ERRATA SHEET

Page Line 8 3 <u>Q'</u> = discharge at time t- Δ t, in cfs; 8 <u>i</u> <u>A'</u> = cross-sectional area at time t- Δ t; in ft²; and 8 27 the first two terms of the variable energy slope of Eq.(<u>4</u>). 12 10 associated with Q_m. The energy slope is determined from Eq.(<u>14</u>) in which

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Weather Service

NOAA Technical Memorandum NWS HYDRO-16 and a task to a

A DYNAMIC MODEL OF STAGE-DISCHARGE RELATIONS

AFFECTED BY CHANGING DISCHARGE

D.o.L. Fread on the form and the off of the former

Office of Hydrology

WASHINGTON, D.C. November 1973

CONTENTS

Abstract	
Section 1. Introduction	
Section 2. Model Development	
Section 3. Application of Model	. •
3.1 Data Requirements	
3.2 Test Applications	
Section 4. Graphical Estimation of Dynamic Loop	
Section 5. Summary	
Acknowledgments	•
References	
Appendix A: Solution by Newton Iteration	-1
Appendix B: Computer Program (DYNMOD)	-1

ii

ABSTRACT

A mathematical model is developed to simulate the dynamic relationship which exists between stage and discharge when the energy slope is variable due to the effects of changing discharge. The model enables either stage or discharge to be computed if the other is specified (measured or predicted) and the channel slope, cross-sectional area and roughness properties are known. The model is tested on several stagedischarge relations, which are influenced significantly by changing discharge, and found to provide excellent results. Also presented is a simple and easily-applied graphical procedure to estimate the magnitude of the changing discharge effect on stage-discharge ratings.

SECTION 1. INTRODUCTION

The hydrologist is frequently concerned with the conversion of flood discharges at a given location along a stream channel into corresponding stages or vice versa. This is accomplished via a relation between stage and discharge which applies to that particular location. Such a relation or "rating curve" is usually developed empirically from a number of previous streamflow measurements and the corresponding stages.

Unfortunately, the observed measurements of stage and discharge will not usually form a unique relation; i.e., a single value of stage does not correspond to a single value of discharge. This is illustrated in Figure 1. Deviations of the measurements from a single-value rating curve can be the result of such factors as:

- 1) Discharge measurement errors (Carter and Anderson, 1963);
- 2) Shifting control (Linsley, et al., 1949; Corbett, 1943) due to:
 - a. scour and/or fill (Simons, et al., 1973);
 - b. alluvial bed form changes (Simons and Richardson, 1961; Dawdy, 1961);
 - c. seasonal changes in vegetative growth along the channel; and
 - d. ice formation;
- 3) Variable energy slope (Linsley, <u>et al.</u>, 1949; Corbett, 1943) due to:
 - a. variable backwater from a downstream tributary, reservoir, or tidal estuary;
 - b. conversion of discharge into or out of channel storage;
 - c. return of overbank flow; and
 - d. flow accelerations of unsteady, nonuniform flow (Henderson, 1966).

This study is concerned with only the effect of the last of the above factors; i.e., a variable energy slope caused by flow accelerations of unsteady, nonuniform flow (changing discharge).

X-Observed

which and by the constant of analysis of a second of the second of the stand of the stand of the second of the stand of th

(ii) the fight of a started resourcement of all distributes will be the form a minute field of the start of a start for a start for and conversion to a single value of alsobseys. Whit is slift rated is firent is limitations of the seascreates for a start of a guit can be the ferm) to a sub-fract set.

Q-Discharge (cfs)→

Figure 1. Stage-Discharge Relation.

h-Stage (ft)→

Several authors; e.g., Linsley, et al. (1949), Corbett (1943), and Henderson (1966), have dealt with the stage-discharge relation influenced by a variable energy slope. It is well known that changing discharge can produce a so-called "hysteresis loop" in the stage-discharge rating curve such as the one shown in Fig. 2. For this type of rating curve, there exist two different stages for each discharge. The lesser of the two stage values is associated with the rising limb of the discharge hydrograph and the greater value occurs during the recession of the discharge. A hysteresis loop, which is caused by **a** variable energy slope due to changing discharge, is termed a "dynamic loop" herein since it occurs because of the changing or dynamic nature of the flood discharge.

A univer, hyseric state-diatherge relation for a particular iccarian aion a should be determined where walkers icci model based of the regulate constituted and apprices of unavaily from and the Hamile equation which accelete for surry icease the to the contenes of the discussion for these are devived is security ical and the contenes of the discussion to accelete solution of the security ical and the security of the security of the are devived is security ical accelete solution of the discussion.

is the development that follows, the "stituting accessioned are note for a Notes access of sident condition for anning - tolder at forwards when

Q-Discharge (cfs)→

Figure 2. Stage – Discharge Relation with Hysteresis Loop Due to Changing Discharge.

> Witt or fill is nationally built of the Titus have is moving approximately whatic pays which itsuifus that the onorge alogs acceleratly equal to the channel builted singles at the states and is northelist by the channel matty (tig/les, are botted single and by the singles are the states and botted single and by the singles.

SECTION 2. MODEL DEVELOPMENT

A unique, dynamic stage-discharge relation for a particular location along a channel can be determined via a mathematical model based on the complete one-dimensional equations of unsteady flow and the Manning equation, which accounts for energy losses due to the resistance of the channel boundary. These equations are derived in several references; e.g., Chow (1959) and Henderson (1966), and are simply stated herein as:

$\frac{4}{26} \frac{\sqrt{6}}{2} + \frac{\sqrt{6}}{2}$	$\frac{V}{\partial A} + B \frac{\partial h}{\partial t} = 0$	(1)
$\frac{\partial V}{\partial t} + V$. and	$\frac{\partial V}{\partial x} + g \left(\frac{\partial y}{\partial x} + S - S_0 \right) = 0$	
$Q = \frac{1.43}{n}$	$\frac{86}{10} \text{ A } \text{R}^{2/3} \text{ s}^{1/2}$	(3)
in which x = t = A = A = B = h = B = h = Y = S = V = S = S = R = R = R = R = R = R = R = R	<pre>= distance along the channel, in ft; = time, in sec; = channel cross-sectional area, in ft²; = width of the channel at the water surface = water surface elevation above a datum = depth of flow, in ft; = energy slope, in ft/ft; = mean velocity of flow across the section = effective bottom slope of the channel = acceleration due to gravity, in ft/sec = Manning's coefficient, in sec/ft^{1/3}; = discharge, in ft³/sec; and = hydraulic radius, in ft.</pre>	ace, in ft; plane, in ft; on, in ft/sec; 2, in ft/ft; ;

In the development that follows, the following assumptions are made for a short section of channel containing the gaging station or forecast point:

- 1) Lateral inflow or outflow is negligible;
- 2) The channel width is essentially constant; i.e., $\partial B/\partial x \simeq 0$;
- 3) Energy losses from channel friction and turbulence are described by the Manning equation;
- The geometry of the section is essentially permanent; i.e., any scour or fill is negligible;

- 5) The bulk of the flood wave is moving approximately as a kinematic wave which implies that the energy slope is approximately equal to the channel bottom slope; and
- 6) The flow at the section is controlled by the channel geometry, friction, and bottom slope and by the shape of the flood wave.

An expression for the energy slope is obtained by rearranging Eq (2) in the following form:

$$S = S_{0} - \frac{\partial y}{\partial x} - \frac{V}{g} \frac{\partial V}{\partial x} - \frac{1}{g} \frac{\partial V}{\partial t}$$

The four terms on the right side of Eq (4) represent the component slopes which produce the variable energy slope S due to changing discharge. From left to right respectively, the four slopes are attributed to: gravity force, pressure force, convective (spatial) acceleration, and local (temporal) acceleration.

vestants edi in seul (4) is st dhift esade

teteriarega et 9 auto**(5)**. Linedad ada ada

Using assumption (2), Eq (1) may be expressed as:

$$\frac{\partial V}{\partial x} = -\frac{VB}{A}\frac{\partial y}{\partial x} - \frac{B}{A}\frac{\partial h}{\partial t}$$

Upon substituting Eq (5) and V=Q/A in Eq (4), the following expression for the variable energy slope S is obtained:

$$S = S_{0} + \frac{(BQ^{2} - 1)}{gA^{3}} \frac{\partial y}{\partial x} + \frac{BQ}{gA^{2}} \frac{\partial h}{\partial t} - \frac{1}{g} \frac{\partial (O/A)}{\partial t}$$
(6)

Information concerning the characteristics of either the stage or discharge hydrograph generally is available only at the location for which the rating curve is required. Such lack of spatial resolution of the hydrograph requires that the derivative terms with respect to x in Eqs (4) and (5) be replaced by equivalent expressions which can be evaluated from the available information. Henderson (1966) shows that, if the bulk of the flood wave is moving approximately as a kinematic wave, the following expression may be used to eliminate the need for spatial resolution of the specified hydrograph:

$$\frac{\partial y}{\partial x} = \frac{-1}{c} \frac{\partial h}{\partial t} - \frac{2}{3} \frac{S_0}{r^2}$$

in which c is the kinematic wave velocity and r is the ratio of the channel bottom slope to an average wave slope.

The kinematic wave velocity c may be determined from observations of the time interval between equal rises in stage, h, at gaging stations along the channel. Also, c may be computed from a relationship given by Henderson (1966) and Chow (1959):

$$c = \frac{1}{B} \frac{dQ}{dh},$$

where dQ/dh is the slope of the single-value rating curve. If the channel is assumed to be prismatic, the kinematic wave velocity can be computed directly by substituting Eq (3) in Eq (8). After differentiation, the following is obtained:

$$c = KV = K Q/A,$$
(9)

where

$$K = \frac{5}{3} - \frac{2A}{3B^2} \quad dB/dh,$$

and the hydraulic radius R is approximated by the hydraulic depth D; i.e.,

$$R \simeq D = A/B.$$

This is a good approximation of the hydraulic radius for large channels. If the hydraulic radius is used in lieu of the hydraulic depth, the term dB/dh in Eq(10) would be replaced by dP/dh, where P is the wetted perimeter of the channel cross-section; and, the term B^2 would be replaced by the product PB. From an inspection of Eq (10) it is evident that K has an upper limit of about 1.7 when dB/dh is negligible and a lower limit of about 1.3 for a triangular-shaped channel. It has been observed that K can be approximated as 1.3 for many natural channels (Corbett, 1943; Linsley, et al., 1949). Although there are a number of methods for determining the kinematic wave velocity, Eq (9) is used in this study.

