in the adjustment of inconsistencies across durations for at-station frequency curves and in the construction of precipitation frequency grids (see Sections 4.5.3 and 4.6 for more details).

Based on combined results of all statistical tests and consideration of the climatology of heavy precipitation events, several stations were reassigned to different regions and two regions were divided in sub-regions, ending in a total of 10 homogeneous regions. Figure 4.5.1 shows final

regional groupings that were applied to all durations. Appendices A.3 and A.4 list the regionally-averaged L-CV, L-skewness, and L-kurtosis statistics and H1 values, respectively, for all regions and durations.

Station dependence. One of the assumptions in the index-flood method is that annual maxima extracted at different stations inside a homogeneous region are independent. Precipitation events, especially at longer durations, typically affect an area large enough to contain more than one station. Daily AMS data were investigated in each region for cross correlation between stations to assess inter-station dependence. Stations within a region were analyzed using a *t*-test at the 90% confidence level for correlation coefficients. Cross correlation between stations in the project area was not found to be statistically significant for most cases analyzed, so it was assumed that the impact of potential station dependence on the precipitation quantiles and confidence intervals is negligible.

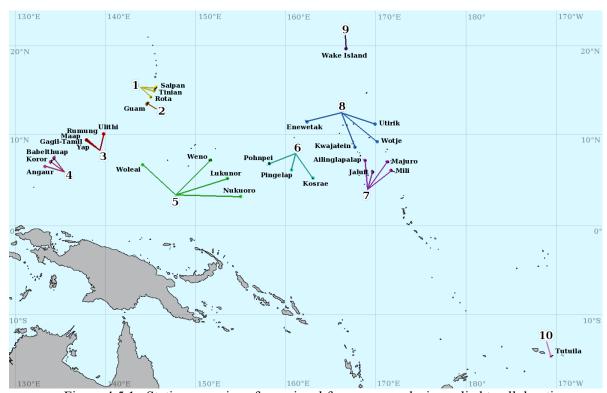


Figure 4.5.1. Station groupings for regional frequency analysis applied to all durations.

4.5.3. AMS-based frequency estimates

Choice of distribution. Although it is not required to use the same type of distribution across all regions and durations, changes in distribution type for different durations (and/or regions) may lead to inconsistencies among frequency estimates across durations (and/or nearby stations). Therefore, it was decided to identify and use a single distribution that will provide an acceptable fit to the AMS data across all regions and durations. The relatively small number of stations in the project area allowed us to visually inspect and compare several distributions (GEV, GNO, GLO, GPA, PE3, KAP, WAK) on probability plots for every station (see an example of a probability plot for station 91-4594 on Tutuila in Figure 4.5.2). A goodness-of-fit test based on L-moment statistics for 3-parameter distributions, as suggested by Hosking and Wallis (1997), was also used to assess which of the 3-

parameter distributions provide acceptable fit to the AMS data. The GEV distribution tested as an acceptable distribution for the vast majority of cases. Also, on probability plots, the GEV curve was typically very close to 4-parameter Kappa and 5-parameter Wakeby distribution curves, meaning that precipitation frequency estimates from all three distributions were comparable even for very rare events. Since the GEV distribution is a distribution frequently used to describe precipitation data, the decision was made to adopt the GEV distribution for all regions and for all durations.

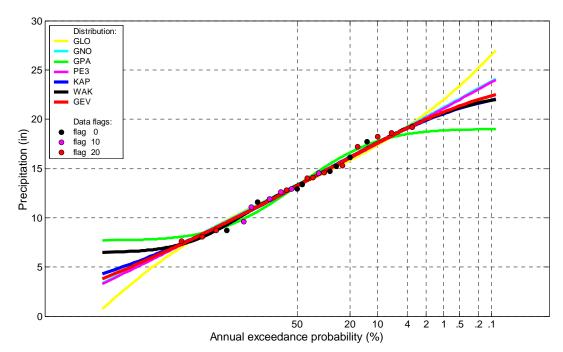


Figure 4.5.2. Probability plots for selected distributions for 7-day AMS at station 91-4594 (Tutuila, AS). Data quality flags were assigned to all annual maxima during the extraction process to assist in data quality control described in Section 4.3.2.

Frequency estimates for daily and hourly durations. For a given duration, regional estimates of L-CV, L-skewness and L-kurtosis for each of the 10 regions were obtained from corresponding station-specific estimates weighted by record lengths. Regional L-moment statistics were used to calculate parameters of a regional dimensionless GEV distribution following formulas given in Hosking and Wallis (1997) and regional growth factors for selected AEPs (1/2, 1/5, 1/10, 1/25, 1/50, 1/100, 1/200, 1/500 and 1/1000). The RGFs were then multiplied by station-specific mean annual maximum values to produce quantiles for each selected frequency and duration for all stations in the region. This calculation was repeated for all regions and for all durations. Appendix A.5 lists the RGFs for all regions and durations.

Consistency in frequency estimates across durations. All precipitation quantiles were inspected for inconsistencies across durations. Since quantiles at a given station were calculated independently for each duration, there were cases when for a given AEP, the quantile estimate for a shorter duration was higher than the quantile estimate at the next longer duration (see dotted precipitation-frequency curves shown in an example in Figure 4.5.3). The majority of anomalous cases were caused by random variation in L-moments across durations caused by data sampling variability. This showed particularly in transition from 12-hours to 24-hours at co-located stations because record lengths at hourly durations were typically shorter than record lengths at daily durations. When selected regional

L-moments and L-moment ratios (particularly L-skewness) were smoothed across durations (see more details on this in Section 4.6), irrational estimates were removed. Figure 4.5.3 illustrates precipitation depth-duration-frequency curves before and after smoothing.

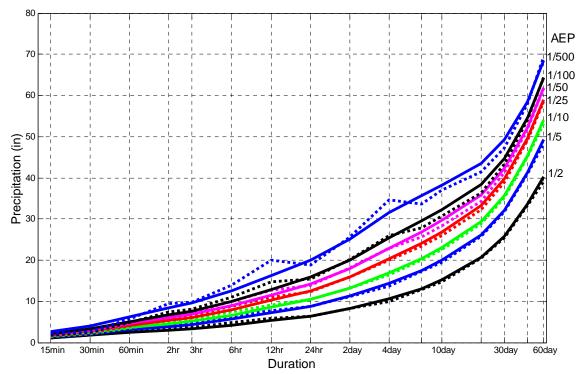


Figure 4.5.3. Precipitation frequency estimates for a range of durations for selected AEPs for station 91-4594 (Tutuila, AS). Dotted lines represent original estimates; full lines represent estimates obtained after L-moments were smoothed across durations.

Frequency estimates for n-minute durations. Because n-minute stations were not found in all regions, n-minute precipitation frequencies were first estimated through extrapolation of curves showing relationships between selected regional L-moment statistics and duration (see Figures 4.6.3 and 4.6.4 in Section 4.6.1). Precipitation frequency estimates at 5- and 10-minute durations showed sensitivity to small changes in curves' slopes, so instead, n-minute scaling factors from unconstrained 1-hour data, as used in previous NOAA Atlas 14 volumes, were developed to estimate precipitation frequencies at 5- to 30-minute durations. Seven n-minute stations that had at least 10 years of data were analyzed as one region. The n-minute scaling factors were calculated as the average of ratios of 5-, 10-, 15-, and 30-minute annual maxima to corresponding unconstrained 60-minute annual maxima. These scaling factors were applied to all unconstrained 1-hour quantiles to estimate quantiles at n-minute durations. Table 4.5.1 shows the n-minute scaling factors used in this project.

Table 4.5.1. Scaling factors applied to unconstrained 1-hour quantiles to estimate quantiles for n-minute durations.

Duration (minutes)	5	10	15	30
Scaling factor	0.25	0.39	0.50	0.74

4.5.4. PDS-based frequency estimates

As mentioned in Section 4.3, partial duration series were not extracted from the precipitation datasets in this project. Instead, PDS-based quantiles were estimated indirectly using the Langbein's formula (Langbein, 1949) that transforms PDS-based average recurrence intervals (ARIs) to annual exceedance probabilities (AEPs):

$$AEP = 1 - \exp\left(-\frac{1}{ARI}\right).$$

PDS-based frequency estimates were calculated for the same durations as AMS-based estimates. For a given daily or hourly duration, PDS-based quantiles were calculated for 1-, 2-, 5-, 10-, 25-, 50-, 100-, 200-, 500- and 1,000-year ARIs. Selected ARIs were first converted to AEPs using the above formula and then used to calculate regional growth factors following the same regional approach and using the same L-moments that were used in the AMS analysis (analysis was done simultaneously for both time series). The RGFs were finally rescaled by the station-specific mean annual maxima to produce the PDS-based quantiles for each station. Calculations were repeated for all selected durations between 1-hour and 60-day. N-minute estimates were obtained using the scaling factors calculated for AMS-based quantiles.

4.5.5. Confidence limits

A Monte Carlo simulation procedure, as described in Hosking and Wallis (1997), was used to construct 90% confidence intervals (i.e., 5% and 95% confidence limits) on both AMS-based and PDS-based precipitation frequency curves. For each region and for each hourly and daily duration, 1,000 simulated datasets were generated using the same number of stations and associated record lengths as in actual regions. They were used to generate 1,000 frequency estimates at each station using the same distribution that was fitted to original data. Generated frequency estimates were sorted from smallest to largest and the 50th value was selected as the lower confidence limit and the 950th value was selected as the upper confidence limit.

Confidence limits were independently derived for each duration through simulation and so varied from duration to duration. However, when confidence limits were standardized (i.e., divided by corresponding MAMs), very little variation was found across daily durations and across hourly durations. Standardized confidence limits did, however, vary between hourly and daily durations primarily due to differences in number of stations and cumulative number of data years per region. Therefore, two sets of lower and upper standardized confidence limits were created for each station: one applicable for daily durations and one for hourly durations. Standardized confidence limits were multiplied by corresponding MAMs to derive upper and lower bounds of 90% confidence interval. Confidence limits for n-minute durations were calculated from unconstrained 1-hour confidence limits using the same n-minute scaling factors that were used to estimate n-minute frequency estimates.

4.6. Derivation of grids

4.6.1. Mean annual maxima

As discussed in Section 4.5.1, for a given duration, at-station mean annual maximum (MAM) values serve as scaling factors to generate station-specific AMS- and PDS-based precipitation frequency estimates from duration-specific regional growth factors. Similarly, duration-specific grids of AMS- and PDS-based precipitation frequency estimates can be created by re-scaling duration-specific regional growth factors by corresponding gridded MAM estimates.

There is a significant difference in the way at-station MAMs were spatially interpolated to produce MAM grids for selected durations in this NOAA Atlas 14 volume relative to previous volumes. In previous volumes, a hybrid statistical-geographic approach for mapping climate data, Parameter-elevation Regressions on Independent Slopes Model (PRISM) developed by Oregon State University's PRISM Climate Group (e.g., Daly et al., 2002) was used to create MAM grids for all hourly and daily durations. The resulting high-resolution (typically 15- or 30-arc-seconds) MAM grids then served as the basis for deriving gridded precipitation frequency estimates for different AEPs using the Cascade, Residual Add-Back (CRAB) spatial interpolation procedure (described in Section 4.6.2 of documentation accompanying previous volumes). Since no funding was available for this project to support the PRISM work and the project area was unique in many ways relative to previous volumes, particularly with respect to the lack of adjacent precipitation frequency region boundaries, alternative interpolation techniques were applied.

Interpolation was first completed on 1-day MAMs. In regions where PRISM mean annual precipitation (MAP) grids were available and where reliable relationships were found between atstation 1-day MAMs and MAPs), regression equations were used to create MAM grids from MAP grids. For regions where no relationships between MAM and MAP existed (for those regions no relationships were found between MAM and elevation either), at-station MAM estimates were directly interpolated. On several small, low-elevation islands and atolls, no interpolation was needed. The 1-day MAM grids were used to derive MAM grids for other durations using relationships in MAM ratios across durations. The MAM grids were then used to derive grids of precipitation frequency estimates by rescaling with corresponding regional growth factors. The series of steps used to derive precipitation frequency grids with accompanying confidence limits across all durations are described in more detail below.

1-day duration. Prior to using at-station 1-day MAM estimates for the development of 1-day MAM grids, at-station MAMs were investigated for spatial inconsistencies. Several locations were identified where differences in MAMs at close stations could be attributed to differences in record lengths and/or different periods of record. Linear regression was used on annual maxima from overlapping periods (when such data existed) to adjust MAMs at stations with shorter periods of record.

For all precipitation frequency regions (shown in Figure 4.5.1), relationships were explored between at-station mean annual maxima for a range of durations and MAP, because if such relationships exist, high resolution grids of MAP created in November 2006 by the PRISM Climate Group (available for download from http://www.prism.oregonstate.edu/products/pacisl.phtml) could be used to derive MAM grids. This approach is consistent with methods used in prior volumes of NOAA Atlas 14. For this project area, if a relationship between MAM and MAP existed in a region for one duration, it existed for all durations (however, relationships were not linear for all durations). Strong linear relationships (with correlation coefficients greater than 0.9) between 1-day MAM and MAP were found only in regions 6 and 10 (see an example for region 10 in Figure 4.6.1). For those two regions, locally developed linear regression equations between MAP and 1-day MAM were used to derive high resolution (9-arc-seconds) 1-day MAM grids. Figure 4.6.2 shows an example of a resulting 1-day MAM grid for region 10 (Tutuila, AS).

For regions 1, 2, 3 and 4, no relationships between MAM (at any duration) and MAP or between MAM and elevation were established. For those four regions, direct interpolation on at-station 1-day MAM estimates was applied. Interpolation presented a significant challenge for this project due to a limited number of stations per island and because of island boundaries. Various interpolation techniques (nearest-neighbor, inverse-distance weighting, spline, etc.) were considered to interpolate at-station MAMs. MAM isohyets resulting from the various interpolation methods were compared

and checked for reasonableness. In the end, MATLAB's v4 griddata function, based on biharmonic spline interpolation (Sandwell, 1987), was selected to derive MAM grids in regions 1 to 4.