It should be noted that the wave velocity is frequently greater than that computed by Eq (9); however, this may result from the fact that the wave is more nearly a dynamic wave than a kinematic wave. The dynamic wave velocity as given by Henderson (1966) is:

$$c_{A} = V \pm (g A/B)^{1/2}$$
.

(12)

(8)

(10)

(P) (**11)** and

A comparison of Eq (9) with Eq (12) indicates that the dynamic wave velocity can be considerably larger than the kinematic wave velocity, particularly for large A/B ratios. The dynamic wave predominates over the kinematic wave when the channel flow is pooled such as behind a dam or other constriction in the channel. Under this condition the flow is not controlled by channel geometry, friction, bottom slope, and the shape of the flood wave; therefore,flow in pooled areas where dynamic waves are formed is not treated herein. In some instances when pooling occurs only during the lower stages, the wave velocity changes from that of a dynamic wave to more nearly that of a kinematic wave as the stage increases. The portion of the rating curve, associated with the higher stages when the kinematic wave approximation is more applicable, could be determined approximately by the method developed herein.

The value of r in Eq (7) may be taken as a constant for a particular channel. Typical values of r range from 10 to 100. It is used in Eq (7)as part of a small correction which accounts for the fact that a typical flood wave is not exactly a kinematic wave. To arrive at a value for r, the wave slope is approximated from the characteristics of a typical flood event for a particular channel location. The wave slope is determined by dividing the height of the wave by its half-length, the latter obtained by assuming that the wave travels as a kinematic wave during the interval of time from the initiation of the wave to the occurrence of the wave peak at the location of concern. The half-length is determined from the product of the average kinematic wave velocity and the time to peak stage. Eq (9) is used to determine the average kinematic velocity, with Q and A taken as the average values during the flood event and K assumed equal to 1.3. Hence, the following expression is obtained for evaluating r:

 $r = \frac{56200 (Q_p + Q_o) \tau S_o}{(h_p - h_o) \overline{A}}$

where:

(13)

- Q_o = discharge at beginning of typical flood, in cfs; Q_p = peak discharge for typical flood, in cfs; h_o = stage at beginning of typical flood, in ft; h_p = peak stage of typical flood, in ft; Ā = cross-sectional area associated with the average stage, (h_p + h_p)/2, in ft²; and
- τ
- = interval of time from beginning of rise in stage until the occurrence of the peak stage, in days.

Since c and r are defined by Eqs (9) and (13), Eq (7) can be substituted in Eq (6), with the partial derivatives in the latter replaced by finite difference notation. After some rearrangement, the following equation is obtained:

$$S = S_{o} + \left[\frac{A + (1 - 1)}{KQ} + \frac{BO}{gA^{2}}\right] \delta h_{s} + \frac{Q^{2}/A^{2} - Q/A}{g\Delta t} + \frac{2}{3} \frac{S_{o}}{r^{2}} \left(1 - \frac{BO^{2}}{gA^{3}}\right)$$
(14)

where:

 $\Delta t = small interval of time, in secs;$ $0 = discharge at time t - \Delta t, in cfs;$

A = cross-sectional area at time t- Δt , in ft²; and

 δh_s = change in water surface elevation during the time interval Δt , in ft/sec ($h_s = \frac{h-h^2}{\Delta t}$, where h² is the stage at time t- Δt).

Eq (14) is the expression for the variable energy slope S which is caused by varying discharge. All the terms on the right side of the equation except S_0 account for the effect of the dynamic characteristic of the flow. If the flow is steady (unchanging with time) the energy slope is constant and equivalent to the bottom slope, S_0 . This is evident from Eq (14) since all terms on the right side of the equation except the first term vanish when the flow is steady; i.e., Q' = Q, $\delta h_s = 0$, and r is infinitely large since the wave slope vanishes for steady uniform flow.

An expression may be derived for the dynamic relation between stage and discharge when the energy slope is variable due to changing discharge. This can be obtained by substituting the hydraulic depth for the hydraulic radius in Eq (3) and using Eq (14) for the variable energy slope; i.e.,

$$Q = 1.486 \frac{AD^{2/3}}{n} \left[S_{0}^{0} + \left[\frac{A}{KQ} + (1 - \frac{1}{K}) \frac{BQ}{gA^{2}} \right] \delta h_{s}^{0} + \frac{Q^{2}/A^{2}}{g\Delta t} - \frac{Q/A}{g\Delta t} + \frac{2S_{0}}{3r^{2}} (1 - \frac{BQ^{2}}{gA^{3}}) \right]^{1/2} = 0$$
(15)

This equation differs from others given in the literature; e.g., Linsley, et al. (1949), Corbett (1943), which include only terms equivalent to the first two terms of the variable energy slope of Eq (6).

Eq (15) forms the basis of a model that can be used to determine either discharge when the rate of change of stage is known (as in stream gaging) or stage when the rate of change of discharge is known (as in stream forecasting). These alternative conditions are denoted respectively as Case A and Case B. A brief description of each follows:

8

Case A _____

The discharge hydrograph is determined from a specified (observed) stage hydrograph. In this case, Q is unknown in Eq (15); the known quantities consist of constants (S_0 , r, g, Δt), known functions (A, B, n, K) of the specified stage h,

and known quantities (Q',A', h') associated with the time t- Δ t.

Case B _____ The stage hydrograph is determined from a specified (predicted) discharge hydrograph. In this situation, h is the unknown in Eq (15) and the terms (A, B, n, K) are functions of h. The known quantities consist of constants $(S_0, r, g, \Delta t)$, the specified discharge Q, and the quantities (Q', A', h')associated with the time t- Δt .

The unknowns Q and h in Case A and Case B respectively, are not expressed in an explicit manner; therefore, an iterative solution via a digital computer is required. A very efficient method for obtaining a solution is by Newton Iteration (Issacson and Keller, 1966). Details of the application of the Newton Iteration technique to the solution of Eq (15) for Case A and Case B are presented in Appendix A.

A Fortran IV computer program for modeling the dynamic relationship between stage and discharge for both Case A and Case B is presented in Appendix B. The program is written for execution on a CDC 6600 computer.

yead in Eq. (1), is the slope that is differing an controlling for line. A good measure of the chiractive version slope is the water surface publik descatored with attrict the condition of for flow of yeak flow. The low flow good its to detained first the condition of for flow of yeak flow. The low flow on and dreampack first the location for which the bottom slope is required. The peak flow good its location for which the bottom slope is required. The peak flow starting the location for which the bottom slope is required. The peak flow good its contract from the location slope is required. The peak flow distance is detailed in a contract peak flow from the food. In the provide the observed to be the location of the peak flow the fragment used. The channel bottom, in which case plut peak flow profile theody in the restored is provided to the computed to the peak flow used. The channel bottom is the start of the the peak flow is flow destructed to the distance (to feet) sold the food in the peak flow destructed to the distance (to feet) sold to be the provided to the peak detwo.

- Frenzie in de Antonie and Antonie and

Systematic properties of the charactic and an obtained and one on the obtained from within tydroprephic surveys of the character transfer that is a fusion toom of the stage. By pipting values of a confit seven the stage, the estant of the vicinitization and is distributed. Byproximently three to ten visit of the stage, and is will describe alequately the striction of area and width with stage, and is will describe alequately the striction of area and width with stage, and is complicated at an arbit provide only inconvertate width areas inconstant of all of a complicated at the stage.

15. Is shownd that the properties of the relation and then the barenefout the detailed of the specified bases of findence spirugash. These is the in significant adder on fill at the cross section dering the period, the compared respectively of relationship with relination that because of the whence variations of the restractional trajection. The privary sflare at scene of fill at the atogo-fillation that the cross of the section. The reliance is a substant section of the section of the section. The section of the section atogo-fillation of the section is a change in the section of the section stage-fillation of the resident of the section.

SECTION 3. APPLICATION OF MODEL

3.1 DATA REQUIREMENTS

In the application of Eq (15) to determine the dynamic relation of stage and discharge, the following information is required:

- 1) the effective bottom slope (S₀);
- 2) the cross-sectional area (A) and the surface width(B) as functions of the stage;
- 3) the Manning's coefficient (n) as a function of the stage; and
- 4) the specified (observed or predicted) stage or discharge hydrograph.

3.1.1 EFFECTIVE BOTTOM SLOPE

In natural channels, the bottom slope is often quite irregular due to the presence of deep bends, pools, crossings, shallow riffles and other irregularities that occur along the length of the channel. The bottom slope (S_0) , used in Eq (15), is the slope that is effective in controlling the flow. A good measure of the effective bottom slope is the water surface profile associated with either the condition of low flow or peak flow. The low flow profile is obtained from the minimum recorded stages at gaging stations both up and downstream from the location for which the bottom slope is required. The peak flow profile is obtained from the maximum recorded stages. The low flow profile is preferred unless it is noticeably affected by the irregularity of the channel bottom, in which case the peak flow profile should be used. The effective channel bottom slope is computed by subtracting the downstream stage from the upstream stage, both referenced to the same datum, and dividing by the distance (in feet) separating the two gage locations.

3.1.2 CROSS-SECTIONAL AREA AND SURFACE WIDTH

These are geometric properties of the channel location and can be obtained from either hydrographic surveys or stream gaging records. Each is a function of the stage. By plotting values of A and B versus the stage, the extent of the variation can be determined. Approximately, three to ten values of A, B, and h will describe adequately the variation of area and width with stage, and linear interpolation will provide any intermediate values required during the computation of the stage-discharge relation.

It is assumed that the properties of the cross section are known throughout the duration of the specified stage or discharge hydrograph. Thus, if there is significant scour or fill at the cross section during this period, the computed stage-discharge relationship will be inaccurate because of the unknown variations of the cross-sectional properties. The primary effect of scour or fill on the stage-discharge relation is a change in the position of the mean single-value rating curve. The position

is lowered when scour occurs and raised when fill occurs. Scour and fill have only a secondary effect on the shape and magnitude of the dynamic loop, since the two most dominant terms (S_0 and δh_s) of the variable energy slope are not affected substantially by relatively small changes in the cross-sectional area brought about by scour and fill. Gradual long term changes in the crosssectional properties which are monitored by periodic streamflow measurements should not prevent the use of the dynamic model. Significant scour and fill which produces rapid changes in the cross section will present difficulties in obtaining accurate stage-discharge relations; however, the dynamic model can provide a good approximation of the shape and magnitude of the dynamic loop.