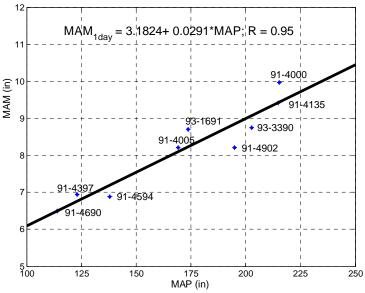


Figure 4.6.1 Relationship between 1-day MAM and MAP for region 10 (Tutuila, AS).

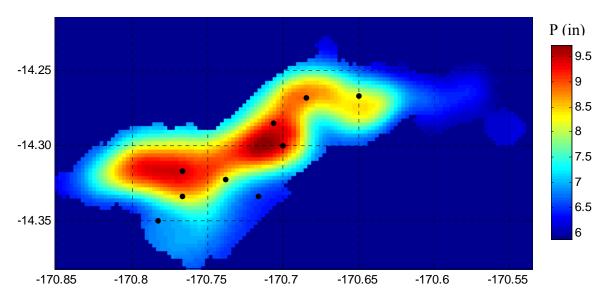


Figure 4.6.2. 1-day MAM grid for region 10 (Tutuila, AS).

No MAP grids were available for region 5. Because islands in this region are small and scattered with only a single station at an elevation less than 10 feet on each, no relationship between MAM and elevation could be investigated either. Therefore, MAMs were not interpolated in region 5. Because of the lack of precipitation data in higher elevations, any potential orographic influences on these islands are unclear. This may be a factor only for Weno Island where elevation reaches 1,214 feet (370 meters) and the MAM value estimated at a single station at 5-feet elevation may or may not be appropriate for the whole island.

For islands/atolls in regions 7, 8 and 9, as well as for several small islands/atolls in other regions, no interpolation was needed because of their size and the fact that highest elevations on those islands/atolls are well below 100 feet.

Table 4.6.1 lists various methods that were implemented in the project area to create 1-day MAM grids.

Table 4.6.1. List of methods used to create 1-day MAM grids.

Abbr.	Territory or state		Island/atoll	Region	Method
CNMI	NMI Commonwealth of the Northern Mariana Islands		Rota	1	direct interpolation
			Saipan	1	direct interpolation
			Tinian	1	direct interpolation
GU	Territory of Guam		Guam	2	direct interpolation
PW	PW Republic of Palau		Angaur	4	no interpolation needed
			Babelthuap	4	direct interpolation
			Koror	4	direct interpolation
	Federated	State of Chuuk	Lukunor	5	no interpolation needed
	States of Micronesia		Weno	5	none
		State of Kosrae	Kosrae	6	regression with MAP
		State of Pohnpei	Nukuoro	5	no interpolation needed
			Pingelap	6	no interpolation needed
			Pohnpei	6	regression with MAP
		State of Yap	Gagil-Tamil	3	direct interpolation
			Maap	3	direct interpolation
			Rumung	3	direct interpolation
			Ulithi	3	no interpolation needed
			Woleai	5	no interpolation needed
			Yap	3	direct interpolation
RMI	Republic of the Marshall Islands		Ailinglapalap	7	no interpolation needed
			Enewetak	8	no interpolation needed
			Jaluit	7	no interpolation needed
			Kwajalein	8	no interpolation needed
			Majuro	7	no interpolation needed
			Mili	7	no interpolation needed
			Utirik	8	no interpolation needed
			Wotje	8	no interpolation needed
WAKE			Wake Island	9	no interpolation needed
AS	Territory of	American Samoa	Tutuila	10	regression with MAP

Other hourly and daily durations. In contrast to previous volumes where MAM grids were created independently for each hourly and daily duration using PRISM techniques, in this volume MAM grids at hourly and daily durations were derived from 1-day MAM grids by taking advantage of simple relationships that were established for each region between at-station MAM ratios and durations, where MAM ratio is a ratio of at-station MAM for any given duration and corresponding 1-day MAM. As shown in the upper panel of Figure 4.6.3, changes in MAM with duration are different from station to station within a given region (in this example, region 10 stations are shown). However, when at-station MAM ratios are plotted against durations, inter-station variability significantly decreases (lower panel in Figure 4.6.3). An average of all at-station MAM ratios

(regional MAM ratio; shown as thick solid line in bottom panel) was applied as a scaling factor on 1-day MAM grids to develop MAM grids at other hourly and daily durations for a region. The 2nd order polynomial function was used to smooth average regional MAM ratios across durations, but adjustment was typically minor.

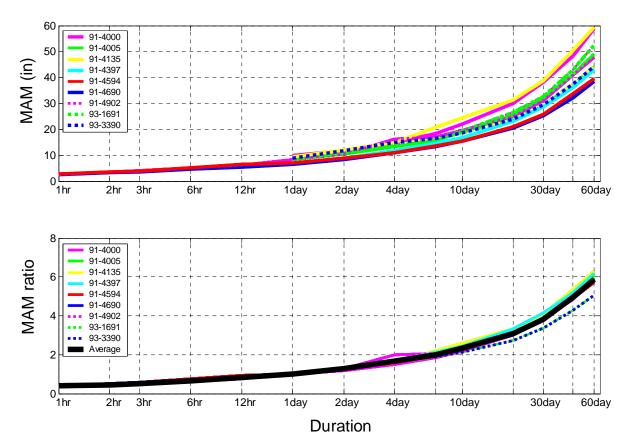


Figure 4.6.3. At-station MAMs versus duration (upper panel) and at-station MAM ratios versus duration (lower panel) for stations in region 10 (Tutuila, AS).

4.6.2. Precipitation frequency estimates

1-day duration. Gridded 1-day MAM estimates and regional estimates of L-CV and L-skewness (obtained through analysis of station data; as described in Section 4.5) were used to calculate GEV-distribution quantiles for selected AEPs and ARIs for each grid cell. PDS- and AMS-based precipitation frequency grids were created simultaneously (ARIs selected for PDS-based analysis were first converted to AEPs using Langbein's formula and then added to a set of AEPs selected for AMS-based frequency analysis).

Other hourly and daily durations. A comparison of precipitation quantiles (discussed in Section 4.5.3) indicated that the majority of inconsistencies that occurred occasionally in depth-duration-frequency (DDF) curves were caused by random variation of L-moments across durations. Smoothing of regional L-moment ratios across durations (see an example for region 10 in Figure 4.6.4) improved at-station DDF curves (see results for station 91-4594 from region 10 in Figure 4.5.3). For a given duration, gridded MAM estimates and regional estimates of L-CV and L-

skewness, obtained through regional analysis of station data and smoothed across durations, were used to calculate GEV-distribution quantiles for selected AEPs and ARIs for each grid cell. PDS- and AMS-based precipitation frequency grids were created simultaneously.

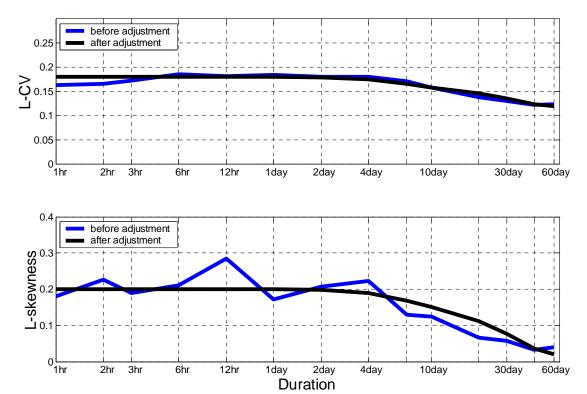


Figure 4.6.4. Regional L-moment ratios before and after adjustments across durations for region 10. Upper panel shows L-CV and lower panel shows L-skewness.

N-minute durations. Grids of n-minute precipitation frequency estimates for all AEPs and ARIs were calculated by applying n-minute scaling factors from Table 4.5.1 (in Section 4.5.3) to corresponding grids of unconstrained 1-hour precipitation frequency estimates.

4.6.3. Confidence limits

Hourly and daily durations. At-station upper and lower confidence limits (Section 4.5.5) for daily (hourly) durations were standardized by dividing them by corresponding MAMs and then interpolated using biharmonic spline interpolation method. For a given daily (hourly) duration, standardized upper and lower confidence limits grids were then rescaled by related MAM grids to obtain grids of upper and lower confidence limits at all daily (hourly) durations.

N-minute durations. Grids of n-minute upper (lower) confidence limits for all AEPs and ARIs were calculated by applying n-minute scaling factors from Table 4.5.1 to corresponding unconstrained 1-hour upper (lower) confidence limits grids.

5. Precipitation Frequency Data Server

NOAA Atlas 14 precipitation frequency estimates are delivered entirely in digital form in order to make the estimates more widely available and to provide them in various formats. The Precipitation Frequency Data Server - PFDS (http://hdsc.nws.noaa.gov/hdsc/pfds/) provides a point-and-click web portal for precipitation frequency estimates and associated information.

In early 2011 a major redesign of the PFDS web interface was done to make PFDS pages interactive. Since then, PFDS pages were enhanced on several occasions to improve the usability and readability of PFDS website's content, to increase data download speeds and to provide additional information. In order to keep this section of the documentation up-to-date for all volumes, the PFDS section is offered as a separate document. This document is updated as needed and is available for download from here: https://www.weather.gov/media/owp/hdsc documents/NA14 Sec5 PFDS.pdf.

6. Peer review

A peer review of selected preliminary results was carried out during the four week period starting on July 21, 2009. 646 users who were members of the HDSC list-server, and other interested parties were contacted via email for the review. Potential reviewers were asked to evaluate the reasonableness of point precipitation frequency estimates as well as their spatial patterns. The review included the following items:

- a. At-station depth-duration-frequency curves built from annual maximum series data for a range of durations for which data were available;
- b. Isohyethal maps of mean annual maximum precipitation amounts for 60-minute, 24-hour, and 10-day durations;
- c. Isohyethal maps of precipitation frequency estimates for 1/2 and 1/100 annual exceedance probabilities and 60-minute, 24-hour, and 10-day durations;
- d. Map showing regional groupings of stations used in frequency analysis.

 The reviews provided useful feedback that HDSC used to create a better product. Details regarding reviewer comments and HDSC responses can be found in Appendix A.7.

7. Comparison with previous NWS studies (n/a)

This section was retained to be consistent with documentation of previous volumes of NOAA Atlas 14. However, NOAA Atlas 14 Volume 5 is the first NWS publication that covers Pacific Islands. Therefore, no comparison is offered with previous studies.

Acknowledgments

This work was funded by NOAA's National Weather Service, Office of Hydrologic Development and NOAA's Climate Program Office.

We acknowledge colleagues who provided additional data for this project beyond what was available from NOAA's National Climatic Data Center, including: Charles (Chip) Guard from the National Weather Service Pacific Region who collected recent data from various NOAA-affiliated colleagues: Eden Skilling, Wallace Jacob, Justin Fanechigiy, Sanchez Salle, Martin Falanug, Clarice Ching, David Meek, and Kenely Andon, and from Doug and Sally Beitz of Kosrae Nautilus Resort; Jill D. Nishimura who provided data from the U.S. Geological Survey (USGS) Pacific Islands Water Science Center.

Lastly, we acknowledge colleagues who provided feedback to improve the final product, including: William Merkel of United States Department of Agriculture's National Resources Conservation Service and Charles (Chip) Guard from the National Weather Service Pacific Region.

Appendix A.1 List of stations used to prepare precipitation frequency estimates

Table A.1.1. List of stations used in the analysis showing state/territory name, island and station names, station ID, source of data, latitude, longitude, elevation, regional affiliation, data reporting interval (station type) and period of record. Bold font indicates information that has been adjusted from original value. NCDC* indicates NCDC stations for which records were extended using data provided by the NWS Weather Forecast Office in Guam.

Territory/ state	Island/atoll	Station name	Station ID	Source of data	Latitude	Longitude	Elevation (ft)	Region	Туре	Period of record
	ROTA	ROTA	91-4800	NCDC	14.1397	145.1442	47	1	DLY	1956-1982
		ROTA AP	91-4801	NCDC	14.1717	145.2428	588	1	15MIN	1982-2007
CNMI	SAIPAN	CAPITOL HILL 1	91-4080	NCDC	15.2032	145.7485	827	1	15MIN	1980-2007
	SAIPAN	SAIPAN INTL AP	91-4855	NCDC	15.1189	145.7294	215	1	15MIN	1979-2007
		SAIPAN LORAN	91-4860	NCDC	15.1333	145.7000	10	1	DLY	1954-1978
	TINIAN	TINIAN	91-4874	NCDC*	15.0000	145.6333	268	1	DLY	1987-2008
		AGAT	91-4001	NCDC	13.3840	144.6575	10	2	DLY	1978-2008
		ANDERSEN AFB	91-4025	NCDC*	13.5759	144.9259	624	2	DLY	1953-2002
		DEDEDO	91-4156	NCDC	13.5171	144.8479	350	2	DLY	1978-2008
		DEDEDO	93-4966	USGS	13.5223	144.8493	398	2	DLY HLY	1988-2008 1992-2008
		FENA FILTER PLANT	93-5766	USGS	13.3867	144.6845	398	2	DLY	1951-1983
		FENA LAKE	91-4200	NCDC	13.3589	144.7056	60	2	15MIN	1980-2007
		GUAM NWSO TIYAN	91-4226	NCDC	13.4843	144.7979	254	2	DLY NMIN	1945-2008 1984-2007
GU	GUAM	GUAM WSMO	91-4229	NCDC*	13.5600	144.8389	361	2	DLY	1957-1998
		INARAJAN AG STN	91-4275	NCDC	13.2785	144.7504	30	2	DLY	1978-2008
		INARAJAN-NASA	91-4278	NCDC	13.3100	144.7366	280	2	15MIN	1979-2007
		MANGILAO	91-4468	NCDC	13.4499	144.7995	60	2	DLY	1970-2008
		MOUNT CHACHAO NEAR PITI	93-3366	USGS	13.4365	144.7105	803	2	DLY	1988-2008
		PITI	91-4670	NCDC	13.4589	144.6899	10	2	15MIN	1978-2007
		UMATAC	93-3766	USGS	13.2918	144.6622	253	2	DLY HLY	1978-2008 1992-2008
		WINDWARD HILLS NEAR TALOFOFO	93-1966	USGS	13.3761	144.7316	305	2	DLY HLY	1974-2008 1991-2007

Territory/ state	Island/atoll	Station name	Station ID	Source of data	Latitude	Longitude	Elevation (ft)	Region	Туре	Period record
	ANGAUR	ANGAUR	91-4030	NCDC*	6.9046	134.1387	20	4	DLY	1955-19
	BABELTHUAP	NEKKEN FORESTRY	91-4519	NCDC*	7.4500	134.5000	102	4	DLY	1983-20
PW		NGASANG	91-4580	NCDC*	7.6333	134.6429	10	4	DLY	1955-19
	KOROR	KOROR WSO	91-4351	NCDC*	7.3430	134.4785	94	4	DLY HLY NMIN	1951-20 1984-20 1973-19
FSM/	LUKUNOR	LUKUNOR	91-4419	NCDC*	5.5135	153.8167	5	5	DLY	1962-20
CHUUK	WENO	CHUUK WSO AP	91-4111	NCDC*	7.4552	151.8376	5	5	DLY HLY NMIN	1914-20 1984-20 1973-19
		KOSRAE	91-4395	NCDC*	5.3544	162.9533	7	6	DLY	1954-20
FSM/ KOSRAE	KOSRAE	TAFUNSAK	91-4825	NCDC*	5.3646	162.9840	14	6	DLY	1991-2
KOSKAE		TOFOL	91-4843	NCDC*	5.3264	163.0050	49	6	DLY	1987-2
		UTWA	91-4898	NCDC*	5.2701	162.9792	13	6	DLY	1990-2
	NUKUORO	NUKUORO	91-4590	NCDC*	3.8500	154.9730	8	5	DLY	1985-2
	PINGELAP	PINGELAP	91-4720	NCDC*	6.2107	160.7039	8	6	DLY	1985-2
		METALANIM	91-4482	NCDC*	6.8456	158.3064	30	6	DLY	1967-2
FSM/	POHNPEI	OA	91-4665	NCDC*	6.9333	158.3167	79	6	DLY	1956-1
POHNPEI		PAIES-KITTI	91-4705	NCDC*	6.9053	158.1586	150	6	DLY	1981-2
		PALIKIR	91-4710	NCDC*	6.9269	158.1572	280	6	DLY	1991-2
		POHNPEI HOSPITAL	91-4745	NCDC	6.9569	158.2178	30	6	15MIN	1980-2
		POHNPEI WSO	91-4751	NCDC	6.9500	158.2167	120	6	DLY NMIN	1951-2 1973-1
	GAGIL-TAMIL	TAMIL	91-4831	NCDC*	9.5500	138.1500	70	3	DLY	1991-2
	MAAP	MAAP	91-4446	NCDC*	9.6053	138.1786	49	3	DLY	1991-2
	RUMUNG	RUMUNG	91-4808	NCDC*	9.6244	138.1592	65	3	DLY	1993-2
FSM/	ULITHI	ULITHI	91-4892	NCDC*	10.0204	139.7916	6	3	DLY	1954-2
YAP	WOLEAI	WOLEAI ATOLL	91-4911	NCDC*	7.3797	143.9113	7	5	DLY	1968-2
		GILMAN	91-4213	NCDC*	9.4508	138.0619	50	3	DLY	1997-2
	YAP	LUWEECH	91-4429	NCDC*	9.4833	138.0833	33	3	DLY	1987-2
		NORTH FANIF	91-4585	NCDC*	9.5742	138.1108	10	3	DLY	1993-20
		YAP ISLAND WSO AP	91-4951	NCDC	9.5167	138.1333	44	3	DLY	1951-2

Appendix A.2 Annual maximum series trend analysis

1. Selection of statistical tests for detection of trends in AMS

Precipitation frequency analysis methods used in NOAA Atlas 14 volumes are based on the assumption of stationary climate over the period of observation (and application). To meet the stationarity criterion, the annual maximum series data must be free from trends during the observation period. A number of parametric and non-parametric statistical tests are available for the detection and/or quantification of trends. Selection of an appropriate statistical test requires consideration of the data tested and the limitations of the test.

Annual maximum series (AMS) were first graphed for each station in the project area to examine the time series and to observe general types of trends in the data. Visual inspection of time series plots indicated that there were no abrupt changes or apparent cycles in the AMS, but suggested the possibility of slight trends at some locations. Changes appeared to be gradual and approximately linear, and mostly decreasing trends were observed in these data.

The null hypothesis that there are no trends in annual maximum series was tested on AMS data at each station in the project area with at least 30 years of data. Since there were no hourly stations that satisfied that requirement, testing was done on 1-day AMS only. The hypothesis was tested at each station separately and for the region as a whole (American Samoa was excluded because of its distance from other islands) at the level of significance $\alpha = 5\%$. At-station trends were inspected using the parametric *t*-test for trend and non-parametric Mann-Kendall test (Maidment, 1993). Both tests are extensively used in environmental sciences and are appropriate for records that have undergone a gradual change. The tests are fairly robust, readily available, and easy to use and interpret. Since each test is based on different assumptions and different test statistics, the rationale was that if both tests have similar outcomes there can be more confidence about the results. If the outcomes were different, it would provide an opportunity to investigate reasons for discrepancies.

Parametric tests in general have been shown to be more powerful than non-parametric tests when the data are approximately normally distributed and when the assumption of homoscedasticity (homogeneous variance) holds (Hirsch et al., 1991), but are less reliable when those assumptions do not hold. The parametric *t*-test for trend detection is based on linear regression, and therefore checks only for a linear trend in data. However, requiring a linear trend assumption seemed sufficient, since, as mentioned above, time series plots indicated monotonic changes in AMS. The Pearson correlation coefficient (*r*) was used as a measure of linear association for the *t*-test. The hypothesis that the data are not dependent on time (and also that they are independent and normally distributed numbers) was tested using the test statistic *t* that follows Student's distribution and is defined as:

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$

where n is the record length of the AMS. The hypothesis is rejected when the absolute value of the computed t-statistic is greater than the critical value obtained from Student's distribution with (n - 2) degrees of freedom and exceedance probability of $\alpha/2\%$, where α is the significance level. The sign of the t-statistic defines the direction of the trend, positive or negative.

Non-parametric tests have advantages over parametric tests since they make no assumption of probability distribution and are performed without specifying whether trend is linear or nonlinear. They are also more resilient to outliers in data because they do not operate on data directly. One of the disadvantages of non-parametric tests is that they do not account for the magnitude of the data. The Mann-Kendall test was selected among various non-parametric tests because it can accommodate missing values in a time series, which was a common occurrence in the AMS data. The Mann-

Kendall test compares the relative magnitudes of annual maximum data. If annual maximum values are indexed based on time, and x_i is the annual maximum value that corresponds to year t_i , then the Mann-Kendall statistic is given by:

$$S = \sum_{k=1}^{n-1} \sum_{i=k+1}^{n} sign(x_i - x_k)$$

The test statistic Z is then computed using a normal approximation and standardization of the statistic S. The null hypothesis that there is no trend in the data is rejected at significance level α if the computed Z value is greater, in absolute terms, than the critical value obtained from standard normal distribution that has probability of exceedance of $\alpha/2\%$. The sign of the statistic defines the direction of the trend, positive or negative.

In addition to an at-station trend analysis, the relative magnitude of any trend in AMS for the region as a whole (excluding American Samoa) was assessed by linear regression techniques. Station-specific AMS were rescaled by corresponding mean annual maximum values and then regressed against time, where time was defined as year of occurrence minus 1900. The regression results from all stations were tested against a null hypothesis of zero serial correlation (zero regression slopes).

2. Trend analysis and conclusions

The null hypothesis that there are no trends in annual maximum series was tested on 1-day AMS data at each station in the project area with at least 30 years of data. 16 daily stations (and no hourly or 15-minute stations) satisfied the record length criterion. The *t*-test and Mann-Kendall test for trends were applied to test the hypothesis. As can be seen from Table A.2.1, results from both tests were essentially the same for the 1-day AMS. Both tests indicated no statistically-significant trends in 14 of 16 stations tested. The Mann-Kendal test detected a positive trend in 1-day AMS data in one location in Pohnpei, and the *t*-test identified a negative trend in one location on Guam. Spatial distribution of trend analysis results for 1-day AMS is shown in Figure A.2.1.

Table A.2.1. Trend analysis results based on *t*-test and Mann-Kendall test for 1-day AMS data.

	t-test	Mann-Kendall test
Number of stations with no trend	15	15
Number of stations with positive trend	0	1
Number of stations with negative trend	1	0
Total number of stations tested	16	16

Results from the regional trend analysis also indicated that the null hypothesis (no trends in AMS in the project area) could not be rejected at 5% significance level. Because all tests indicated no statistically-significant trends in the data, the assumption of stationary climate was accepted for this project area and no adjustment to AMS data was recommended.

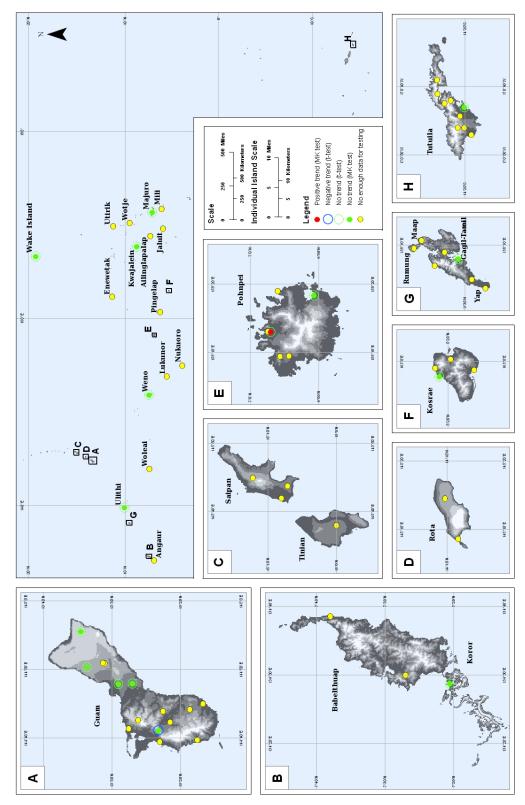


Figure A.2.1. Spatial distribution of trend results for 1-day AMS.

Appendix A.3 Regional L-moment ratios

Table A.3.1. Number of stations, total number of data years, sample estimates of regional L-moment ratios: coefficient of L-variation (L-CV), L-skewness and L-kurtosis for each region and duration.

Region	Duration	variation (L-CV Number of stations	Number of data years	L-CV	L-skewness	L-kurtosis
	1-hour	3	62	0.193	0.228	0.209
	2-hour	3	61	0.203	0.233	0.194
	3-hour	3	64	0.213	0.175	0.205
	6-hour	3	65	0.245	0.223	0.225
	12-hour	3	65	0.255	0.253	0.190
	1-day	6	114	0.267	0.291	0.235
1	2-day	6	112	0.265	0.248	0.146
1	4-day	6	110	0.233	0.199	0.135
	7-day	6	113	0.224	0.189	0.130
	10-day	6	113	0.218	0.196	0.120
	20-day	6	113	0.200	0.176	0.141
	30-day	6	112	0.185	0.130	0.123
	45-day	6	114	0.176	0.103	0.103
	60-day	6	112	0.168	0.098	0.070
	1-hour	6	121	0.166	0.186	0.175
-	2-hour	6	122	0.196	0.238	0.117
	3-hour	6	123	0.208	0.251	0.180
	6-hour	6	123	0.220	0.248	0.202
	12-hour	6	123	0.223	0.223	0.179
	1-day	15	462	0.266	0.306	0.197
2	2-day	15	457	0.245	0.301	0.215
2	4-day	15	473	0.218	0.275	0.228
	7-day	15	473	0.203	0.262	0.219
	10-day	15	471	0.188	0.244	0.209
	20-day	15	474	0.175	0.200	0.178
	30-day	15	474	0.160	0.162	0.175
	45-day	15	474	0.146	0.082	0.162
	60-day	15	466	0.143	0.091	0.166
3	1-hour	1	21	0.277	-0.113	-0.069
	2-hour	1	21	0.299	-0.042	-0.036
	3-hour	1	21	0.307	-0.056	-0.031
	6-hour	1	21	0.314	-0.049	0.005
	12-hour	1	21	0.344	-0.002	-0.007
	1-day	8	196	0.189	0.177	0.178
	2-day	8	196	0.193	0.201	0.167
	4-day	8	196	0.179	0.239	0.222

Region	Duration	Number of stations	Number of data years	L-CV	L-skewness	L-kurtosis
	7-day	8	195	0.170	0.212	0.235
	10-day	8	193	0.159	0.227	0.258
	20-day	8	197	0.144	0.116	0.216
	30-day	8	195	0.136	0.096	0.185
	45-day	8	196	0.122	0.095	0.199
	60-day	8	196	0.116	0.083	0.160
	1-hour	1	23	0.148	0.242	0.229
	2-hour	1	23	0.182	0.216	0.120
	3-hour	1	23	0.165	0.072	0.094
	6-hour	1	23	0.131	0.008	0.213
	12-hour	1	23	0.174	0.238	0.239
	1-day	4	119	0.207	0.25	0.185
4	2-day	4	117	0.207	0.307	0.176
4	4-day	4	117	0.180	0.213	0.177
	7-day	4	118	0.153	0.154	0.168
	10-day	4	118	0.148	0.186	0.157
	20-day	4	118	0.124	0.179	0.178
	30-day	4	118	0.122	0.156	0.147
	45-day	4	119	0.118	0.112	0.121
	60-day	4	118	0.116	0.128	0.152
	1-hour	1	16	0.181	0.299	0.15
	2-hour	1	16	0.213	0.308	0.275
	3-hour	1	16	0.216	0.354	0.295
	6-hour	1	16	0.200	0.393	0.360
	12-hour	1	16	0.256	0.503	0.559
	1-day	4	133	0.18	0.246	0.225
5	2-day	4	134	0.186	0.264	0.222
3	4-day	4	134	0.182	0.253	0.213
	7-day	4	133	0.175	0.246	0.218
	10-day	4	132	0.157	0.247	0.208
	20-day	4	133	0.134	0.159	0.282
	30-day	4	132	0.118	0.147	0.261
	45-day	4	133	0.114	0.137	0.205
	60-day	4	131	0.107	0.125	0.172
6	1-hour	1	27	0.156	0.18	0.178
	2-hour	1	27	0.168	0.124	0.098
	3-hour	1	27	0.155	0.084	0.093
	6-hour	1	27	0.169	0.163	0.075
	12-hour	1	27	0.213	0.36	0.165