3.1.3 MANNING'S COEFFICIENT, notice and addressed between the act of

Stage-discharge measurements can be used to compute Manning's n via the following rearrangement of Eq (3); viz.,

ul depart due de la cont**(16)**be Di

(17)

n = 1.486
$$\underline{AD^{2/3} S_0^{1/2}}_0$$

where Q is the discharge associated with the mean single-value rating curve. It should be noted in Eq (16) that S_0 , the effective channel bottom slope, is assumed to be equal to the energy slope. This curve is simply "sketched in" between (h,Q) points which have been obtained from discharge measurements. There should be points associated with both rising and falling discharges in order to obtain a representative mean rating curve.

Generally, n will vary with stage since the roughness properties of the channel change with stage due to (a) the variation of vegetation and channel bank irregularities with elevation and (b) the partial correlation of alluvial bed form changes with stage.

The following linear relation between n and stage is used herein:

$$n = n_{Lo} + (n_{L1} - n_{Lo}) (h - h_{Lo}),$$

(h_{L1} - h_{Lo})

where n_{L0} is the n value associated with the stage h_{L0} and n_{L1} is the value associated with the stage h_{L1} . Equation (17) applies throughout the range in stage, $h_{L0} < h < h_{L1}$. Sometimes the n,h relation varies sufficiently to require two linear relations; i.e., Eq (17) for a lower range of stage $h_{L0} < h < h_{L1}$ and a similar equation for an upper range in stage $h_{U0} < h < h_{U1}$.

If the n,h relation is subject to change due to seasonal changes in vegetation, man-made changes in the roughness properties of the channel

bank or over-bank, or changes in alluvial bed forms, the relation may be updated using the most recent discharge measurements. The value of Q used to compute the updated value of n via Eq.(16) should be corrected to eliminate the dynamic effect. The corrected value of the discharge is determined from the following:

$$Q = Q_{\rm m} - \frac{1.486}{1.486} \wedge D^{2/3} (s^{1/2} - s_{\rm o}^{1/2})$$
(18)

where Q_m is the measured discharge. The values of A, D, and n are obtained from their currently known relationships with stage for the particular stage associated with Q_m . The energy slope S is determined from Eq.(13) in which Q is replaced by Q_m .

3.1.4 SPECIFIED HYDROGRAPH

The specified (known) stage hydrograph is obtained from a measured stage versus time record. The record may be daily, hourly, or have a smaller temporal resolution. The degree of resolution should be such as to provide an adequate definition of the variation of stage with time.

The specified discharge hydrograph is obtained from a record of the measured discharges or from a forecast discharge hydrograph. The latter may be the product of some flow routing technique which does not provide both discharge and stage; e.g., the Muskingham method, the Tatum method.

 Δt in Eq.(15) should not be greater than the temporal resolution of the specified stage or discharge hydrograph. If the specified hydrograph has irregularities, a Δt which is less than the resolution of the hydrograph allows the resulting irregular stage-discharge rating curve to be defined more accurately. In this study, a Δt of 3 hours is used with specified hydrographs that have a 24-hour resolution.

3.2 TEST APPLICATIONS

The dynamic relation between stage and discharge is modeled herein for locations on the lower Mississippi, Atchafalaya, and Red Rivers. In each of these locations, the stage-discharge relation is influenced by a variable energy slope due to changing discharge.

The necessary information (bottom slope, cross-sectional area and surface width as functions of stage, and Manning's n) for each of the locations is given in Table 1. The cross-sectional properties represent time-average values. The departures of the cross-sectional properties for any 1 year from the average values shown in the table are less than approximately 3 percent. If the departures were considerably larger, cross-sectional proper ties applicable to each year would improve the accuracy of the computed stage-discharge relations. At each location, the floods, which were selected for testing the model, caused minimal scour and fill. The computed values

Location	So	Year	n ^{LO}	ⁿ Ll	h _{LO}	h _. L1	n _{U0}	n _{Ul}	h _{UO}	h _{Ul}	h	A	В
Mississippi River		1966	0.0148	0.01354	5.	50.					16.0	72500.	3000.
Tarbert Landing, Louisiana	0.0000143	1967	0.01560	0.01542	5.	50.					34.0	134000.	3540.
		1969	0.0123	0.01392		50.					41.2	200000.	3630.
Mississippi River	0.0000142	1062		0.0112							15.0 16.0 18.0	55300. 58000. 64400.	3020. 3060. 3160.
Louisiana		1903		0.0113	T D •				n operation of the second of t		19.0 30.0 37.0 44.0	68000. 104000. 133500. 163300.	3360. 3420. 431 0. 4400.
Red River Alexandria, La.	0.0000233	1964	0.031	0.018	45. 45.	55. 55.	0.0180	0.0112	55.	75.	45.0	4800.	463.
		1900	ngave rec 12. novega 13. novega 13. novega 14. novega 14. novega	euglie lass							60.0 80.0	13000. 26600.	576. 696.
Atchafalaya River											1.0	20000.	960.
Simmisport, La.	0.0000211	1964	0.0395	0.0196	5. 	16.1	0.0196	0.0143	16.1	40.	20.0 40.0	42100. 66000.	1250. 1425.

TABLE 1.--CROSS-SECTION AND HYDRAULIC DATA FOR LOCATIONS ON THE LOWER MISSISSIPPI, RED, AND ATCHAFALAYA RIVERS

of Manning's n vary somewhat for each flood. These variations are due apparently to the changing alluvial bed forms being not only a function of stage but also dependent on water temperature, discharge, and sediment load. Also, changes in bank vegetation due to seasonal effects may be responsible for some of the variability.

Using the information shown in Table 1 and observed stage-hydrographs, stage-discharge rating curves and discharge hydrographs were computed for selected floods at the locations discussed below.

3.2.1 MISSISSIPPI RIVER, TARBERT LANDING, LA.

Figures 3-8 illustrate computed stage-discharge relationships and discharge hydrographs for floods which occurred during the years 1966, 1967, and 1969.

In Fig. 3, the solid line representing the computed rating curve for the flood of 1966 was obtained by 1) using Eq (15) to compute the discharge hydrograph shown in Fig. 4 from the specified stage hydrograph shown in the insert of Fig. 3 and 2) plotting the observed stage **against** the computed discharge. Measured values of stage and discharge are shown in Fig. 3 also. The computed rating curve has a substantial dynamic loop; the discharge value of 550,000 cfs has two associated stages, one on the rising limb and one on the recession limb of the specified stage hydrograph, which differ by approximately 7 feet. The loop rating curve has irregularities which reflect each variation in the rate of change of the stage hydrograph. A comparison of the computed discharges shown in Fig. 4 with the observed discharges is quite good, the root mean square (rms) error being less than 4 percent.

The 1967 multiple-peaked stage hydrograph, shown in the insert of Fig. 5, yields the complex computed stage-discharge relation shown in the figure. Each peak of the specified stage hydrograph produces a different loop in the rating curve. As shown in Fig. 6 the computed discharge hydrograph agrees quite well with the discharge observations, the rms error being only about 3 percent.

The 1969 observed stage hydrograph shown in the insert of figure 7, yields the single-looped rating curve of the rigure. The uniformity of the stage hydrograph produces the relatively smooth computed rating curve. A comparison of computed and observed discharges is shown in figure 8. The rms error is about 2 percent.

3.2.2 MISSISSIPPI RIVER, RED RIVER LANDING, LA.

The 1963 observed stage hydrograph, shown in the insert of Fig. 9, yields the computed stage-discharge rating curve of the figure. The dynamic loop is rather significant; for a discharge of 450,000 cfs, the maximum difference between stages of the rising and falling limbs of the hydrograph is about 9 feet. This is a result of the rather severe rate of change of stage which exists for both the rising and the recession limbs of the stage hydrograph. Also, noticeable variations in the rate of change of the stage hydrograph are reflected as irregularities superimposed on an otherwise

smooth single-looped rating curve. The computed discharge hydrograph, shown in Fig. 10, compares with measured discharges quite well, the rms error being 1.6 percent.

3.2.3 RED RIVER, ALEXANDRIA, LOUISIANA

Figures 11 to 14 illustrate stage-discharge relation and discharge hydrographs for floods occurring during the years of 1964 and 1966.

The computed 1964 rating curve in Fig. 11 consists of several dynamic loops each of which correspond to individual peaks of the multiple-peaked stage hydrograph shown in the insert. The largest peak corresponds to a dynamic loop having approximately a 3-ft. difference in the rising and falling stages. The computed discharge hydrograph is shown in Fig. 12. The rms error of the computed versus observed discharges is 8.4 percent.

The single-peak and uniform variation of the observed stage hydrograph of 1966, shown in the insert of Fig. 13, yields the smooth single-loop rating curve shown in Fig. 13 and the computed discharge hydrograph of Fig. 14. The rms error of the computed versus observed discharges is 4.6 percent.

3.2.4 ATCHAFALAYA RIVER, SIMMESPORT, LOUISIANA

The 1964 observed stage hydrograph, shown in the insert of Fig. 15, results in the computed rating curve of Fig. 15. The irregularity of the stage hydrograph causes the computed rating curve to contain several small loops and other irregularities. The dynamic loop of the rating curve has a maximum 8-ft. difference in rising and falling stages corresponding to the single discharge value of 200,000 cfs. The irregularities observed in the stage hydrograph are reflected in the computed discharge hydrograph of Fig. 16. The computed and observed discharges have an rms error of 7.5 percent.

3.2.5 CONCLUDING REMARKS

In each of the previous applications, the dynamic loop of the computed stage-discharge rating curve is quite significant. This occurs, even though the maximum rate of change of stage is of the order of a few feet per day, because the effective bottom slope at each location is quite small. The importance of the bottom slope and the rate of change of stage will be discussed further in section 4. Equation (15) provides computed discharges which agree closely with the measured values, the average rms error being approximately 4 percent.

In each of the examples, the discharge hydrograph was computed from a specified or given stage hydrograph. This condition corresponds to the Case A condition identified previously in Chapter 2. This condition was used to test the dynamic model since the observed stage hydrograph is usually better defined than the discharge hydrograph. Thus, Case A allows a more meaningful test than would Case B. The Case B alternative function of the dynamic model was tested using the computed discharge hydrographs of a few of the previous applications as the specified discharge hydrograph. None of the computed stage hydrographs are presented since each was found to be essentially identical with the corresponding observed stage hydrograph.

ang diga ang sang sang tagan sa taga sang tagan sa T

Figure 14. Discharge Hydrograph for Red River, Alexandria, La. (4/13/66-7/1/66).

SECTION 4. GRAPHICAL ESTIMATION OF DYNAMIC LOOP

When stage-discharge measurements do not plot as a single-value rating curve, this is often attributed to some combination of the effects of scour and fill, bed form changes, or measurement errors. A simple and easilyapplied graphical procedure is presented in this section to determine the approximate magnitude of the deviations from the single-value rating curve which are due only to the effects of changing discharge. If this estimate is considered to be significant, the use of the dynamic model presented previously in sections 3 and 4 is warranted.

In order to estimate the magnitude of the effect of changing discharge on the stage-discharge relation, some simple measure of this effect is required. Referring to Fig. 2, such a measure is the difference between the stage associated with the single-value curve and that associated with either the rising or recession limb of the hydrograph. This measure of the dynamic loop is denoted as Δh . The following development will provide a means of estimating the magnitude of Δh for a particular channel location and flood event.

By using the hydraulic depth in lieu of the hydraulic radius, Eq(3) can be rearranged to yield:

 $D = \left[\frac{Q n}{1.486 B}\right]^{0.6} S^{-0.3}$

(19)

Eq(19) can be used to obtain an approximation for Δh by:

- 1) substituting Eq(3), in which R is replaced by D and S is replaced by S₀, for Q in Eq(19);
- 2) assuming the channel width B is constant throughout the Δh change in stage; i.e., dB/dh = 0; and
- 3) assuming a small change in hydraulic depth is equivalent to a small change in stage; i.e., $\Delta h = \Delta D$.

The approximation is given by the following expression:

 $\Delta h \simeq D \left[1 - \left(\frac{S_o}{S} \right)^{0.3} \right],$

(20)

where the energy slope S is approximated by:

$$S = S_{o} + \delta h_{s} \left[\frac{0.52}{S_{o}^{1/2} \frac{D^{2}/3}{n}} + \frac{0.01 S_{o}^{1/2} D^{2}/3}{D n} \right]$$
 (21)

Eq(21) was obtained by:

- using only the first two terms, which are the most significant, of the right side of Eq(14);
- 2) assuming K is constant and equal to 1.3; and
- 3) assuming Q in Eq(14) may be approximated by Eq(3) in which S_o is used in lieu of S.

An inspection of Eqs(20) and (21) indicates that the independent parameters necessary to approximate the magnitude of Δh in the dynamic loop are S_o, δh_s , D, and n. Thus, by allowing these parameters to assume values which encompass the practical range of each, Eqs(20) and (21) may be used to determine the Δh associated with various parameter values. The results of these computations are summarized by the family of graphical relationships shown in Fig. 17.

The following steps summarize the use of Fig. 17 to obtain an estimate of the Δh magnitude of the dynamic loop:

1) compute the value of $\underline{D}^{2/3}$;

2) use Graph A and the values of $\frac{D}{n}^{2/3}$ and δh to obtain K_0 ;

3) use Graph B and the values of S_0 and K_0 to obtain S;

4) compute the value of S_0/S ; and

5) use Graph C and the values of S_S/S and D to obtain Δh .

The following example illustrates the use of Fig. 17 to estimate Δh :

The approximate value of Δh is to be determined when $S_o = 0.00008$, D = 20.0 ft, n = 0.020, and $\delta h = 1.0$ ft/hr. First, the parameter $D^{2/3}$ is computed to be 368. With this value and the given value of δh , \overline{n} Graph A is used to obtain a value of 0.82 for K_o . Then, with the value of K_o and the given value of S_o , Graph B is used to obtain a value of 0.000137 for S. Finally, the ratio S_o/S is computed to be 0.584 and this value, along with the given value of D, is used in Graph C to obtain the Δh value of 2.9 ft.

The curves of Fig. 17 enable Δh to be determined for any combination of the relevant parameters (S_o, δh , D, and n). Of these, S_o and δh are the more dominant; therefore, by fixing the values of D and n at particular values, valuable insight concerning the effect of S_o and δh on the magnitude of Δh may be attained. Thus, if D and n are assumed constant at 10 ft and 0.015, respectively, the curves shown in Fig. 18 are obtained. If the values of D and n are assumed constant at 30 ft and 0.015, respectively, the curves shown in Fig. 19 are obtained. The following conclusions may be drawn from an examination of Figs. 18 and 19:

Δh increases as δh increases;

Figure 17. Generalized Graphical Estimation of Magnitude (Δh) of the Dynamic Loop. 32

Figure 18. Graphical Estimation of Magnitude (Δh) of the Dynamic Loop for Constant D of 10ft. and n of 0.015.

Figure 19. Graphical Estimation of Magnitude (Δh) of the Dynamic Loop for Constant D of 30. ft. and n of 0.015. 34

- 2) Δh decreases as S_o increases; $\beta = 0.000$
- 3) Δh increases as D increases;
- 4) Δh is insignificant (say less than about 0.1 ft) when S > 0.001 for most naturally occurring values of δh; i.e., δh < 4^o ft/hr;
- 5) Δh can be significant when 0.0001 < S₀ < 0.001 for 0.1 < δh < 3 ft/hr; and

6) Δh is significant when $S_0 < 0.0001$ for $\delta h < 0.05$ ft/hr.

The relation of Manning's n to Δh is determined by selecting constant values for S_o, δh , and D and using Fig. 17 to determine Δh for different values of n. In this manner, it is found that Δh increases as n increases.

vurograda anto a stage byarogiana Which gropary restants the dynamic vlasich the exists between stogo and distincte dut to a veriablo starge glope. Also, the model can be distincted by ecress grafting to convert a chatered stage bydratach fate a fischerge bydrograph when the effe if changing discharge as algoidance.

A perventant graphical proceders has been precented to ectuate the magnitude of the charting discharge offect on thege-discharge ratiogs, that is usaful in deheming, if the engliest of the dynamic loop estimate the use of the variance (in the engliest of the dynamic loop has been found to be related inversely to the compatible of the dynamic set disectly to the related inversely to the compatible of the density of the related inversely to the compatible of the density of the related inversely to the compatible of the density of the related inversely to the compatible of the density of the related inversely to the compatible of the density of the related inversely to the compatible of the density of the start of the related inversely to the compatible of the density of the related in the start of the start density of the start of the related in the short of the start the transferred of the start of the start of the start the start of the start of the start of the start of the start the start of the start

SECTION 5. SUMMARY

From the equations of unsteady flow, a mathematical model has been developed which computes either stage or discharge if the other is specified along with the channel slope, cross-sectional properties, and Manning's n. The model simulates the dynamic relation which exists between stage and discharge due to the effect of a variable energy slope caused by changing discharge. This effect, which is often observed as a loop in stage-discharge rating curves, was accurately modeled in several test applications; however, caution must be exercised when applying the model to locations where significant scour, fill and/or bed form changes occur since the model is only as accurate as the specified data.

The model can be used in forecasting to convert the forecast discharge hydrograph into a stage hydrograph which properly reflects the dynamic relation that exists between stage and discharge due to a variable energy slope. Also, the model can be used in stream gaging to convert an observed stage hydrograph into a discharge hydrograph when the effect of changing discharge is significant.

A convenient graphical procedure has been presented to estimate the magnitude of the changing discharge effect on stage-discharge ratings. This is useful in determining if the magnitude of the dynamic loop warrants the use of the mathematical model. The magnitude of the dynamic loop has been found to be related inversely to the channel bottom slope, and directly to the rate of change of stage, the hydraulic depth, and the Manning's n. As a general rule, the dynamic loop may be significant if the channel bottom slope is less than 0.001 ft/ft (about 5 ft/mile) and the rate of change of stage is greater than about 0.10 ft/hr. This rate of change of stage may decrease with decreasing values of the bottom slope.

ACKNOWLEDGMENTS

The author wishes to acknowledge the assistance given by Dr. E. L. Peck, Dr. R. A. Clark, and Mr. W. T. Sittner in reviewing the report and Mr. R. Tubella in drafting the figures.

. Gerbett, D.M., "Stream Gaging Stocedure," Geological Survey Watar Suppl. Pener 200. G.S. Government Diforine Office, Weshington, 1943.

iandy, S.X., "Depth-Alecharge Relacions of Minorial Strams--Necostano Esting Guryss," Geologisel Survey Vecar Supply Faper 1497-C, V.S. Coveradot Princing Office, Weshington, 1961.

jandaison, 7,7., 6pen Ghummal Slon, Harikilan Commuy, New York, 1945

leasaton, A. and H.E. Kalier, <u>Analysia of Sumerical Nethoda</u>, John Wile - Sent. New York, 4956.

Liosisy, M.K., M.A. Kahlar, and J.L.M. Fruibur, <u>ipplied Hydrology</u>, . Robert-Bill Book Campany, New York, 1969.

Simon, D.S., and S.V. Sichardson, "The Effect of Ded Booghuese on Depin Mischarge Halsiics in Allweir: Charolis," Crélogical Aurey Decer Supply Texar 1992-8, N.S. Government Frincisc Willes. Designation. 1961.

Marons, D.E., H.A. Stevens, and J.H. Daha, "Fradicting Stages of Sand-Ma Mixtra," Journal of the Astematys, Article and Coastal Rags. Division, -1303, Vol. 74, No. Wel, Proc. Paper 9001, pp. 231-244, May, 1973.

REFERENCES

Carter, R. W., and I.E. Anderson, "Accuracy of Current Meter Measurements," Journal of the Hydraulics Division, ASCE, Vol. 89, No. HY4, Proc. Paper 3572, pp. 105-115, July, 1963.

Chow, V.T., Open-Channel Hydraulics, McGraw-Hill Book Company, New York, 1959.

Corbett, D.M., "Stream Gaging Procedure," Geological Survey Water Supply Paper 888, U.S. Government Printing Office, Washington, 1943.

Dawdy, D.R., "Depth-Discharge Relations of Alluvial Streams--Discontinuous Rating Curves," Geological Survey Water Supply Paper 1498-C, U.S. Government Printing Office, Washington, 1961.

Henderson, F.M., Open Channel Flow, MacMillan Company, New York, 1966.

Isaacson, E. and H.B. Keller, <u>Analysis of Numerical Methods</u>, John Wiley & Sons, Inc., New York, 1966.

Linsley, R.K., M.A. Kohler, and J.L.H. Paulhus, <u>Applied Hydrology</u>, McGraw-Hill Book Company, New York, 1949.

Simons, D.B., and E.V. Richardson, "The Effect of Bed Roughness on Depth-Discharge Relations in Alluvial Channels," Geological Survey Water Supply Paper 1498-E, U.S. Government Printing Office, Washington, 1961.

Simons, D.B., M.A. Stevens, and J.H. Duke, "Predicting Stages on Sand-Bed Rivers," Journal of the Waterways, Harbors and Coastal Engr. Division, ASCE, Vol. 99, No. WW2, Proc. Paper 9731, pp. 231-243, May, 1973.