Region	Duration	Number of stations	Number of data years	L-CV	L-skewness	L-kurtosis
	1-day	11	275	0.187	0.270	0.213
	2-day	11	275	0.180	0.273	0.167
	4-day	11	279	0.164	0.249	0.195
	7-day	11	279	0.142	0.240	0.177
	10-day	11	279	0.137	0.218	0.144
	20-day	11	279	0.120	0.189	0.131
	30-day	11	279	0.115	0.18	0.156
	45-day	11	279	0.114	0.164	0.164
	60-day	11	279	0.108	0.151	0.139
	1-hour	1	21	0.090	-0.071	-0.016
	2-hour	1	21	0.109	0.126	0.044
	3-hour	1	21	0.111	0.159	0.070
	6-hour	1	22	0.169	0.252	0.179
	12-hour	1	22	0.195	0.437	0.348
	1-day	4	109	0.188	0.229	0.147
7	2-day	4	109	0.179	0.267	0.245
/	4-day	4	109	0.173	0.194	0.180
	7-day	4	109	0.153	0.168	0.220
	10-day	4	106	0.132	0.155	0.162
	20-day	4	108	0.117	0.060	0.139
	30-day	4	108	0.117	0.042	0.145
	45-day	4	109	0.119	0.049	0.109
	60-day	4	107	0.111	0.083	0.151
	1-hour	0	-	-	-	-
	2-hour	0	-	-	-	-
	3-hour	0	-	-	-	-
	6-hour	0	-	-	-	-
	12-hour	0	-	-	-	-
	1-day	4	109	0.202	0.295	0.211
8	2-day	4	110	0.220	0.268	0.219
8	4-day	4	110	0.215	0.290	0.237
	7-day	4	110	0.203	0.267	0.255
	10-day	4	109	0.182	0.269	0.248
	20-day	4	110	0.173	0.161	0.174
	30-day	4	110	0.170	0.18	0.216
	45-day	4	110	0.161	0.101	0.179
	60-day	4	108	0.149	0.12	0.153
9	1-hour	1	12	0.148	0.284	0.330
	2-hour	1	12	0.226	0.274	0.124

Region	Duration	Number of stations	Number of data years	L-CV	L-skewness	L-kurtosis	
	3-hour	1	12	0.238	0.260	-0.021	
	6-hour	1	12	0.280	0.262	-0.007	
	12-hour	1	12	0.279	0.337	0.014	
	1-day	1	52	0.238	0.284	0.121	
	2-day	1	52	0.258	0.298	0.152	
	4-day	1	52	0.271	0.350	0.210	
	7-day	1	52	0.281	0.384	0.242	
	10-day	1	52	0.275	0.360	0.220	
	20-day	1	52	0.249	0.286	0.211	
	30-day	1	52	0.218	0.282	0.303	
	45-day	1	52	0.213	0.222	0.264	
	60-day	1	52	0.224	0.237	0.256	
	1-hour	3	62	0.138	0.180	0.088	
	2-hour	3	62	0.166	0.227	0.116	
	3-hour	3	62	0.173	0.189	0.162	
	6-hour	3	62	0.186	0.211	0.193	
	12-hour	3	62	0.182	0.284	0.289	
	1-day	9	210	0.184	0.172	0.120	
10	2-day	9	210	0.180	0.207	0.140	
10	4-day	9	192	0.181	0.224	0.158	
	7-day	9	213	0.172	0.130	0.172	
	10-day	9	213	0.158	0.124	0.155	
	20-day	9	213	0.138	0.066	0.098	
	30-day	9	214	0.130	0.057	0.110	
	45-day	9	211	0.123	0.033	0.092	
	60-day	9	211	0.123	0.039	0.122	

Appendix A.4 Regional heterogeneity measures

Table A.4.1. Regional heterogeneity measure H1 for 1-hour through 60-day durations. H1 was calculated only for regions/durations with at least 2 stations.

D4'		zaratea e				gion				
Duration	1	2	3	4	5	6	7	8	9	10
1-hour	1.20	1.30		-0.30						0.07
2-hour	0.62	1.48		-0.47						-1.51
3-hour	0.31	0.91		-0.40						-0.45
6-hour	-0.68	-0.64		-0.39						0.51
12-hour	-0.34	-0.29		-0.39						-0.11
1-day	-0.65	-0.38	-1.24	-1.15	1.10	1.33	-1.34	1.40		1.56
2-day	-0.31	-0.18	0.85	-0.42	1.00	-0.58	0.13	0.64		0.32
4-day	-0.42	0.50	0.78	0.49	-0.26	-0.09	-0.18	2.08		0.04
7-day	1.18	-0.92	0.81	1.28	-0.99	-0.99	-0.29	1.57		0.03
10-day	0.30	-0.99	0.45	1.23	0.30	-1.21	-0.96	2.13		1.63
20-day	-0.34	-0.72	1.85	0.41	0.47	-0.55	0.23	2.50		0.12
30-day	-0.97	1.48	1.10	1.78	2.16	1.01	0.72	1.55		0.39
45-day	-0.27	2.58	1.61	2.67	1.76	0.46	1.17	3.05		-0.27
60-day	0.15	2.59	0.34	1.82	2.37	0.83	-0.72	2.32		0.57

Appendix A.5 Regional growth factors for selected ARIs and AEPs

Table A.5.1. Regional growth factors (RGF) used to calculate precipitation frequency estimates based on partial duration series for selected durations and average recourence intervals.

	on partial c	duration series for selected durations and average reccurence intervals. Average reccurence interval (years)											
Region	Duration		Γ		Average	reccuren	ce interv	al (years	s)				
		1	2	5	10	25	50	100	200	500	1000		
	1-hour	0.83	1.01	1.27	1.47	1.76	1.99	2.23	2.49	2.85	3.14		
	2-hour	0.81	1.02	1.31	1.55	1.88	2.15	2.43	2.73	3.15	3.49		
	3-hour	0.80	1.02	1.32	1.57	1.91	2.19	2.48	2.79	3.22	3.57		
	6-hour	0.79	1.02	1.34	1.59	1.95	2.24	2.54	2.87	3.32	3.68		
	12-hour	0.76	1.02	1.38	1.68	2.09	2.42	2.77	3.14	3.66	4.08		
	1-day	0.76	1.02	1.39	1.68	2.09	2.42	2.77	3.14	3.66	4.08		
1	2-day	0.78	1.02	1.35	1.62	1.99	2.30	2.61	2.95	3.42	3.80		
1	4-day	0.79	1.02	1.34	1.60	1.95	2.24	2.54	2.86	3.30	3.66		
	7-day	0.81	1.02	1.31	1.55	1.87	2.12	2.39	2.67	3.06	3.37		
	10-day	0.82	1.02	1.30	1.52	1.82	2.06	2.30	2.56	2.92	3.20		
	20-day	0.84	1.03	1.28	1.48	1.74	1.95	2.16	2.37	2.66	2.89		
	30-day	0.85	1.03	1.27	1.45	1.69	1.87	2.05	2.23	2.47	2.66		
	45-day	0.86	1.04	1.26	1.42	1.63	1.78	1.93	2.08	2.26	2.40		
	60-day	0.87	1.04	1.26	1.41	1.60	1.73	1.86	1.98	2.13	2.23		
	1-hour	0.85	1.02	1.24	1.42	1.66	1.86	2.05	2.26	2.54	2.75		
	2-hour	0.85	1.02	1.25	1.43	1.68	1.87	2.07	2.28	2.56	2.78		
	3-hour	0.85	1.02	1.26	1.45	1.70	1.90	2.11	2.33	2.62	2.85		
	6-hour	0.82	1.02	1.31	1.53	1.83	2.07	2.32	2.57	2.92	3.20		
	12-hour	0.77	1.03	1.38	1.66	2.03	2.33	2.64	2.95	3.39	3.73		
	1-day	0.77	1.03	1.39	1.67	2.06	2.36	2.67	3.00	3.44	3.79		
2	2-day	0.79	1.03	1.36	1.62	1.97	2.25	2.54	2.83	3.24	3.56		
2	4-day	0.79	1.03	1.35	1.60	1.94	2.21	2.49	2.77	3.17	3.48		
	7-day	0.81	1.02	1.31	1.54	1.85	2.09	2.34	2.60	2.96	3.24		
	10-day	0.83	1.02	1.29	1.50	1.79	2.02	2.25	2.49	2.83	3.09		
	20-day	0.84	1.02	1.26	1.45	1.71	1.92	2.13	2.35	2.65	2.88		
	30-day	0.85	1.02	1.25	1.43	1.68	1.87	2.07	2.27	2.56	2.78		
	45-day	0.86	1.02	1.23	1.39	1.62	1.79	1.97	2.16	2.42	2.63		
	60-day	0.88	1.02	1.20	1.35	1.54	1.70	1.86	2.03	2.26	2.44		
3	1-hour	0.82	1.03	1.31	1.52	1.81	2.03	2.26	2.49	2.80	3.04		
	2-hour	0.83	1.03	1.29	1.50	1.78	1.99	2.21	2.43	2.73	2.97		
	3-hour	0.83	1.03	1.29	1.49	1.76	1.97	2.18	2.39	2.69	2.91		
	6-hour	0.84	1.03	1.27	1.46	1.72	1.92	2.12	2.32	2.60	2.81		
	12-hour	0.85	1.02	1.26	1.44	1.68	1.87	2.06	2.25	2.51	2.72		
	1-day	0.86	1.02	1.24	1.41	1.64	1.82	2.00	2.18	2.43	2.63		
	2-day	0.86	1.02	1.23	1.40	1.62	1.79	1.96	2.14	2.38	2.57		

		Average reccurence interval (years)									
Region	Duration	1	2	5	10	25	50	100	200	500	1000
	4-day	0.86	1.02	1.23	1.40	1.62	1.79	1.96	2.14	2.38	2.57
	7-day	0.87	1.02	1.22	1.38	1.60	1.76	1.93	2.10	2.33	2.51
	10-day	0.87	1.02	1.22	1.37	1.58	1.74	1.90	2.07	2.29	2.47
	20-day	0.88	1.02	1.21	1.35	1.55	1.70	1.86	2.01	2.23	2.40
	30-day	0.88	1.02	1.20	1.34	1.53	1.68	1.83	1.99	2.20	2.36
	45-day	0.89	1.02	1.19	1.32	1.51	1.65	1.79	1.94	2.14	2.29
	60-day	0.90	1.02	1.18	1.30	1.47	1.60	1.74	1.88	2.06	2.21
	1-hour	0.87	1.01	1.21	1.36	1.58	1.76	1.94	2.14	2.41	2.63
	2-hour	0.87	1.01	1.21	1.36	1.58	1.76	1.94	2.14	2.41	2.63
	3-hour	0.87	1.01	1.21	1.36	1.58	1.76	1.94	2.14	2.41	2.63
	6-hour	0.87	1.01	1.21	1.36	1.58	1.76	1.94	2.14	2.41	2.63
	12-hour	0.87	1.01	1.21	1.36	1.58	1.76	1.94	2.14	2.41	2.63
	1-day	0.87	1.01	1.20	1.36	1.57	1.75	1.93	2.12	2.39	2.60
4	2-day	0.88	1.01	1.20	1.35	1.56	1.72	1.90	2.08	2.34	2.55
4	4-day	0.88	1.01	1.20	1.34	1.55	1.71	1.88	2.05	2.30	2.49
	7-day	0.89	1.02	1.19	1.33	1.52	1.67	1.83	1.99	2.20	2.38
	10-day	0.89	1.02	1.19	1.33	1.51	1.65	1.80	1.95	2.15	2.31
	20-day	0.89	1.02	1.19	1.32	1.49	1.63	1.77	1.91	2.10	2.25
	30-day	0.89	1.02	1.19	1.31	1.49	1.62	1.75	1.89	2.07	2.21
	45-day	0.90	1.02	1.18	1.31	1.47	1.60	1.73	1.86	2.03	2.17
	60-day	0.90	1.02	1.18	1.30	1.46	1.58	1.71	1.83	2.00	2.13
	1-hour	0.88	1.01	1.20	1.35	1.56	1.74	1.92	2.12	2.41	2.64
	2-hour	0.88	1.01	1.19	1.34	1.55	1.72	1.90	2.09	2.36	2.59
	3-hour	0.88	1.01	1.19	1.34	1.55	1.71	1.89	2.08	2.36	2.58
	6-hour	0.88	1.01	1.20	1.35	1.57	1.74	1.93	2.12	2.41	2.64
	12-hour	0.87	1.01	1.21	1.37	1.60	1.78	1.98	2.19	2.49	2.73
	1-day	0.87	1.01	1.21	1.37	1.59	1.77	1.96	2.16	2.44	2.68
5	2-day	0.88	1.01	1.20	1.35	1.57	1.74	1.92	2.11	2.37	2.59
3	4-day	0.88	1.01	1.20	1.35	1.56	1.73	1.90	2.08	2.34	2.54
	7-day	0.88	1.01	1.20	1.34	1.54	1.70	1.86	2.04	2.28	2.46
	10-day	0.88	1.01	1.19	1.33	1.53	1.68	1.84	2.00	2.23	2.41
	20-day	0.89	1.02	1.19	1.32	1.50	1.64	1.78	1.93	2.14	2.29
	30-day	0.89	1.02	1.18	1.31	1.49	1.62	1.76	1.90	2.09	2.24
	45-day	0.90	1.02	1.18	1.30	1.47	1.60	1.73	1.87	2.05	2.19
	60-day	0.90	1.02	1.17	1.29	1.46	1.58	1.71	1.84	2.01	2.15
6	1-hour	0.86	1.02	1.23	1.40	1.63	1.81	1.99	2.18	2.44	2.65
	2-hour	0.86	1.02	1.24	1.41	1.65	1.83	2.02	2.21	2.47	2.68
	3-hour	0.86	1.02	1.24	1.42	1.66	1.84	2.03	2.23	2.50	2.70