APPENDIX A list in the second of the second second of the second structure of the second structure of the second s

A nonlinear equation may be solved by a functional iterative technique such as Newton iteration. Consider the following equation expressed in functional form:

The solution of Eq (A-1) is obtained in an iterative manner, proceeding from a first solution estimate x^k towards succeeding improved estimates x^{k+1} , which tend to converge toward an acceptable solution. The orderly procedure by which the improved solution estimate x^{k+1} is obtained so that it converges to an acceptable solution is known as Newton iteration and is described as follows.

A nonlinear equation such as Eq (A-1) may be linearized by using only the first two terms of its Taylor series expansion at x^k ; i.e.,

$$f(x) = f(x^{k}) + \frac{df(x^{k})}{dx^{k}} \quad (x-x^{k}) \qquad (A-2)$$

The right side of Eq (A-2) is the linear function of x^{k} that best approximates the nonlinear function f(x) which is evaluated at x^{k} . An iterative procedure, which will cause $f(x^{k})$ to approach zero as the quantity $(x-x^{k})$ approaches zero, can be obtained from Eq (A-2) by setting f(x)equal to zero and replacing x with x^{k+1} , which will be an improved solution estimate for x if the iterative procedure is convergent. Hence Eq (A-2) takes the form:

$$x^{k+1} = x^{k} - \underline{f(x^{k})}$$
 (A-3)
$$df(x^{k})/dx^{k}$$

where the k superscript denotes the number of iteration.

Eq (A-3), the general iteration algorithm of Newton, is repeated until the difference $(x^{k+1} - x^k)$ is less than ε which is a suitable error tolerance for the solution of Eq (A-1). When this occurs, the iteration process has converged; i.e., x^{k+1} has approached x to within the prescribed error tolerance ε . The convergence of the iteration process depends on a good first solution estimate $x^{k=1}$. If the estimate is sufficiently close to x, convergence is attained; and it is at a quadratic rate; i.e. second order, since the iterative procedure involves the first derivative. The nonlinear equation which is solved by the Newton iterative algorithm in this report is a time dependent finite-difference equation. A first estimate of the solution is obtained by using the solution associated with the time t-At. In this study the iteration process always converged. The convergence process can be hastened when the first solution estimate $x^{k=1}$ is made closer to the acceptable solution. A simple linear extrapolation is used to provide better first solution estimates. Thus,

 $x_{j}^{k=1} = x_{j-1} + (x_{j-1} - x_{j-2})/2$ (A-4)

where the j subscript denotes the solution at time t and j-1 denotes the solution at time t- Δ t, etc.

In the following, the Newton iteration algorithm is applied to Eq (15), which is presented here for convenient reference:

$$Q = 1.486 \frac{AD^{2/3}}{n} \left[S_{0} + \left[\frac{A}{KQ} + (1 - \frac{1}{K}) \frac{BQ}{gA^{2}} \right] \delta h_{s} + \frac{Q^{2}/A^{2}}{g\Delta t} - \frac{Q/A}{g\Delta t} + \frac{2S_{0}}{3r^{2}} (1 - \frac{BQ^{2}}{gA^{3}}) \right]^{1/2} = 0$$
(A-5)

First, the Case A condition is treated where the discharge Q is the unknown in Eq (A-5) and then the Case B condition is presented in which the stage h is the unknown.

Eq (A-5) can be solved for Q at time t as follows:

$$Q^{k+1} = Q^k - \frac{f(Q^k)}{df(Q^k)/dQ^k}$$

(A-6)

(A-7)

where the superscript k denotes the number of iteration; $f(Q^k)$ is Eq (A-5) evaluated with the unknown Q replaced by the approximation Q^k ; and the term $df(Q^k)/dQ^k$ is the derivative of $f(Q^k)$ with respect to Q^k . Thus,

$$f(Q^k) = Q^k - L_2 L_0^{1/2}$$

where:

$$L_{0} = L_{3} + L_{4} + L_{5} Q^{k} + L_{6} (Q^{k})^{2} , \qquad (A-8)$$

$$L_{2} = 1.486 \frac{AD}{n}^{2/3}, \qquad (A-9)$$

$$L_{3} = S_{0} + \frac{2}{3} \frac{S_{0}}{r^{2}} + \frac{Q^{*}}{g A^{*} \Delta t} , \qquad (A-10)$$

$$L_{4} = \frac{A}{K} \frac{\delta h_{5}}{K} , \qquad (A-10)$$

$$L_{5} = (1 - \frac{1}{K}) \frac{B}{g A^{2}} - \frac{1}{g A \Delta t} , \text{ and} \qquad (A-12)$$

$$L_{6} = -\frac{2}{3} \frac{S_{0}}{r^{2} g A^{3}} , \qquad (A-13)$$
in which

$$D = \frac{A}{B} , \qquad (A-14)$$

$$\delta h_{g} = (\frac{h - h^{*}}{\Delta t}) , \qquad (A-16)$$

$$K = \frac{5}{3} - \frac{2}{3} \frac{A}{B^{2}} d^{B}/dh , \qquad (A-16)$$

$$dB/dh = (\frac{B - B^{*}}{Q_{1} - h^{*}}) , \qquad (A-18)$$

$$n = n_{Lo} + (\frac{n_{L1} - n_{Lo}}{(h_{L1} - h_{Lo})})^{(h^{K} - h_{Lo})}$$

Also,

$$\frac{df(Q^{k}) = 1 - 0.5L_{2}L_{1}}{\frac{dQ^{k}}{L_{0}^{1/2}}}$$
(A-19)

where:

$$L_{1} = \frac{dL_{0}}{dQ^{k}} = \frac{-L_{4}}{(Q^{k})^{2}} + L_{5} + 2L_{6}Q^{k}.$$
 (A-20)

In the above equations, A and B are known functions of the stage and are evaluated at h; B', A', h' are known from the time period previous; i.e., t' or t- Δ t; S_o, r, n_{Lo}, n_{L1}, h_{Lo}, h_{L1} are constants.

Case B:

Eq(A-5) can be solved for h at time t as follows:

$$h^{k+1} = h^{k} - \frac{f(h^{k})}{df(h^{k})/dh^{k}}$$
(A-21)

where the superscript k denotes the number of iteration; $f(h^k)$ is Eq(A-5) evaluated with the unknown h, which is also implicitly contained in the terms D, A, B, n, K, and δh , replaced by the approximation h^k ; and the term df(h^k)/dh^k is the derivative of f(h^k) with respect to h^k . Thus,

$$f(h^k) = Q - 1.486 \frac{AD^2/3}{n} J_0^{1/2}$$
 (A-22)

where:

$$J_{o} = J_{2} + (J_{3} + J_{4} + B_{A}) (h^{k} - h^{2}) + J_{5} + J_{6} + J_{6} - B_{A}$$
 (A-23)

in which

$$J_2 = S_0 + \frac{2}{3} \frac{S_0}{r^2} + \frac{Q}{g} \frac{A}{\Delta t}$$
, (A-24)

$$J_{3} = \frac{1}{K \ Q \ \Delta t} , \qquad (A-25)$$

$$J_{4} = (1 - \frac{1}{47}) \quad 0 \qquad , \qquad (A-26)$$

$$J_4 = (1 - \frac{1}{K}) \frac{Q}{g \Delta t} ,$$

$$J_5 = -\frac{Q}{g \Delta t}$$
, and (A-27)
 $J_6 = -\frac{2}{3} \frac{S_0 Q^2}{r^2 g}$. (A-28)

In the above,

$$K = \frac{5}{3} - \frac{2}{3} \frac{A}{B^2} \frac{dB/dh^k}{h^k} \dots (evaluated at h^k), \qquad (A-29)$$
$$dB/dh^k = \frac{(B^k - B^{-})}{(h^k - h^{-})}, \qquad (A-30)$$

A-4

and

$$\frac{df(h^{k})}{dh^{k}} = -1.486 \left[J_{o}^{1/2} \left[\frac{A}{n} \frac{d(D^{2/3})}{dh^{k}} + \frac{D^{2/3}}{n} - \frac{A}{n^{2}} \frac{D^{2/3}}{n^{2}} dn/dh^{k} \right] + \frac{0.5A}{n} \frac{D^{2/3} J_{1}}{J_{o}^{1/2}} \right], \qquad (A-31)$$

where:

$$J_{1} = \frac{dJ_{o}}{dh^{k}} = J_{3}A + J_{4}\frac{B}{A^{2}} + (h^{k} - h^{2}) \left[J_{3}B + \frac{J_{4}}{A^{2}} (^{dB/dh^{k}} - 2\frac{B^{2}}{A}) \right] - J_{5}\frac{B}{A^{2}} + \frac{J_{6}}{A^{3}} (dB/dh^{k} - 3\frac{B^{2}}{A})^{2}, \qquad (A-32)$$

$$n = n_{Lo} + \frac{\binom{n_{L1} - n_{Lo}}{(h_{L1} - h_{Lo})}}{(h_{L1} - h_{Lo})} (h^{k} - h_{Lo}) , \qquad (A-33)$$

$$dn/dh^{k} = \left(\begin{array}{c} \frac{({}^{H}L1 - {}^{H}Lo)}{(h_{L1} - h_{Lo})} \right), \text{ and}$$
 (A-34)

$$\frac{d(D^{2/3})}{dh^{k}} = \frac{2}{3} D^{2/3} \left(\frac{B}{A} - \frac{dB/dh^{k}}{B}\right) .$$
 (A-35)

In the above equations A and B are specified functions of the stage and are evaluated at h^k ; B', A', h' are known from the previous time t- Δ t; and g, Δ t, S₀, r, n_{L0}, n_{L1}, h_{L0}, h_{L1} are constants.

For either Case A or Case B, the solution of Eq(A-5) via Newton iteration requires only about two iterations when the following convergence criteria are used:

$$\left| Q^{k+1} - Q^k \right| < \varepsilon_Q \tag{A-36}$$

and

 $\left|\mathbf{h}^{k+1} - \mathbf{h}^{k}\right| < \varepsilon_{h}$,

where:

$$\varepsilon_0 = 1.0 \text{ cfs}$$

and –

$$\varepsilon_{\rm h}$$
 = 0.001 ft.

A-5

(A-37)

(A-38)

(A-39)

Classical in APPENDIX B) solar A

COMPUTER PROGRAM (DYNMOD)

The Fortran IV computer program presented in this section will compute either the Case A or Case B condition. An index labeled (IQH) functions as a decision variable so that the appropriate branches of the program are followed for either Case A or Case B. If IQH is assigned a value of one (integer), the Case A condition is performed in which discrete values of the discharge hydrograph are computed using an input of discrete values of the stage hydrograph. If IQH is assigned a value of two, the Case B condition is performed in which discrete values of the stage hydrograph are computed using an input of discrete values of the stage hydrograph are computed using an input of discrete values of the discharge hydrograph.