	-	Average reccurence interval (years)									
Region	Duration	1	2	5	10	25	50	100	200	500	1000
	6-hour	0.85	1.02	1.25	1.43	1.67	1.86	2.06	2.26	2.54	2.75
	12-hour	0.85	1.02	1.26	1.44	1.69	1.89	2.09	2.29	2.57	2.79
	1-day	0.85	1.02	1.26	1.44	1.69	1.88	2.07	2.27	2.54	2.75
	2-day	0.86	1.02	1.24	1.41	1.64	1.81	1.98	2.16	2.40	2.59
	4-day	0.87	1.03	1.24	1.40	1.61	1.77	1.93	2.09	2.30	2.46
	7-day	0.88	1.03	1.23	1.38	1.57	1.71	1.85	1.99	2.17	2.31
	10-day	0.88	1.03	1.22	1.35	1.53	1.67	1.79	1.92	2.09	2.22
	20-day	0.90	1.03	1.19	1.31	1.46	1.57	1.69	1.79	1.94	2.04
	30-day	0.90	1.03	1.19	1.30	1.45	1.56	1.66	1.77	1.90	2.00
	45-day	0.91	1.03	1.18	1.30	1.44	1.54	1.65	1.75	1.88	1.97
	60-day	0.91	1.03	1.18	1.29	1.42	1.52	1.62	1.72	1.84	1.93
	1-hour	0.88	1.02	1.21	1.35	1.56	1.72	1.89	2.08	2.34	2.55
	2-hour	0.88	1.02	1.20	1.35	1.55	1.71	1.88	2.06	2.32	2.52
	3-hour	0.88	1.02	1.20	1.35	1.55	1.71	1.87	2.05	2.30	2.51
	6-hour	0.88	1.02	1.20	1.34	1.54	1.70	1.86	2.03	2.27	2.47
	12-hour	0.88	1.02	1.20	1.34	1.53	1.69	1.84	2.01	2.24	2.43
	1-day	0.88	1.02	1.20	1.34	1.53	1.68	1.83	1.99	2.21	2.39
7	2-day	0.88	1.02	1.20	1.34	1.53	1.67	1.82	1.98	2.20	2.37
,	4-day	0.88	1.02	1.21	1.35	1.54	1.68	1.83	1.98	2.19	2.35
	7-day	0.89	1.02	1.20	1.33	1.51	1.64	1.78	1.91	2.09	2.23
	10-day	0.89	1.03	1.20	1.33	1.49	1.62	1.74	1.87	2.03	2.15
	20-day	0.90	1.03	1.19	1.31	1.47	1.58	1.69	1.80	1.94	2.04
	30-day	0.90	1.03	1.19	1.30	1.45	1.56	1.66	1.76	1.89	1.99
	45-day	0.91	1.03	1.18	1.29	1.43	1.53	1.63	1.73	1.85	1.94
	60-day	0.91	1.03	1.18	1.29	1.42	1.52	1.62	1.71	1.83	1.92
8	1-hour	0.87	1.02	1.22	1.39	1.61	1.79	1.99	2.19	2.49	2.73
	2-hour	0.87	1.02	1.22	1.38	1.60	1.78	1.97	2.17	2.46	2.70
	3-hour	0.87	1.02	1.22	1.38	1.60	1.77	1.96	2.16	2.44	2.68
	6-hour	0.87	1.02	1.22	1.37	1.59	1.76	1.94	2.13	2.41	2.63
	12-hour	0.87	1.02	1.21	1.37	1.58	1.75	1.92	2.11	2.37	2.58
	1-day	0.88	1.02	1.21	1.36	1.57	1.74	1.91	2.08	2.33	2.54
	2-day	0.87	1.02	1.22	1.37	1.57	1.74	1.90	2.08	2.33	2.52
	4-day	0.87	1.02	1.22	1.38	1.59	1.75	1.92	2.10	2.34	2.54
	7-day	0.87	1.02	1.22	1.37	1.58	1.74	1.90	2.07	2.30	2.48
	10-day	0.88	1.02	1.22	1.36	1.56	1.72	1.87	2.04	2.25	2.43
	20-day	0.88	1.02	1.21	1.35	1.54	1.68	1.83	1.98	2.17	2.33
	30-day	0.89	1.03	1.21	1.34	1.52	1.65	1.78	1.92	2.09	2.22
	45-day	0.89	1.03	1.20	1.33	1.50	1.62	1.74	1.86	2.01	2.12

	-			Ā	Average	reccuren	ce interv	al (years	s)		
Region	Duration	1	2	5	10	25	50	100	200	500	1000
	60-day	0.90	1.03	1.20	1.33	1.48	1.60	1.71	1.82	1.96	2.06
	1-hour	0.89	1.03	1.21	1.34	1.52	1.65	1.78	1.92	2.10	2.25
	2-hour	0.89	1.03	1.21	1.34	1.52	1.65	1.78	1.92	2.10	2.25
	3-hour	0.89	1.03	1.21	1.34	1.52	1.65	1.78	1.92	2.10	2.25
	6-hour	0.89	1.03	1.21	1.34	1.52	1.65	1.78	1.92	2.10	2.25
	12-hour	0.89	1.03	1.21	1.34	1.52	1.65	1.78	1.92	2.11	2.25
	1-day	0.89	1.03	1.21	1.34	1.52	1.65	1.78	1.92	2.11	2.25
9	2-day	0.89	1.03	1.21	1.34	1.52	1.65	1.78	1.92	2.10	2.25
9	4-day	0.89	1.03	1.21	1.34	1.52	1.65	1.79	1.93	2.11	2.26
	7-day	0.89	1.03	1.21	1.34	1.52	1.65	1.79	1.92	2.11	2.25
	10-day	0.89	1.03	1.21	1.34	1.52	1.65	1.78	1.92	2.10	2.25
	20-day	0.89	1.03	1.21	1.34	1.51	1.65	1.78	1.91	2.10	2.24
	30-day	0.89	1.03	1.20	1.34	1.51	1.64	1.77	1.91	2.09	2.23
	45-day	0.89	1.03	1.20	1.33	1.51	1.64	1.76	1.90	2.07	2.21
	60-day	0.89	1.03	1.20	1.33	1.50	1.63	1.76	1.89	2.06	2.20
	1-hour	0.90	1.02	1.18	1.30	1.47	1.60	1.73	1.87	2.05	2.20
	2-hour	0.88	1.02	1.21	1.36	1.56	1.71	1.87	2.04	2.26	2.44
	3-hour	0.88	1.02	1.21	1.36	1.56	1.72	1.88	2.05	2.28	2.46
	6-hour	0.87	1.02	1.22	1.37	1.58	1.74	1.91	2.08	2.31	2.50
	12-hour	0.87	1.02	1.23	1.38	1.60	1.77	1.94	2.12	2.37	2.56
	1-day	0.86	1.02	1.23	1.40	1.62	1.79	1.97	2.16	2.41	2.61
10	2-day	0.87	1.02	1.22	1.37	1.59	1.75	1.92	2.09	2.33	2.51
10	4-day	0.87	1.02	1.22	1.38	1.59	1.75	1.91	2.08	2.31	2.49
	7-day	0.88	1.03	1.22	1.37	1.57	1.72	1.87	2.02	2.22	2.37
	10-day	0.88	1.03	1.21	1.35	1.53	1.67	1.80	1.94	2.11	2.24
	20-day	0.90	1.03	1.20	1.32	1.47	1.59	1.69	1.80	1.94	2.04
	30-day	0.90	1.03	1.19	1.31	1.44	1.54	1.64	1.73	1.84	1.93
	45-day	0.91	1.04	1.19	1.29	1.42	1.51	1.59	1.67	1.77	1.84
	60-day	0.91	1.04	1.19	1.29	1.42	1.50	1.58	1.66	1.75	1.82

Table A.5.2. Regional growth factors (RGF) used to calculate precipitation frequency estimates based on annual maximum series for selected durations and annual exceedance probabilities.

	nnuai maxin		Annual exceedance probability (AEP)									
Region	Duration	1/2	1/5	1/10	1/25	1/50	1/100	1/200	1/500	1/1000		
	1-hour	0.93	1.24	1.46	1.75	1.98	2.23	2.49	2.85	3.14		
	2-hour	0.92	1.27	1.53	1.87	2.15	2.43	2.73	3.15	3.49		
	3-hour	0.91	1.28	1.55	1.90	2.18	2.48	2.79	3.22	3.57		
	6-hour	0.91	1.30	1.57	1.94	2.24	2.54	2.87	3.32	3.68		
	12-hour	0.90	1.34	1.66	2.08	2.42	2.77	3.14	3.66	4.08		
	1-day	0.90	1.34	1.66	2.08	2.42	2.77	3.14	3.66	4.08		
1	2-day	0.91	1.31	1.60	1.98	2.29	2.61	2.95	3.42	3.80		
1	4-day	0.91	1.30	1.58	1.95	2.24	2.54	2.86	3.30	3.66		
	7-day	0.92	1.28	1.53	1.86	2.12	2.39	2.67	3.06	3.37		
	10-day	0.93	1.26	1.50	1.81	2.05	2.30	2.56	2.92	3.20		
	20-day	0.94	1.25	1.46	1.74	1.95	2.16	2.37	2.66	2.89		
	30-day	0.95	1.24	1.44	1.68	1.87	2.05	2.23	2.47	2.66		
	45-day	0.96	1.23	1.41	1.62	1.78	1.93	2.08	2.26	2.40		
	60-day	0.96	1.23	1.40	1.59	1.73	1.86	1.98	2.13	2.23		
	1-hour	0.94	1.22	1.41	1.66	1.85	2.05	2.26	2.54	2.75		
	2-hour	0.94	1.22	1.41	1.67	1.87	2.07	2.28	2.56	2.78		
	3-hour	0.94	1.23	1.43	1.70	1.90	2.11	2.33	2.62	2.85		
	6-hour	0.93	1.27	1.51	1.83	2.07	2.32	2.57	2.92	3.20		
	12-hour	0.91	1.34	1.64	2.03	2.33	2.64	2.95	3.39	3.73		
	1-day	0.91	1.35	1.65	2.05	2.36	2.67	3.00	3.44	3.79		
2	2-day	0.91	1.32	1.60	1.96	2.25	2.54	2.83	3.24	3.56		
2	4-day	0.92	1.31	1.58	1.93	2.20	2.49	2.77	3.17	3.48		
	7-day	0.92	1.28	1.52	1.84	2.09	2.34	2.60	2.96	3.24		
	10-day	0.93	1.26	1.49	1.78	2.02	2.25	2.49	2.83	3.09		
	20-day	0.94	1.23	1.44	1.71	1.92	2.13	2.35	2.65	2.88		
	30-day	0.94	1.22	1.41	1.67	1.87	2.07	2.27	2.56	2.78		
	45-day	0.95	1.20	1.38	1.61	1.79	1.97	2.16	2.42	2.63		
	60-day	0.95	1.18	1.33	1.54	1.70	1.86	2.03	2.26	2.44		
3	1-hour	0.93	1.27	1.50	1.80	2.03	2.26	2.49	2.80	3.04		
	2-hour	0.93	1.26	1.49	1.77	1.99	2.21	2.43	2.73	2.97		
	3-hour	0.94	1.26	1.47	1.75	1.96	2.18	2.39	2.69	2.91		
	6-hour	0.94	1.24	1.45	1.71	1.91	2.12	2.32	2.60	2.81		
	12-hour	0.94	1.23	1.42	1.67	1.86	2.06	2.25	2.51	2.72		
	1-day	0.95	1.22	1.40	1.64	1.82	2.00	2.18	2.43	2.63		
	2-day	0.95	1.21	1.38	1.61	1.79	1.96	2.14	2.38	2.57		
	4-day	0.95	1.21	1.38	1.61	1.79	1.96	2.14	2.38	2.57		

Region	Dunction			Annu	al exceed	lance pr	obability	(AEP)		
	Duration	1/2	1/5	1/10	1/25	1/50	1/100	1/200	1/500	1/1000
	7-day	0.95	1.20	1.37	1.59	1.76	1.93	2.10	2.33	2.51
	10-day	0.95	1.19	1.36	1.57	1.73	1.90	2.07	2.29	2.47
	20-day	0.95	1.18	1.34	1.54	1.70	1.86	2.01	2.23	2.40
	30-day	0.95	1.18	1.33	1.53	1.68	1.83	1.99	2.20	2.36
	45-day	0.96	1.17	1.31	1.50	1.65	1.79	1.94	2.14	2.29
	60-day	0.96	1.16	1.29	1.47	1.60	1.74	1.88	2.06	2.21
	1-hour	0.95	1.18	1.35	1.58	1.76	1.94	2.14	2.41	2.63
	2-hour	0.95	1.18	1.35	1.58	1.76	1.94	2.14	2.41	2.63
	3-hour	0.95	1.18	1.35	1.58	1.76	1.94	2.14	2.41	2.63
	6-hour	0.95	1.18	1.35	1.58	1.76	1.94	2.14	2.41	2.63
	12-hour	0.95	1.18	1.35	1.58	1.76	1.94	2.14	2.41	2.63
	1-day	0.95	1.18	1.35	1.57	1.74	1.93	2.12	2.39	2.60
4	2-day	0.95	1.18	1.34	1.55	1.72	1.90	2.08	2.34	2.55
4	4-day	0.95	1.18	1.33	1.54	1.71	1.88	2.05	2.30	2.49
	7-day	0.95	1.17	1.32	1.52	1.67	1.83	1.99	2.20	2.38
	10-day	0.96	1.17	1.31	1.50	1.65	1.80	1.95	2.15	2.31
	20-day	0.96	1.17	1.31	1.49	1.63	1.77	1.91	2.10	2.25
	30-day	0.96	1.17	1.30	1.48	1.62	1.75	1.89	2.07	2.21
	45-day	0.96	1.16	1.30	1.47	1.60	1.73	1.86	2.03	2.17
	60-day	0.96	1.16	1.29	1.45	1.58	1.71	1.83	2.00	2.13
	1-hour	0.95	1.17	1.34	1.56	1.73	1.92	2.12	2.41	2.64
	2-hour	0.95	1.17	1.33	1.54	1.71	1.90	2.09	2.36	2.59
	3-hour	0.95	1.17	1.33	1.54	1.71	1.89	2.08	2.36	2.58
	6-hour	0.95	1.18	1.34	1.56	1.74	1.93	2.12	2.41	2.64
	12-hour	0.94	1.18	1.36	1.59	1.78	1.98	2.19	2.49	2.73
	1-day	0.94	1.18	1.35	1.58	1.77	1.96	2.16	2.44	2.68
5	2-day	0.95	1.18	1.34	1.56	1.74	1.92	2.11	2.37	2.59
3	4-day	0.95	1.18	1.34	1.56	1.73	1.90	2.08	2.34	2.54
	7-day	0.95	1.17	1.33	1.54	1.70	1.86	2.04	2.28	2.46
	10-day	0.95	1.17	1.32	1.52	1.68	1.84	2.00	2.23	2.41
	20-day	0.96	1.16	1.31	1.49	1.64	1.78	1.93	2.14	2.29
	30-day	0.96	1.16	1.30	1.48	1.62	1.76	1.90	2.09	2.24
	45-day	0.96	1.16	1.30	1.47	1.60	1.73	1.87	2.05	2.19
	60-day	0.96	1.16	1.29	1.45	1.58	1.71	1.84	2.01	2.15
6	1-hour	0.94	1.21	1.39	1.63	1.81	1.99	2.18	2.44	2.65
	2-hour	0.94	1.21	1.40	1.64	1.83	2.02	2.21	2.47	2.68
	3-hour	0.94	1.22	1.40	1.65	1.84	2.03	2.23	2.50	2.70
	6-hour	0.94	1.22	1.42	1.67	1.86	2.06	2.26	2.54	2.75

ъ.	D	Annual exceedance probability (AEP)									
Region	Duration	1/2	1/5	1/10	1/25	1/50	1/100	1/200	1/500	1/1000	
	12-hour	0.94	1.23	1.43	1.69	1.89	2.09	2.29	2.57	2.79	
	1-day	0.94	1.23	1.43	1.68	1.87	2.07	2.27	2.54	2.75	
	2-day	0.95	1.22	1.40	1.63	1.81	1.98	2.16	2.40	2.59	
	4-day	0.95	1.22	1.39	1.61	1.77	1.93	2.09	2.30	2.46	
	7-day	0.96	1.21	1.37	1.56	1.71	1.85	1.99	2.17	2.31	
	10-day	0.96	1.19	1.34	1.53	1.66	1.79	1.92	2.09	2.22	
	20-day	0.97	1.17	1.30	1.46	1.57	1.69	1.79	1.94	2.04	
	30-day	0.97	1.17	1.29	1.45	1.56	1.66	1.77	1.90	2.00	
	45-day	0.97	1.16	1.29	1.44	1.54	1.65	1.75	1.88	1.97	
	60-day	0.97	1.16	1.28	1.42	1.52	1.62	1.72	1.84	1.93	
	1-hour	0.95	1.18	1.34	1.56	1.72	1.89	2.08	2.34	2.55	
	2-hour	0.95	1.18	1.34	1.55	1.71	1.88	2.06	2.32	2.52	
	3-hour	0.95	1.18	1.34	1.54	1.71	1.87	2.05	2.30	2.51	
	6-hour	0.95	1.18	1.33	1.54	1.69	1.86	2.03	2.27	2.47	
	12-hour	0.95	1.18	1.33	1.53	1.68	1.84	2.01	2.24	2.43	
	1-day	0.96	1.18	1.33	1.52	1.67	1.83	1.99	2.21	2.39	
7	2-day	0.96	1.18	1.33	1.52	1.67	1.82	1.98	2.20	2.37	
7	4-day	0.96	1.18	1.34	1.53	1.68	1.83	1.98	2.19	2.35	
	7-day	0.96	1.18	1.32	1.51	1.64	1.78	1.91	2.09	2.23	
	10-day	0.96	1.18	1.32	1.49	1.62	1.74	1.87	2.03	2.15	
	20-day	0.97	1.17	1.30	1.46	1.58	1.69	1.80	1.94	2.04	
	30-day	0.97	1.17	1.29	1.45	1.55	1.66	1.76	1.89	1.99	
	45-day	0.97	1.17	1.29	1.43	1.53	1.63	1.73	1.85	1.94	
	60-day	0.97	1.16	1.28	1.42	1.52	1.62	1.71	1.83	1.92	
	1-hour	0.95	1.20	1.37	1.61	1.79	1.99	2.19	2.49	2.73	
	2-hour	0.95	1.20	1.37	1.60	1.78	1.97	2.17	2.46	2.70	
	3-hour	0.95	1.19	1.36	1.59	1.77	1.96	2.16	2.44	2.68	
	6-hour	0.95	1.19	1.36	1.58	1.76	1.94	2.13	2.41	2.63	
	12-hour	0.95	1.19	1.36	1.57	1.74	1.92	2.11	2.37	2.58	
	1-day	0.95	1.19	1.35	1.57	1.73	1.91	2.08	2.33	2.54	
8	2-day	0.95	1.19	1.35	1.57	1.73	1.90	2.08	2.33	2.52	
	4-day	0.95	1.20	1.36	1.58	1.75	1.92	2.10	2.34	2.54	
	7-day	0.95	1.20	1.36	1.57	1.74	1.90	2.07	2.30	2.48	
	10-day	0.95	1.19	1.35	1.56	1.72	1.87	2.04	2.25	2.43	
	20-day	0.96	1.19	1.34	1.54	1.68	1.83	1.98	2.17	2.33	
	30-day	0.96	1.19	1.33	1.52	1.65	1.78	1.92	2.09	2.22	
	45-day	0.97	1.18	1.32	1.49	1.62	1.74	1.86	2.01	2.12	
	60-day	0.97	1.18	1.32	1.48	1.60	1.71	1.82	1.96	2.06	

D .	Duration			Annu	al exceed	lance pr	obability	(AEP)		
Region	Duration	1/2	1/5	1/10	1/25	1/50	1/100	1/200	1/500	1/1000
	1-hour	0.96	1.18	1.33	1.51	1.65	1.78	1.92	2.10	2.25
	2-hour	0.96	1.18	1.33	1.51	1.65	1.78	1.92	2.10	2.25
	3-hour	0.96	1.18	1.33	1.51	1.65	1.78	1.92	2.10	2.25
	6-hour	0.96	1.18	1.33	1.51	1.65	1.78	1.92	2.10	2.25
	12-hour	0.96	1.18	1.33	1.51	1.65	1.78	1.92	2.11	2.25
	1-day	0.96	1.18	1.33	1.51	1.65	1.78	1.92	2.11	2.25
9	2-day	0.96	1.18	1.33	1.51	1.65	1.78	1.92	2.10	2.25
9	4-day	0.96	1.19	1.33	1.52	1.65	1.79	1.93	2.11	2.26
	7-day	0.96	1.19	1.33	1.51	1.65	1.79	1.92	2.11	2.25
	10-day	0.96	1.18	1.33	1.51	1.65	1.78	1.92	2.10	2.25
	20-day	0.96	1.18	1.33	1.51	1.64	1.78	1.91	2.10	2.24
	30-day	0.96	1.18	1.33	1.51	1.64	1.77	1.91	2.09	2.23
	45-day	0.96	1.18	1.32	1.50	1.63	1.76	1.90	2.07	2.21
	60-day	0.96	1.18	1.32	1.50	1.63	1.76	1.89	2.06	2.20
	1-hour	0.96	1.16	1.29	1.46	1.60	1.73	1.87	2.05	2.20
	2-hour	0.95	1.19	1.35	1.55	1.71	1.87	2.04	2.26	2.44
	3-hour	0.95	1.19	1.35	1.56	1.72	1.88	2.05	2.28	2.46
	6-hour	0.95	1.19	1.36	1.57	1.74	1.91	2.08	2.31	2.50
	12-hour	0.95	1.20	1.37	1.60	1.77	1.94	2.12	2.37	2.56
	1-day	0.95	1.21	1.38	1.61	1.79	1.97	2.16	2.41	2.61
10	2-day	0.95	1.20	1.36	1.58	1.75	1.92	2.09	2.33	2.51
10	4-day	0.95	1.20	1.37	1.58	1.75	1.91	2.08	2.31	2.49
	7-day	0.96	1.20	1.36	1.56	1.72	1.87	2.02	2.22	2.37
	10-day	0.96	1.19	1.34	1.53	1.67	1.80	1.94	2.11	2.24
	20-day	0.97	1.18	1.31	1.47	1.58	1.69	1.80	1.94	2.04
	30-day	0.97	1.17	1.30	1.44	1.54	1.64	1.73	1.84	1.93
	45-day	0.98	1.17	1.29	1.42	1.51	1.59	1.67	1.77	1.84
	60-day	0.98	1.18	1.29	1.41	1.50	1.58	1.66	1.75	1.82

Appendix A.6 PRISM report (n/a)

For previous NOAA Atlas 14 volumes, mean annual maxima (MAM) grids at various durations were developed by the PRISM Climate Group of Oregon State University. Those grids were used to spatially interpolate at-station precipitation frequency estimates (e.g., Perica et al., 2009). However, for the Pacific Islands, lack of funding precluded development of PRISM-based grids of mean annual maxima, so alternative approaches were used to derive MAM and precipitation frequency grids (see Section 4.6). This appendix was retained for consistency with the documentation of Volume 4.

Appendix A.7 Peer review comments and responses

The Hydrometeorological Design Studies Center (HDSC) conducted a peer review of the Selected Pacific Islands precipitation frequency project during the period July 21, 2009 to August 15, 2009. The review included the following items:

- 1. Depth-duration-frequency curves at stations derived from annual maximum series data;
- 2. Maps of spatially-interpolated mean annual maximum precipitation amounts for 60-minute, 24-hour, and 10-day durations;
- 3. Isohyetal maps of precipitation frequency estimates for 1/2 and 1/100 annual exceedance probabilities and for 60-minute, 24-hour, and 10-day durations;
- 4. Map showing regional groupings of stations used in frequency analysis.

646 users who were members of the HDSC list-server and other interested parties were contacted via email for the review. Written responses were received from two colleagues. This document addresses the comments received. Issues/comments are paraphrased and are accompanied by an HDSC response. The comments and their respective HDSC responses have been divided into three categories:

- 1. Comments pertaining to mean annual maximum precipitation and precipitation frequency estimates at stations;
- 2. Comments pertaining to isohyetal maps;
- 3. General questions and comments.

1. Comments pertaining to mean annual maximum precipitation and precipitation frequency estimates at stations

1.1 How are differences in periods of record handled with respect to co-located daily, hourly and 15-minute stations or with nearby stations?

HDSC response: We extensively quality controlled any differences in annual maxima and in mean annual maxima (MAM) at co-located daily, hourly and 15-minute stations. Also, where possible, data records were extended at stations by aggregating and appending data from a co-located station with a shorter reporting interval and/or by merging data from nearby stations. Furthermore, at-station MAMs were investigated for spatial inconsistencies and compared to assess the impact of different periods of record. Several locations were identified where differences in MAMs at nearby stations were significant and caused primarily by differences in record lengths and/or different periods of record. Whenever possible, linear regression was used on annual maxima from overlapping periods to adjust MAMs at stations with shorter periods of record. Finally, it should not be forgotten that the regional approach accommodates sampling differences by joining station data into a homogenous group (i.e., region) leading to a more robust estimation of precipitation frequency estimates.

2. Comments pertaining to isohyetal maps

2.1 Were the mean annual precipitation maps from PRISM used to generate gridded values for Guam and Pohnpei? This approach was used in Volume 4, Hawaiian Islands. Pohnpei has a significant orographic effect whereas Guam does not, as illustrated when Typhoon Pongsona, December 2002 struck Guam. The precipitation isohyets were related to the direction and path of the eye instead of according to topography. These types of issues should be addressed.

HDSC response: No funds were available for this project to support the PRISM work to create MAM grids at selected hourly and daily durations, so alternative interpolation techniques were applied. They will be described in detail in Section 4.6 of this volume's documentation. In short, for each island in the project area, we selected the best approach to derive precipitation frequency grids. In regions where reliable relationships were found between MAM and mean annual precipitation (MAP) and where PRISM MAP grids were available, regression equations were used to create MAM grids from MAP grids. For regions where no relationships between MAM and MAP existed (for those regions no relationships were found between MAM and elevation either), at-station MAM estimates were interpolated using biharmonic spline interpolation method. On several small, low-elevation islands and atolls, no interpolation was needed. So for instance, regression with MAP (which is highly correlated with elevation) was used to create MAM grids at Pohnpei, and at-station estimates were interpolated to create MAM grids on Guam.

2.2 The color scheme on the contour maps was difficult to read. How will these data be provided in the final product?

HDSC response: The color scheme in the final product will be different from the one used for the peer review. The cartographic maps for this NOAA Atlas 14 volume will look similar to those for previous volumes. Upon clicking on Pacific Islands web page, users will be able to retrieve precipitation frequency estimates and their confidence limits for a desired location. The PFDS is the portal for all NOAA Atlas 14 data formats, including: annual maximum series dataset, GIS data, cartographic maps, temporal distributions of heavy precipitation, etc.

2.3 On your maps: The Republic of Palau, the Federated States of Micronesia and the Republic of the Marshall Islands are all countries. Should not the all be in the same types of letters?

HDSC response: They should. We will make changes accordingly in the final product.

2.4 I reviewed your maps and they look reasonable particularly based on the data you have.

HDSC response: Thank you.

3. General questions and comments

3.1 The scope of the peer review is limited. Will other judgments such as not considering a certain gauge or the computation of sub-hourly precipitation frequency estimates be subject to peer review? What about other relatively subjective decisions?

HDSC response: Generally, precipitation frequency estimates provided for peer review are not final estimates and may change as a result of comments received and further evaluation. The purpose of the peer review is to check reasonableness in at-station depth-duration-frequency curves and spatial patterns in the estimates for selected durations and annual exceedance probabilities (AEPs) which we felt were the more important ones and indicative of patterns in subsequent durations and AEPs. The detailed description of methodology and decisions made will be provided in final documentation and the level of detail provided will be similar to previous volumes. The final data set, including metadata, used for the analysis will also be provided as part of the on-line publication so that the results of all decisions are apparent.

3.2 How will the limited sub-hour data be used in developing estimates of sub-hourly precipitation frequencies?

HDSC response: For sub-hourly durations, we apply n-minute scaling factors on 1-hour precipitation frequency estimates. For more information on development of 5- to 30-minute precipitation frequency estimates, please see Section 4.5.3 of any NOAA Atlas 14 volume documentation.

Appendix A.8 Temporal distributions of annual maxima

1. Introduction

Temporal distributions of annual maxima with less than 50% chance of being exceeded in any year are provided for 6-, 12-, 24-, and 96-hour durations. The temporal distributions are expressed in probability terms as cumulative percentages of precipitation totals at various time steps. To provide detailed information on the varying temporal distributions, separate temporal distributions were also derived for four precipitation cases defined by the duration quartile in which the greatest percentage of the total precipitation occurred.