The program (DYNMOD) is designed with a (Main Program) and several subroutines for performing repetitive computations. Input/output information is handled by the Main Program. It also contains the basic program logic. Subroutine (QSOLVE) solves Eq (15) for the discharge Q using Newton Iteration. Subroutine (HSOLVE) solves Eq (15) for the stage (H) using Newton iteration. Subroutine (SECT) computes the geometrical properties of the cross-section for a particular elevation of the water surface. Subroutine (FRICT) computes Manning's n for a particular elevation of the water surface.

The output furnished by the program includes all the input information, as well as the following:

The time (in hours) associated with the computations being printed-out; the time corresponds to the temporal resolution of the specified (input) hydrograph.

Stage ____

Time _

The actual stage (in ft above mean sea level or above a datum plane) which is read-in as the specified stage in the Case A condition or which is computed as in the Case B condition.

Discharge _____ The actual discharge (in cfs) which is read-in as the specified discharge in the Case B condition or which is computed as in the Case A condition.

Normal discharge — A fictitious discharge (in cfs) which would occur simultaneously with the actual stage if there were no dynamic effect due to a variable energy slope caused by changing discharge; this discharge would occur if the energy slope were equivalent to the effective channel bottom slope. Dynamic effect _____ A value (in cfs) which is the algebraic difference between Discharge and Normal Discharge; this represents the effect of the flow dynamics on the discharge.

Normal stage _____ A fictitious stage (in ft above MSL) which would occur simultaneously with the actual discharge if there were no dynamic effect.

Dynamic effect _____ Also used as a value (in ft) which is the algebraic difference between Stage and Normal Stage; this represents the effect of the flow dynamics on the stage.

Comment statements, inserted within the program, are provided as additional clarification.

The Fortran IV computer program (DYNMOD) and a typical INPUT/OUTPUT listing follows:

vronsen ingle. Scheronine (2003) solves 24 (13) for the discharge 9 adog destro. Teassonin, Scheronick (2503) golese 25 (13) for the exem-(a) which forthe theistic, Scheronick (2503) converse the generotical subjection of the opinon-solution for a portional sizvation of the water articles. Scheronics (2401) computed Schulng's o for a particular sizvatica of the articles.

The Mine (in Munre) seemained with the analysichtikan being printaansta, ale tike warmesende tin tike volgement rejectetien ad n ale spactited (trapus) brancpropingt

No arian' stipo (no fo shove mean eas level ur erove a demm place) which is vardein as the specified range is the Case A condition or which is completed as in the Case 5 condition.

The accusi dispinance (in eil) struct is read-in as the spacefied discoverys in the Case R acciding to thick if computed as in the Case I continue.

A siutarios discharys (s. 250) which woold ocen similarsemily with the success regariz there wore to dynamic sident des us a rectable ouergy siope coused by chaqing discharge; bits divisings goald accur if the charge clope ware united of the bifecting charges bortes along.

B-2

	PROGRAM DYNMOD (INPUT,OUTPUT)
	DIMENSION》HU(200),T1(200),QU(200)。目的目前自己自己的意义。他们们在自己的一些世界的一些世界的
***	THIS PROGRAM IS A DYNAMIC MODEL OF THE STAGE-DISCHARGE RELATION.
***	THE MODEL CONSIDERS THE VARIABLE ENERGY SLOPE DUE TO CHANGING
***	DISCHARGE WHICH CAUSES A LOOP IN THE STAGE-DISCHARGE RATING CURVE.
	COMMON /A1/ CML1,CML2,CMU2,CMHL1,CMHL2,CMHU2,XAMD, A2, CA32
	COMMON /A2/ HS(10),BS(10),AS(10),NCSMHADIADAXAMOADIATATATA
***	GRAVITY ACCELERATION CONSTANT
	G=32•172 x0036**0=270
***	ITERATIVE CONVERGENCE CRITERION
	EPH=0.001
	EPQ=1.0 BBASEA ICOG
***	INPUT DATA
***	IF IQH=1, THE STAGE HYDROGRAPH IS REQUIRED AS INPUT DATA AND THE
***	DISCHARGE HYDROGRAPH IS COMPUTED BY THE PROGRAM.SOMMARKARKARKA
***	IF IQH=2, THE DISCHARGE HYDROGRAPH IS REQUIRED AS INPUT DATA
***	AND THE STAGE HYDROGRAPH IS COMPUTED BY THE PROGRAM. A COMPANY AND A
***	NU IS THE NUMBER OF POINT VALUES OF THE SPECIFIED HYDROGRAPH.
***	NCS IS THE NUMBER OF VALUES OF HS. MILTER ANAMOLES OF HS. TO DEPENDENT AND
***	GZ IS THE ELEVATION (FT) OF THE GAGE ZERO ABOVE MSL
***	DT IS THE DELTA TIME STEP (HRS) AT WHICH THE COMPUTATIONS PROCEED
***	DTHU IS THE TIME INTERVAL (HRS) BETWEEN VALUES OF SPECIFIED
***	HYDROGRAPH •
***	HS IS THE WATER SURFACE ELEVATION (ABOVE MSL) FOR KNOWN VALUES OF
***	CROSS-SECTIONAL AREA AND WIDTH.
×₩×	BS IS THE KNOWN VALUE OF THE SURFACE WIDTH FOR THE ELEVATION HS.
***	AS IS THE KNOWN VALUE OF THE CROSS-SECTIONAL AREA FOR ELEV. HS.
***	HU IS SPECIFIED STAGE HYDROGRAPH VALUE FOR EACH DTHU (HRS)
***	SAA CORRECTINE INCREMENT ●
***	QU IS THE SPECIFIED DISCHARGE HYDROGRAPH VALUE FOR EACH DTHU
***	(HRS) TIME INCREMENT.
	.READ 51, IQH
	PRINT 50, IQH CSutad Se OC
	READ 51,NU,NCS,GZ,DT,DTHU
	PRINT 55, NU,NCS,GZ,DT,DTHU
	READ 529(HS(K))K=19NCS)
	PRINT 60 《特殊》時,使用的作用用人用的作用的有意用用,因素是含义的主要和法律者的意义在一次算
	PRINT 529(HS(K))K=1,NCS)
	READ 52 · (BS(K) · K=1 · NCS)
	PRINT 61 Yest Market Company
	PRINT 529(BS(K))K=1)NCS)
	READ 52 · (AS(K) · K=1 · NCS)
;	PRINT 62 90/80 At
	PRINT 529(AS(K))K=19NCS)
	IF(IQH-1) 8,8,9
8	READ 52+(HU(K)+K=1+NU) 合理
	PRINT 63
	PRINT 52,(HU(K),K=1,NU)
***	COORECT CRECTETER STACES TO MEAN SEACLEVELS DATUME STRUCTURE STATES
	CORRECT SPECIFIED STAGES TO MEANS SEACLEVEL DATUMATE A DATE AS A SECTOR
	DO 12 K=1,NU
12	DO 12 K=1+NU HU(K)=HU(K)+GZ
12	DO 12 K=1+NU HU(K)=HU(K)+GZ GO TO 10
12 9	DO 12 K=1,NU HU(K)=HU(K)+GZ GO TO 10 READ 52, (QU(K),K=1,NU)

B-3

***	PRINT 52, (QU(K),K=1,NU) INPUT FRICTION COEFFICIENTS AND READ 53, CML1,CML2,CMU2,CMHL1,CM	EFFECTIVE BOTTOM SLOPE MHL2,CMHU2,SO	
	PRINT 59, CML1, CML2, CMU2, CMHL1, CM	HL2,CMHU2,SOGGERADE LEGOMERAT	가 온 옷 같이.
***	TYPICAL FLOOD DATA FOR COMPUTING	GONSTANT (FR)	
	READ 54, TP,QMAX,QMIN,HMAX,HMIN	·赫尔·特让那个家族。第10回来上2400日,在本国上,特别和400年。	
	PRINT 67, TP, QMAX, QMIN, HMAX, HMIN		
<u>ት</u> ዮች	CONVERT DI TO SECONDS		
***	COMPLETE HOUR ASSOCIATED WITH DO	INT VALUES OF SPECIFIED HYDROGRA	עס
~ ~ ~	TI(1)-0.	INT VALUES OF SPECIFIED HIDROGRA	\₩ [] ●
	$DO 11 K=2 \cdot NU$	11日本 11日本 11日本 11日本 11日本 11日本 11日本 11日本	
11	$T_1(K) = T_1(K-1) + DTHU$		
***	COMPUTE FR CONSTANT		
	HMAX=HMAX+GZ MANDON CHIE YE GATE		
	HMIN=HMIN+GZARCHORM PI REARCONA		
	HA=0.5*(HMAX+HMIN) - CONTRACTOR	一台王、丹伟大学家合观合学校、古台城学校、白松学、白树美	
	CALL SECT (HA,A,B,R,DB,DR)		
	FR=56200 • * (QMAX+QMIN) * TP*S0/A/()	MAX-HMIN)) PERKAS BAT RE SOC	
	PRINT 56.5.ER 77004 0204 3042 347		
63306	CONR=2•/3•*SO/FR/FR		
	K(=1910496 RO 88934V 28883861689		
		ان المراجع الم	
	CONDUTE INITIAL DISCURDE		
***	COMPUTE INITIAL DISCHARGE BE		
<u> </u>		· 学校学生学校、建立多体学生学校、学校学生学校、中国学校学校、学校学校、 学校学校、学校、学校、学校、学校学校、学校、学校、学校、	an inin Ali ining ta
			al Roberts
	OP = 1.486 / CM + SORT (SO) + 4 + R	 A Second Control of Manager Control (Second Second Se Second Second Se Second Second Se Second Second Se Second Second Sec	
	GO TO 14 POLATING		
31	Y1=(QU(1)*CML1/(1.486*SQRT(SO)*E	3S(1)))**(3•/5•)	
	DO 32 K=1,20	1457、468、百姓于8年。	
	CALL SECT(Y1,A,B,R,DB,DR)		
	CALL FRICT(Y1,CM,DCM)		
	F=QU(1)-1.486*SQRT(SO)/CM*A*R		
	DF=-1.486*SQRT(SO)*(B*R/CM+A*DR/	(CM-A*R*DCM/CM/CM) California	
	Y=Y1-F/DF		
	IF(ABS(Y-Y1)-EPH) 33,32,32	(1) 含於的環境管理資源管理管理構成性的。	
32			
33	OP = OU(1)	1 ほじんきょうしょう からひょう ほうしつ 時代 クロー - さんし アニマー しゅうひょうごやう いかり彼彼	
14			
14			
	PRINT 68		
	GO TO 43	- 「「「「」」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」	
15	TT=TT+DT		
***	INTERPOLATE AT TIME TT FROM SPEC	IFIED HYDROGRAPH DORAL ADROAD	
	DO 16 K=1.NU	建碱水和医疗 化乙酰氨基乙酰氨基乙酰氨基乙酰氨基乙酰氨基乙酰氨基乙酰氨基乙酰氨基乙酰氨基乙酰氨基	
	IF (TT-T1(K)) 17,16,16		
16	CONTINUE	· · · · · · · · · · · · · · · · · · ·	
·	GO 10 26	一、一、人口、小口、小口、小口、小口、小口、小口、小口、小口、小口、小口、小口、小口、小口	
17	KK = K - 1		