2. Methodology and results

The methodology used to produce the temporal distributions is similar to the one developed by Huff (1967) except in the definition of precipitation cases. Precipitation cases for the temporal distribution analysis were selected from the annual maximum series used in the precipitation frequency analysis. Each case (i.e., maxima) was the total accumulation over a selected duration (6-, 12-, 24-, or 96-hour). Therefore, precipitation cases for this analysis may contain parts of one or more storms. Because of that, temporal distribution curves presented here will be different from corresponding temporal distribution curves obtained from the analysis of single storms. Also, precipitation cases always start with precipitation but not necessarily end with precipitation resulting in potentially more front-loaded cases when compared with distributions derived from the single storm approach. Only annual maxima with no more than 50% chance of being exceeded in any year were included. Table A.8.1 shows the number of precipitation cases used to derive the temporal distributions for each duration.

For each precipitation case, precipitation accumulation was converted into a percentage of the total precipitation amount at one hour time increments. All cases for a specific duration were then combined from all stations in the project area and probabilities of occurrence of precipitation totals were computed at each hour. The temporal distribution curves for nine deciles (10% to 90%) were smoothed using a linear programming method (Bonta and Rao, 1988) and plotted in the same graph. Figure A.8.1 shows temporal distribution curves for the four selected durations; time steps were converted into percentages of durations for easier comparison.

The cases were further divided into four categories by the quartile in which the greatest percentage of the total precipitation occurred. Table A.8.1 shows the numbers and proportion of precipitation cases used to derive the temporal distributions for each quartile. Unlike the cases of 12-, 24-, and 96-hour durations in which the number of data points can be equally divided by four, the cases of 6-hour duration contain only six data points and they cannot be evenly distributed into four quartiles. Therefore, in this analysis, for 6-hour duration, the first quartile contains precipitation cases where the most precipitation occurred in the first hour, the second quartile contains precipitation cases where the most precipitation occurred in the fourth hours, the third quartile contains precipitation cases where the most precipitation occurred in the fourth hour, and the fourth quartile contains precipitation cases where the most precipitation occurred in the fifth and sixth hours. This uneven distribution affects the number of cases contained in each quartile for the 6-hour duration. Figures A.8.2 through A.8.5 show the temporal distribution curves for four quartile cases for 6-hour, 12-hour, 24-hour and 96-hour durations, respectively, where the time steps on the x-axis are in hours.

Table A.8.1. Number of all precipitation cases and number (and percent) of cases in each quartile for selected durations.

Duration (hours)	All cases	First-quartile cases	Second-quartile cases	Third-quartile cases	Fourth-quartile cases
6	584	171 (29%)	197 (34%)	134 (23%)	82(14%)
12	586	169 (29%)	138 (23%)	185 (32%)	94 (16%)
24	588	155 (26%)	164 (28%)	146 (25%)	123 (21%)
96	588	199 (34%)	111 (19%)	119 (20%)	159 (27%)

Temporal distribution data are available from the Precipitation Frequency Data Server in a tabular format for any location under the 'Supplementary information' tab or through the temporal distribution web page (http://hdsc.nws.noaa.gov/hdsc/pfds/pfds_temporal.html). For 6-, 12- and 24-hour durations, temporal distribution data are provided in 0.5-hour increments and for 96-hour duration in hourly increments.

3. Interpretation

Figure A.8.1 shows the temporal distribution curves of annual maxima with less than 50% chance of being exceeded in any year for the 6-, 12-, 24-, and 96-hour durations for the project area. Figures A.8.2 through A.8.5 show temporal distribution curves for first-, second-, third-, and fourth-quartile cases for 6-hour, 12-hour, 24-hour and 96-hour durations, respectively. First-quartile plots show temporal distribution curves for cases where the greatest percentage of the total precipitation fell during the first quarter of the duration (e.g., the first 3 hours of a 12-hour duration). The second, third, and fourth quartile plots are similarly for cases where the most precipitation fell in the second, third, or fourth quarter of the duration.

The temporal distribution curves represent the averages of many cases and illustrate the temporal distribution patterns with 10% to 90% occurrence probabilities in 10% increments. For example, the 10% curve in any figure indicates that 10% of the corresponding precipitation cases had distributions that fell above and to the left of the curve. Similarly, 10% of the cases had temporal distribution falling to the right and below the 90% curve. The 50% curve represents the median temporal distribution.

The following is an example of how to interpret the results using the figure (a) in the upper left panel of Figure A.8.4 and information from Table A.8.1 for 24-hour first-quartile cases.

- Of the total of 588 24-hour cases, 155 (26%) of them were first-quartile.
- In 10% of the first-quartile cases, 50% of the total precipitation fell by approximately 2 hours and 90% of the total precipitation fell by approximately 6 hours.
- A median case of this type will drop half of the precipitation (50% on the y-axis) in approximately 6 hours.
- In 90% of the cases, 50% of the total precipitation fell by 12 hours and 90% of precipitation fell by 22 hours.

Temporal distribution curves are provided in order to show the range of possibilities. Care should be taken in the interpretation and use of temporal distribution curves. For example, the use of different temporal distribution data in hydrologic models may result in very different peak flow estimates. Therefore, they should be selected and used in a way to reflect users' objectives.

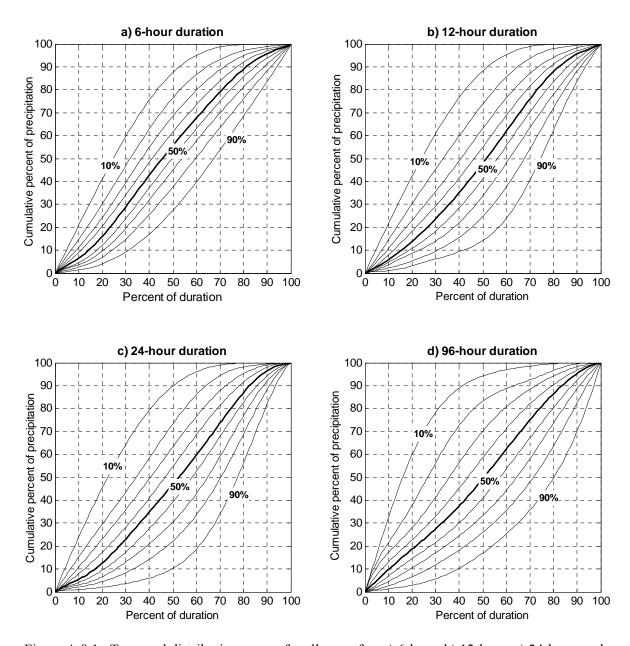


Figure A.8.1. Temporal distribution curves for all cases for: a) 6-hour, b) 12-hour, c) 24-hour, and d) 96-hour durations.

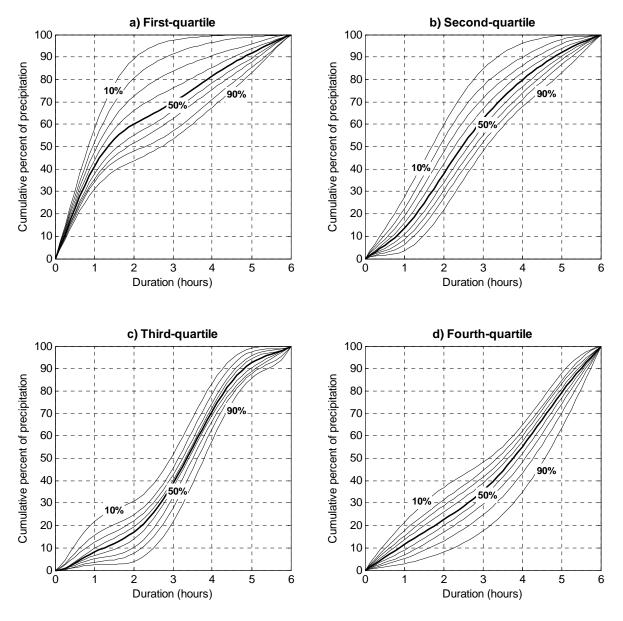


Figure A.8.2. 6-hour temporal distribution curves for: a) first-quartile, b) second-quartile, c) third-quartile, and d) fourth-quartile cases.

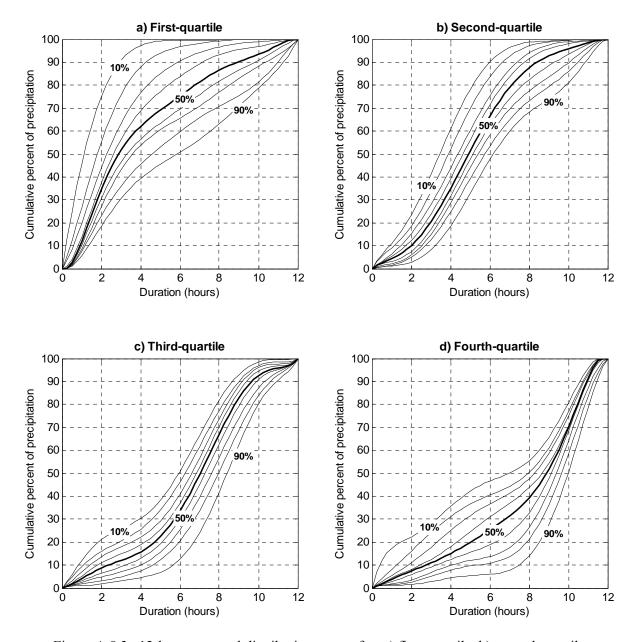


Figure A.8.3. 12-hour temporal distribution curves for: a) first-quartile, b) second-quartile, c) third-quartile, and d) fourth-quartile cases.

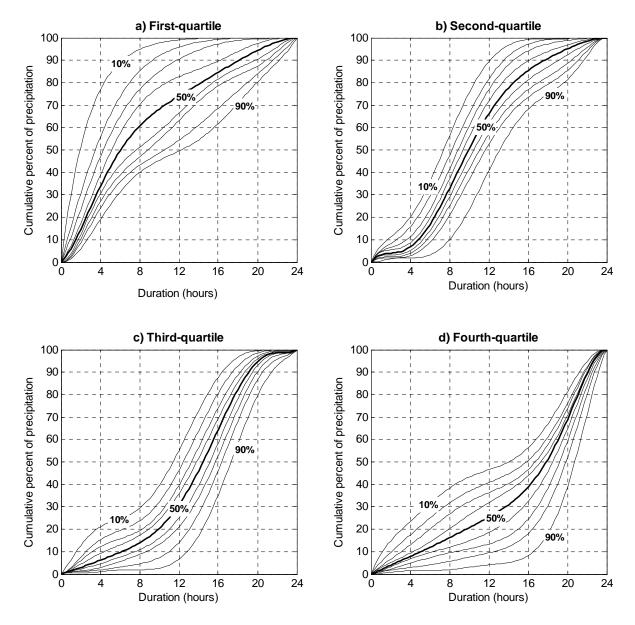


Figure A.8.4. 24-hour temporal distribution curves for: a) first-quartile, b) second-quartile, c) third-quartile, and d) fourth-quartile cases.

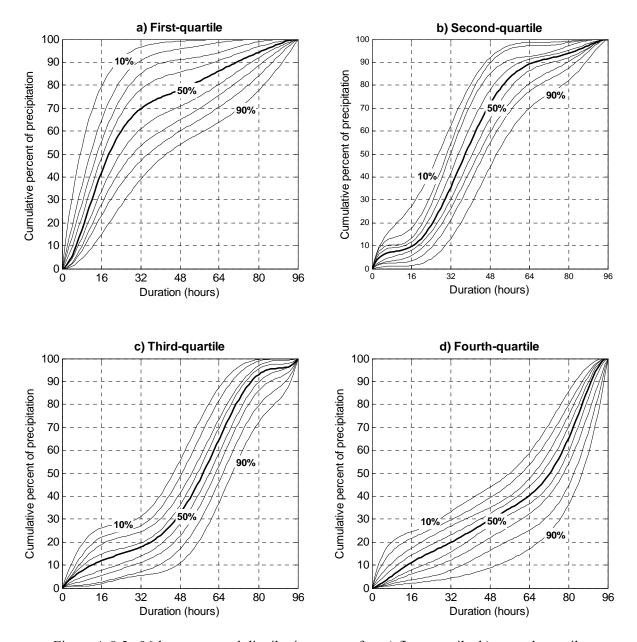


Figure A.8.5. 96-hour temporal distribution curves for: a) first-quartile, b) second-quartile, c) third-quartile, and d) fourth-quartile cases.

Appendix A.9 Seasonality

1. Introduction

To portray the seasonality of extreme precipitation throughout the project area, annual maxima that exceeded precipitation frequency estimates (quantiles) with selected annual exceedance probabilities (AEPs) for chosen durations were examined for each region delineated for frequency analysis (shown in Figure 4.5.1). Graphs showing the monthly variation of the exceedances for a region are provided for each location in the project area via the Precipitation Frequency Data Server (PFDS) at http://hdsc.nws.noaa.gov/hdsc/pfds/. For a selected location, seasonal exceedance graphs can be viewed by selecting 'V. Seasonality analysis' of the 'Supplementary information' tab on the output page.

2. Method

Exceedance graphs show the percentage of annual maxima for a given duration from all stations in a region that exceeded corresponding precipitation frequency estimates at selected AEP levels in each month. Results are provided for unconstrained 60-minute, 24-hour, 2-day, and 10-day durations and for annual exceedance probabilities of 1/2, 1/5, 1/10, 1/25, 1/50, and 1/100.

To prepare the graphs, first, the number of annual maxima exceeding the precipitation frequency estimate at a station for a given AEP was tabulated for each duration. Those numbers were then combined for all stations in a given region, sorted by month, normalized by the total number of data years in the region, and finally plotted via the PFDS.

3. Results

The exceedance graphs for a selected location (see an example for a location in region 10 in Figure A.9.1) indicate percent of annual maxima exceeding the quantiles with selected AEPs for various durations. The percentages are based on regional statistics. On average, 1 % of annual maxima for a given duration in a year (i.e., the sum of percentages of all twelve months) are expected to exceed the 1/100 AEP quantile, 4% is expected to exceed the 1/25 AEP quantile, etc.