в-4

		IF(IQH-1) 40,40,41	《诗·《字书》,观察一家总是于旧教育会自己。 网络奎尔森岛
***		INTERPOLATION OF STAGE HYDROGRAP	日において、「「「「「」」」、「「」」、「」、「」、「」、「」、「」、「」、「」、「」、「
	40	HF=HU(KK)+(TT-T1(KK))/DTHU*(HU(K)))
		CALL QSOLVE (HF, HP, QP, EPQ, SO, CON	R • DTS • DQ • G • QF)
		GO TO 43 (2) 29 10 28 400 60 43	19、1990年、ショウニアクロの12、19月1日により、19月1日に、19月1日 各級合業生活の資源主導業の特徴な物品を定める主要素級弱点などでありました。
***		INTERPOLATION OF DISCHARGE HYDRO	GRAPH Maisser and the second
	41	QE = QU(KK) + (TT - T1(KK))/DTHU*(QU(K))	Y-OHICKKAANST MARKET S TASE IN A SARAT AND
	970.40 1970.40	CALL HSOLVE (OF.OP.HP.EPH.SO.CON	
	12	DO-OF-OP	
	49. Vie		
		CONDUTE NORMAL DISCHARGE	
<u> </u>		CALL SECT (HE A D D DD)	
		CALL SECT (HF JA JD JR JD JDR)	1. 《《学生》为文化是出版情况,是否解释的作家文化的方法。
		QN=1.4867CM*SQR1(SU)*A*R	
		DQN=QF-QN	
***		COMPUTE NORMAL (STAGE SPOCE OF STAGE	2月6~月月2月日) BV 和時意一路將行了現代會將日本
		HNK=HF+DHN/2. John of Back Tagets Bo	
		DO 22 K=1,20 K, 20000000 0000 0000	
		CALL SECT(HNK,A,B,R,DB,DR)	
		CALL FRICT (HNK, CM, DCM)	
		F=QF-1•486*SQRT(SO)*A*R/CM	名字のとかくらい特徴を発展なり立ちらったという。
1		DF=-1.486*SQRT(SO)*(A*DR/CM+B*R/	CM-A*R*DCM/CM/CM)
		HNKK=HNK-F/DF	
		IF(ABS(HNKK-HNK)-EPH)23,22,22	超年指的基礎系統要認在全國藝品及其NEB的基本文字。
	22	HNK=HNKK	
	23	HN=HNKK	带了有人大帝国中帝国主要把持有一些"三十二
***		COMPUTE DIFFERENCES IN NORMAL AN	D DYNAMIC STAGES AN ANDRA AND AND AND AND AND AND AND AND AND AN
		DHN=HF-HN The second se	
***		CHECK TO SEE IF COMPUTATIONS ARE	TO BE PRINTED AND AND AND AND AND AND AND AND AND AN
		IF(TT-T1(KT)) 25,24,24	1、10月月、月月1日回忆、白路台等得及等港。海军县均纳合的。 网络卡马
	24	KT = KT + 1	
***		PRINT COMPUTATIONS	· 索尔特学者· 法确保最限的,学校: 不容子系确备。 镭尿 (输) · · · · · · · · · · · · · · · · · · ·
		PRINT 69, TT, HF, QF, QN, DQN, HN, DHN	
	25	QP=QF	2043 形成2086 招援的公式 的复数自己的 11.1
		HP=HF	
		GO TO 15	
	26	CONTINUE	
		STOP	
	50	FORMAT(5X * IOH = * I2)	
	51	FORMAT(2110+3F10+2)	
	52	FORMAT(8F10.2)	
	53	FORMAT(3F10.5.3F10.2.F10.6)	
	54	EOPMAT(5E10-2)	
	55	FORMAT (5% * NO. OF HYDROGRADH P	TC→¥21 ⁵ 515Y,122300000000000000000000000000000000000
	2.2 		
	9 8 Y 1	DEC 2//.EY.* DELTA TIME INCREMENT	$(UPC) - \mathbf{F} + \mathbf{E} \mathbf{C} = \mathbf{I} + 5 \mathbf{Y} = \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C}$
		A DECOLUTION OF SPECIFIED HYDROG	
	E 4	EORMATICEY SED CONSTANT-S.EIO 2)	
	50	FORMATISATER CUNSTANT-AFT1002)	、アレネが得ませるたまやそうたうから、「おおよう」」。 PGF(CFS) 、米 、F10×0)のはまってきた。
	27	FORMATION ALLE AT A	NULINE STARES OF LOWED DANCES OF STAR
$t \in \mathbb{R}^{n}$	27	TURMATIZANTUMELI IS N VALUE AT L DE-K.EIO E./OV.K/CMLON ITS N.VALUE	AT UTCHERT STACE OF NOWED DANCE
	;	LE=**9FIU@D9/ZK9*VCMEZ/IDDIN VALUE	A DATA DEST STAGE OF LOVERSRANGE
		20F STAGE =*9F10+59/289*(CMU2) 15	N VALUE AT HIGHEST STACE OF UPPER
		S RANGE OF STAGE =* + IU.5, 2X, M(C	MALT) IS STAGE ASSUCTATED WITH CAL
		41 =* + 10 2 / 2x + (CMHL2) IS SIAGE	ASSUCIATED WITH CML2 =** FIU.2 / 2X
		5•*(CMHU2) IS STAGE ASSOCIATED WI	IH CMU2 =* + 10 · 2 · / 2X · * EFFECTIVE B

B-5

60TTOM SLOPE (SO) =*,F12.8) 60 FORMAT(25X,* CROSS-SECTION FLEVATIONS(FT ABOVE_MSL)*) 特定目的历程中在这一 61 FORMAT(25X,* CROSS-SECTION WIDTHS(FT)*) 62 FORMAT(25X + CROSS-SECTION AREAS (SQ. FT.)*) 58 FORMAT(25X,*SPECIFIED DISCHARGE HYDROGRAPH(CFS)*) 63 FORMAT(25X,* SPECIFIED STAGE HYDROGRAPH(FT)*) 67 FORMAT(5X,* TIME TO PEAK(DAYS)=*,F6.1,5X,* MAX. ANNUAL DISCHARGE(C 1FS)=*,F10.0,//,5X,*MIN. DISCHARGE(CFS)=*,F10.0,5X,* MAX. ANNUAL 2STAGE(FT)=*,F8.2,5X,* MIN STAGE(FT)=*,F8.2) 68 FORMAT(1X,*TIME(HRS)*,1X,*STAGE(FT_MSL)*,1X,*DISCHARGE(CFS)*,1X,*N 10RMAL DISCH(CFS) *,1X,*DYNAMIC EFFECT(CFS)*,1X,*NORMAL STAGE(FT)*, 21X,*DYNAMIC EFFECT(FT)*) 69 FORMAT(F7.1,7X,F6.2,7X,F10.0,8X,F10.0,8X,F10.0,10X,F6.2,13X,F6.2) END SUBROUTINE QSOLVE (HF, HP, QP, EPQ, SO, CONR, DTS, DQ, G, QF) THIS SUBROUTINE USES NEWTON ITERATION TO SOLVE EQ(15) FOR THE *** UNKNOWN DISCHARGE WHEN THE STAGE HYDROGRAPH IS GIVEN. *** COMPUTE CONSTANTS FOR EQ(15) *** CALL SECT(HP,A,B,R,DB,DR) FL3=SO+CONR+QP/G/A/DTS CALL FRICT (HF,CM,DCM) FK=5./3.-2./3.*A*DB/B/B FL2=1.486*A*R/CM DHS=(HF-HP)/DTS FL4=A*DHS/FK FL5=(1.-1./FK)*B*DHS/G/A/A-1./G/A/DTS FL6=-CONR/G*B/A/A/A COMPUTE STARTING VALUE FOR ITERATIVE SOLUTION OF EQ(15) QK = QP + DQ/2SOLVE EQ(15) BY NEWTON ITERATION DO 20 K=1,20 FL0=FL3+FL4/QK+FL5*QK+FL6*QK*QK $FL1 = -FL4/QK/QK + FL5 + 2 \cdot FL6 * QK$ F=QK-FL2*SQRT(FL0) DF=1.-0.5*FL2*FL1/SQRT(FL0) QKK = QK - F/DFIF(ABS(QKK-QK)-EPQ) 21,20,20 20 QK=QKK 21 QF=QK RETURN END SUBROUTINE HSOLVE (QF,QP,HP,EPH,SO,CONR,DTS,DH,G,HF) *** THIS SUBROUTINE USES NEWTON ITERATION TO SOLVE EQ(15) FOR THE *** UNKNOWN STAGE WHEN THE DISCHARGE HYDROGRAPH IS GIVEN. *** COMPUTES CONSTANTS FOR EQ(15) CALL SECT(HP,A,B,R,DB,DR) FJ2=SO+CONR+QP/G/A/DTS FK=5./3.-2./3.*A/B/B*DB COMPUTE STARTING VALUE FOR ITERATIVE SOLUTION OF EQ(15) *** HK=HP+DH/2. SOLVF EQ(15) BY NEWTON ITERATION *** DO 20 K=1,20 CALL SECT(HK,A,B,R,DB,DR)