Note that seasonality graphs should not be used to derive seasonal precipitation frequency estimates.

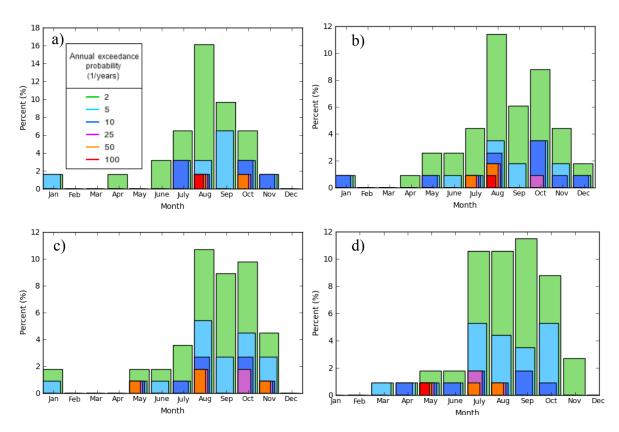


Figure A.9.1. Example of seasonal exceedance graphs for the: a) 60-minute, b) 24-hour, c) 2-day, and d) 10-day durations.

Appendix A.10 Update to Version 3.0

SUMMARY

The NOAA Atlas 14 Volume 5 Version 3.0 update reflects minor adjustments made to precipitation frequency estimates for the sub-hourly (n-minute) durations and updated temporal distribution information. Minor changes to the text were also made, in particular to reflect the updated web pages and functionality of the Precipitation Frequency Data Server. Version 3.0 information supersedes Version 2.0 information.

UPDATES

1. Sub-hourly durations

The scaling factors used to produce estimates for n-minute durations from 60-minute estimates were corrected. The updates to the scaling factors are shown in Table 1.1.

Table 1.1. Scaling factors for NOAA Atlas 14 Volume 5 Versions 2.0 and 3.0.

Duration (minutes)	5	10	15	30
Scaling factors for Version 2.0	0.29	0.38	0.48	0.69
Scaling factors for Version 3.0	0.25	0.39	0.5	0.74

2. Temporal distributions

Temporal distributions were recalculated using only annual maxima with less than 50% chance of being exceeded in any year. This screened smaller, less relevant cases. Additionally, the criterion which required that no continuous dry period last for more than 30% of the duration was removed from the definition of suitable cases for analysis. The reasoning behind this was that precipitation cases for frequency analysis do not represent a single storm, but may contain parts of one or more storms. More details on the analysis can be found in Appendix A.8.

3. Documentation

The following changes were made in the documentation:

- Sections related to precipitation frequency estimates at sub-hourly durations (Section 4.5.3) and temporal distributions (Appendix A.8) were updated to reflect the above changes.
- The order of appendices was changed to match format of Volumes 5 and 6.
- Section 5 of the documentation which describes the web interface for the Precipitation Frequency Data Server (http://hdsc.nws.noaa.gov/hdsc/pfds/index.html) was revised to reflect the updated web pages and functionality.

Glossary

(All definitions are given relative to precipitation frequency analyses in NOAA Atlas 14 Volume 5)

- ANNUAL EXCEEDANCE PROBABILITY (AEP) The probability associated with exceeding a given amount in any given year once or more than once; the inverse of AEP provides a measure of the average time between years (and not events) in which a particular value is exceeded at least once; the term is associated with analysis of annual maximum series (see also AVERAGE RECCURENCE INTERVAL).
- ANNUAL MAXIMUM SERIES (AMS) Time series of the largest precipitation amounts in a continuous 12-month period (calendar or water year) for a specified duration at a given station.
- ASCII GRID Grid format with a 6-line header, which provides location and size of the grid and precedes the actual grid data. The grid is written as a series of rows, which contain one ASCII integer or floating point value per column in the grid. The first element of the grid corresponds to the upper-left corner of the grid.
- AVERAGE RECURRENCE INTERVAL (ARI; a.k.a. RETURN PERIOD, AVERAGE RETURN PERIOD) Average time between *cases of a particular precipitation magnitude* for a specified duration and at a given location; the term is associated with the analysis of partial duration series. However, ARI is frequently calculated as the inverse of AEP for the annual maximum series; in this case it represents the average period between years in which a given precipitation magnitude is exceeded at least once.
- CONSTRAINED OBSERVATION A precipitation measurement or observation bound by clock hours and occurring in regular intervals. This observation requires conversion to an unconstrained value (see UNCONSTRAINED OBSERVATION) because maximum 60-minute or 24-hour amounts seldom fall within a single hourly or daily observation period.
- DATA YEARS See RECORD LENGTH.
- DEPTH-DURATION-FREQUENCY (DDF) CURVE Graphical depiction of precipitation frequency estimates in terms of depth, duration and frequency (ARI or AEP).
- DISCORDANCY MEASURE Measure used for data quality control and to determine if a station is consistent with other stations in a region. It is calculated for each station in a region as the distance of a point in a 3-dimensional space represented by at-site estimates of three L-moment ratios (L-CV, L-skewness, and L-kurtosis) from the cluster center that is defined using the unweighted average of the three L-moment ratios from all stations within the region.
- DISTRIBUTION FUNCTION (CUMULATIVE DISTRIBUTION FUNCTION) Mathematical description that completely describes frequency distribution of a random variable, here precipitation. Distribution functions commonly used to describe precipitation data include 3-parameter distributions such as Generalized Extreme Value (GEV), Generalized Normal (GNO), Generalized Pareto (GPA), Generalized Logistic (GLO) and Pearson type III (PE3), the 4-parameter Kappa (KAP) distribution, and the 5-parameter Wakeby (WAK) distribution.
- FEDERAL GEOGRAPHIC DATA COMMITTEE (FGDC) COMPLIANT METADATA A document that describes the content, quality, condition, and other characteristics of data and follows the guidelines set forth by the FGDC; metadata is "data about data."
- FREQUENCY General term for specifying the average recurrence interval or annual exceedance probability associated with specific precipitation magnitude for a given duration.

- FREQUENCY ANALYSIS Process of derivation of a mathematical model that represents the relationship between precipitation magnitudes and their frequencies.
- FREQUENCY ESTIMATE Precipitation magnitude associated with specific average recurrence interval or annual exceedance probability for a given duration.
- HETEROGENEITY MEASURE, H1 Measure that is used to assess regional homogeneity, or lack thereof. It is based on comparison of the variability of sample estimates of coefficient of L-variation in a region relative to their expected variability obtained through simulations.
- INDEX-FLOOD The mean of the annual maximum series at each observing station.
- INDEX-FLOOD REGIONAL FREQUENCY ANALYSIS Regional frequency analysis approach that assumes that all stations in a homogeneous region have a common regional growth curve that becomes station-specific after scaling by a station-specific index flood value. The name comes from its first applications in flood frequency analysis but the method is applicable to precipitation or any other kind of data.
- INTENSITY-DURATION-FREQUENCY (IDF) CURVE Graphical depiction of precipitation frequency estimates in terms of intensity, duration and frequency.
- INTERNAL CONSISTENCY Term used to describe the required behavior of the precipitation frequency estimates from one duration to the next or from one frequency to the next. For instance, it is required that the 100-year 3-hour precipitation frequency estimates be greater than (or at least equal to) corresponding 100-year 2-hour estimates.
- L-MOMENTS L-moments are summary statistics for probability distributions and data samples. They are analogous to ordinary moments, providing measures of location, dispersion, skewness, kurtosis, and other aspects of the shape of probability distributions or data samples, but are computed from linear combinations of the ordered data values (hence the prefix L).
- MEAN ANNUAL PRECIPITATION (MAP) The average precipitation for a year (usually calendar) based on the whole period of record or for a selected period (usually 30 year period such as 1971-2000).
- PARTIAL DURATION SERIES (PDS) Time series that includes all precipitation amounts for a specified duration at a given station above a pre-defined threshold regardless of year; it can include more than one event in any particular year.
- PRECIPITATION FREQUENCY DATA SERVER (PFDS) The on-line portal for all NOAA Atlas 14 deliverables, documentation, and information; http://hdsc.nws.noaa.gov/hdsc/pfds/.
- PARAMETER-ELEVATION REGRESSIONS ON INDEPENDENT SLOPES MODEL (PRISM) Hybrid statistical-geographic approach to mapping climate data developed by Oregon State University's PRISM Climate Group.
- QUANTILE Generic term to indicate the precipitation frequency estimate associated with either ARI or AEP.
- RECORD LENGTH Number of years in which enough precipitation data existed to extract meaningful annual maxima in a station's period of record (or data years).
- REGIONAL GROWTH FACTOR (RGF) A quantile of a regional dimensionless distribution (regional growth curve) that becomes a location-specific precipitation quantile after scaling by a location-specific index-flood. For a given frequency and duration, there is a single RGF for each region.

- UNCONSTRAINED OBSERVATION A precipitation measurement or observation for a defined duration. However the observation is not made at a specific repeating time, rather the duration is a moveable window through time.
- WATER YEAR Any 12-month period, usually selected to begin and end during a relatively dry season. In NOAA Atlas 14 Volume 5, it is defined as the period from October 1 to September 30.

References

NOAA Atlas 14 documents

- Bonnin, G., D. Martin, B. Lin, T. Parzybok, M. Yekta, and D. Riley (2004). NOAA Atlas 14 Volume 1, Precipitation-Frequency Atlas of the United States, Semiarid Southwest. NOAA, National Weather Service, Silver Spring, MD.
- Bonnin, G., D. Martin, B. Lin, T. Parzybok, M. Yekta, and D. Riley (2006). NOAA Atlas 14 Volume 2, Precipitation-Frequency Atlas of the United States, Delaware, District of Columbia, Illinois, Indiana, Kentucky, Maryland, New Jersey, North Carolina, Ohio, Pennsylvania, South Carolina, Tennessee, Virginia, West Virginia. NOAA, National Weather Service, Silver Spring, MD.
- Bonnin, G., D. Martin, B. Lin, T. Parzybok, M. Yekta, and D. Riley (2006). NOAA Atlas 14 Volume 3, Precipitation-Frequency Atlas of the United States, Puerto Rico and the U.S. Virgin Islands. NOAA, National Weather Service, Silver Spring, MD.
- Perica, S., D. Martin, B. Lin, T. Parzybok, D. Riley, M. Yekta, L. Hiner, L.-C. Chen, D. Brewer,
 F. Yan, K. Maitaria, C. Trypaluk, G. Bonnin (2009). NOAA Atlas 14 Volume 4,
 Precipitation-Frequency Atlas of the United States, Hawaiian Islands. NOAA, National Weather Service, Silver Spring, MD.
- Perica, S., B. Lin, D. Martin, F. Yan, D. Brewer, C. Trypaluk, M. Yekta, L. Hiner, S. Heim, S. Dietz, T. Parzybok, L.-C. Chen, K. Maitaria, R. Chen, I. Roy, D. Unruh, T. Zhao, J. Yarchoan, G. Bonnin (2009). NOAA Atlas 14 Volume 5, Precipitation-Frequency Atlas of the United States, Selected Pacific Islands. NOAA, National Weather Service, Silver Spring, MD.

Other references

- Bonta, J. V., and A. R. Rao (1988). Fitting Equations to Families of Dimensionless Cumulative Hyetographs. Transactions of the ASAE 31(3), 756-760.
- Burn, D. H. (1990). Evaluation of Regional Flood Frequency Analysis With a Region of Influence Approach. Water Resources Research 26(10), 2257-2265.
- Dalrymple, T. (1960). Flood Frequency Analyses, Manual of Hydrology: Part 3, Flood Flow Techniques, USGS Water Supply Paper 1543-A.
- Daly, C., W. P. Gibson, G. H. Taylor, G. L. Johnson, and P. Pasteris (2002). A Knowledge-Based Approach to the Statistical Mapping of Climate. Climate Research 23, 99-113.
- Frederick, R. H., and J. F. Miller (1979). Short Duration Rainfall Frequency Relations for California. American Meteorological Society, Third Conference on Hydrometeorology, Bogota, Colombia.
- Everitt, B. S., S. Landau, and M. Leese (2001). Cluster Analysis, 4th edition, Edward Arnold Publishers.
- Hirsch, R. M., R. B. Alexander, and R. A. Smith (1991). Selection of Methods for the Detection and Estimation of Trends in Water Quality. Water Resources Research 27, 803-814.
- Hosking, J. R. M. and J. R. Wallis (1997). Regional Frequency Analysis, an Approach Based on L-Moments. Cambridge University Press.

- Huff, F. A. (1967). Time Distribution of Rainfall in Heavy Storms. Water Resources Research 3(4), 1007-1019.
- Interagency Advisory Committee on Water Data (1982). Guidelines for Determining Flood Flow Frequency. Bulletin 17B of the Hydrology Subcommittee, Office of Water Data Coordination, U.S. Geological Survey, Reston, VA.
- Langbein, W. B. (1949). Annual Floods and the Partial-Duration Flood Series. Transactions American Geophysical Union 30, 879-881.
- Laurenson, E. M. (1987). Back to Basics on Flood Frequency Analysis. Civil Engineers Transactions, Institution of Engineers, Australia, CE29, 47-53.
- Maidment, D. R. (1993). Handbook of Hydrology. McGraw-Hill Publishing.
- Miller, J. F., R. H. Frederick and R. J. Tracy (1973). NOAA Atlas 2 Volumes 1-11, Precipitation-Frequency Atlas of the Western United States. National Weather Service, Silver Spring, MD.
- Plantico, M. S., L. A. Goss, C. Daly, and G. Taylor (2000). A New U.S. Climate Atlas, Proceedings of the 12th AMS Conference on Applied Climatology, American Meteorological Society Annual Meeting, Asheville, NC.
- Sandwell, D. T. (1987). Biharmonic Spline Interpolation of GEOS-3 and SEASAT Altimeter Data. Geophysical Research Letters 2, 139-142.
- U.S. Weather Bureau (1960). Technical Paper No. 29, Rainfall Intensity-Frequency Regime. U.S. Dept. of Commerce, Washington, D.C.
- U.S. Weather Bureau (1962). Technical Paper No. 43, Rainfall-Frequency Atlas of the Hawaiian Islands for Areas to 200 Square Miles, Durations to 24 Hours, and Return Periods from 1 to 100 Years. U.S. Weather Bureau, Washington D.C.