в-6

		UNK CH DC	4			1	
	CALL FRICE	(HK)CM)DC	1) A ng M (20)	કારણ કરત ાં છે અને દિગોન ''	n an Usiar Sike	antalan in da	Kit .
		EK (DTC	「美国主義のないの」	영국의 교수가 여름다.			AS S
		FRIDIS					
	FJ4=(11.	/FK)*QF/G/	ับเจ		같다. 한 같은 2013년 1월 19일 1일 19일 - 19일 - 19일 - 19일 1일	일상 물건을 물건물	
	FJ5=-QF/G/	DIS				4034630866354	
	FJ6=-CONR*	QF*QF/G	a		같은 아파라는 것과 가격다. 동안 모양 가는 가려진, 영양 모양은 것	Salasan Salasa	
1.	FJO=FJ2+(F)	J3*A+FJ4*E	3/A/A)*DH+F	J5/A+FJ6*B/A	/A/A	111111111	
	FJ1=FJ3*A+	FJ4*B/A/A-	+DH*(FJ3*B+	FJ4/A/A*(DB-	2•*B*B/A))	-FJ5*B/A/	A+FJ6
1	L/A/A/A*(DB	-3•*B*B/A) at at internet	5 . (S.45		42.55 July 85.	
	F=QF-1.486	*A*R/CM*SC	QRT(FJO)	そうし、「そうしぞく」 「本意な」 ロートについたしから、「たってある」	「私」「「「「「「私」」(第二)」 「金郎」		
	DF=-1.486*	(SQRT(FJO))*(A/CM*DR+	R*B/CM-A*R*D	CM/CM/CM)+	0.5*A*R/(CM*FJ1
.]	I/SQRT(FJO))		化化化化化物酶试验剂 化非常增加 45		"张静心,我的问题,你们是不知道。" "说得是我们,你们们们们们们们	
	HKK=HK-F/D	F Paulos					
	IF (ABS(HK	K-HK)-EPH	21,20,20				1,200
20	нк=нкк		500-8555 - 80412 		n ghaith (Freidig) i Chuisean Tursachtar F		
21	HE=HKK		an a		- 10200 - 10200 - 10200 - 10200 MD - 2012 - 703041008	a Bhas a a	
<u> </u>	RETURN		1				
	END			가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가			
		SECT (V.	A - B - D - DB - DD	PARENTAL DALING STRE		4月月24日の10日1日の 1	
1	COMMON (AD		a) ON - NCS			
	COMMON 7AZ		DADUTES THE		DDODEDTIE		
***	CDOCC SECT	TON AT A	SPECIEIED W	ATED SUDEACE	FRUPERTIE		
***	CRUSS-SECT	TUN AL A S	SPECIFIED W	ATER SURFACE	ELEVATION	●2000-000 - 2000-000	929 9226
	UU IU K=29	NCS					
23. 24	TH CI-HSCK	1)5,5,10					
ځ	K = K						
	GO IO 15						6.83 <u>1</u>
10	CONTINUE						
15	KL=KT-1	27.26 A	20881.	· · · · · · · · · · · · · · · · · · ·			
	DB=(BS(KT))	-BS(KL))/	(HS(KT)-HS(KL))	116431		
A	B=BS(KL)+D	B*(Y-HS(KI	L.):) / ()	医弗尔克检查 1.5米皮(加)。			
	A = AS(KL) + (AS(KT) - AS	(KL))/(HS(K	T) - HS(KL)) * (Y-HS(KL))		
	R=(A/B)**(2 • / 3 •)					
	DR=2./3.*R	*(B/A-DB/	B)		间接保持意思。 2012年1月2日		
	RETURN					,如何,我们的了。" "我们们还是	- # . 472 161082
	END						
	SUBROUTINE	FRICT(Y,	CM,DCM)				
	COMMON /A1	/ CML1,CM	L2,CMU2,CMH	L1,CMHL2,CMH	IU2		-92816 -92896 / 1
***	THIS SUBR	OUTINE CO	MPUTES MANN	INGS N COE	FFICIENT F	OR A	$\frac{\partial f}{\partial t} = \frac{\partial f}{\partial t} \frac{\partial f}{\partial t}$
***	SPECIFIED	WATER SURI	FACE ELEVAT	ION.			
	CMU1=CML2						
	CMHU1=CMHL	.2		※中国人の東京 「新聞教堂の会社			
	IF (Y-CMHL	2)10,10,1	2	2 - 12-39-22-5-1-4 			
***	LOWER RANG	E OF STAG	E Alexandra			55.44	
10	DCM=(CML2-	CMI 1)/(CMI	HL2-CMHL1)				
	CM=CML1+DC	M* (Y-CMHL	1)				
	GO TO 20	- 包建设建筑 - 地名贝尔斯					
***	UPPER RANG	E OF STAG	E	金融资源储存。 1999年1月1日 - 1999年1月1日 - 1999年1月1日 1999年1月1日 - 1999年1月1日 - 1999年1月1日	"这是荣禄病难"。" "这时间的这一个		
12	DCM=(CMU2-	CMU1)/(CM	HU2-CMHU1)		- 500 - 50 - 50 - 50 - 50 - 50 - 50 - 5		
		M*LY-CMHU	1)	题:"您不觉吗!" 中国的两部分			
20	RETURN	10.32	X1.498				
20	END	- 新装订合成 - 花花 1米方					
	e pour l'Alex Seg	04.30 0					
					"各部路台市场"。 "曹叡曼王的资	47.444 85.14	
						영영, 종종 · ·	
	1. 4.			B-7			
			· · · · · · · · · · · · · · · · · · ·	 ・ ・			
	₫					关节,各位 古人,为气	
	\$ × \$						

IOH=	I OF HYDROGRAPH	PTS∓ 64 N0	. OF CROSS SECTION	PTS# 4		
CACE	DATING ELEVATIO	115° 01 10				
GAGE	DATUM ELEVATIO	JN(F1)≖ 3+49				
DEL	TA TIME INCREME	ENT(HRS) = 3.0 CROSS-SECTION F	RESOLUTION OF S	PECIFIED HYDRO	RAPH (HRS) = 24.0	
16.0	0 34.00	41.20 48.00			전 문화 (1997) 	経営の不満登したとした。
3000.0	0 3540.00 3	CROSS-SECTION W 3630.00 3690.00	IDTHS (FT)			
72500 0	0 134000 00 164	CROSS-SECTION A	REAS (SQ. FT.)			
12500.0	0 134000.00 10-	SPECIFIED STAGE	HYDROGRAPH(FT)			
18.2	9 18.59	19.56 21.27 31.01 32.54	23.22 25.1	1 26.78	28.02	
37.3	2 38.02	38.56 39.00	39.54 40.1	0 40.67	41.10	2.年度了1997年6月7日) 1.月月日日(1997年1月)
42.3	8 41.89	41.80 42.11	39.82 38.8	1 37.70	42.74 36.53	
35.1 28.7	1 33.88 7 28.26	32.97 32.07	31.10 30.3 26.90 26.8	18 29.82 1 26.64	29.30 26.59	
26.2	0 25.80	25.45 25.02 OWEST STACE OF LO	25.11 24.7	2 24.02	23.99	
(CHL2)	IS N VALUE AT H	IGHEST STAGE OF L	OWER RANGE OF STAGE	GE = .01392		
(CMU2) (CMHL1)	IS N VALUE AT F IS STAGE ASSOC	IGHEST STAGE OF U	PPER RANGE OF STAG 5.00	E = .01392		
(CMHL2)	IS STAGE ASSOC	TATED WITH CML2 =	50.00			
EFFECTI	VE BOTTOM SLOPE	(SO) = .000014	30			
TIM	E TO PEAK(DAYS)	= 30.0 MAX.	ANNUAL DISCHARGE (CFS)= 1064000		
MIN.	DISCHARGE (CFS)	= 319000	MAX. ANNUAL STAG	E(FT)= 42.74	MIN STAGE (FT)= 18.29
INIT	IAL STEADY DISC	CHARGE (CFS) = 32	3237	1000년 1000년 1000년 1월 - 신부학(1968년 100년		
TIME(HRS 0.0) STAGE(FT MSL) 21.78	DISCHARGE(CFS) N 323237	ORMAL DISCH(CFS) 323237	DYNAMIC EFFECT(CFS) NORMAL STAGE	(FT) DYNAMIC EFFECT(FT)
24.0	22.08	337255	329293	7962	22.52	44
72.0	24.76	423051	383157	39894	26.82	-1.23
96.0 120.0	26.71	471073 512768	423371 463363	47702 49405	29.10 31.01	-2.39
144.0	30.27	546285	499490	46795	32,51	-2.24
192.0	32.50	580051	548379	31672	33.98	-1.48
216.0	33,33 34,50	594817 634415	566860	27957 36648	34.47	-1.14 -1.24
264.0	36.03	695029	646434 686503	48595	37.62	1.59 -1.35
312.0	38.00	735959	709323	26636	38.85	85
360.0	40.12	815691	781637	44144 34054	40.59 41.16	-1.36
384.0 408.0	40.81	833019 861131	805060	27959 28543	41.55	(A (A) A → •74
432.0	42.05	880282	857069	23213	42.58	A P A S A P 2.53,
480.0	43.03	926800	902825	23975	42.94	53
504.0 528.0	43.59 44.16	954667 982978	929480 956941	25186 26038	44.14	55
552.0	44.59	998337	977562	20775	45.04	LI (1009690 - 45
600.0	45.17	1020669	1005743	15025	45.49	34 32
624.0 648.0	45.35	1025197 1040906	1014426 1027052	10771 13854	45.58 45.89	-•23
672.0	45.89	1057379	1041684	15695	46.22	-•33
720.0	46.29	1078225	1061904	16321	46.63	18
768.0	46.23	1058347 1025673	1057919 1038963	428 -13290	46.24	-•01 •28
792.0	45.38	994973	1014161	-19188	44.97	•41 • 6.03
840.0	44.07	920788	949520	-28732	44.20	•52 •63
888.0	43.31 42.30	882614 823985	913100 865211	-30486 -41226	42.63 41.35	•68 •95
912.0 936.0	41.19 40.02	769111 725974	813793	-44681	39.82	1.37
960.0	38.60	666914	724001	-57087	36.75	A.⊈ © 1•1•85 a.e.a
1008.0	36.46	623426	655551	-46734 -32125	35.83	1.54
032.0	35.56	596052 563779	627045 596497	-30993	34.51	1.05
080.0	33.87	551059	575686	-24627	32.72	a m () 1 m 1 • 15
128.0	32.79	534895	551537	-16642	32.44	•87 •79
152.0	32.26	522738	539541	-16802	31.46	•80
200.0	31.24	501137	516816	-15678	30.48	•76
248.0	30.39	492438 487519	506533	-14095	30.08 29.86	•69 •53
272.0	30.30	495700 489268	497065	-1365	30.23	•07
320.0	30.08	492234	492337	-103	30.08	•00
368.0	29.29	463237	403130 474479	-11024 -11242	29.15 28.73	•54 •56
392.0 416.0	28.94 28.51	457558	467071 457736	-9513 -11988	28.47	•47
440.0	28.60	464668	460653	4015	28.80	20
488.0	28.21 27.51	440852 415605	451458 436120	-10606 -20515	27.68 26.46	•53 1•05

B-8