NOAA Technical Report NWS 28

GEM: A Statistical Weather Forecasting Procedure

Silver Spring, Md. November 1981

U.S. DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration

National Weather Service

NOAA TECHNICAL REPORTS

National Weather Service Series

The National Weather Service (NWS) observes and measures atmospheric phenomena; develops and distributes forecasts of weather conditions and warnings of adverse weather; collects and disseminates weather information to meet the needs of the public and specialized users. The NWS develops the national meteorological service system and improves procedures, techniques, and dissemination for weather and hydrologic measurements, and forecasts.

NWS series of NOAA Technical Reports is a continuation of the former series, ESSA Technical Report Weather Bureau (WB).

Reports listed below are available from the National Technical Information Service, U.S. Department of Commerce, Sills Bldg., 5285 Port Royal Road, Springfield, Va. 22161. Prices vary. Order by accession number (given in parentheses).

ESSA Technical Reports

- WB 1 Monthly Mean 100-, 50-, 30-, and 10-Millibar Charts January 1964 through December 1965 of the IQSY Period. Staff, Upper Air Branch, National Meteorological Center, February 1967, 7 p, 96 charts. (AD 651 101)
- WB 2 Weekly Synoptic Analyses, 5-, 2-, and 0.4-Mb Surfaces for 1964 (based on observations of the Meteorological Rocket Network during the IQSY). Staff, Upper Air Branch, National Meteorological Center, April 1967, 16 p, 160 charts. (AD 652 696)
- WB 3 Weekly Synoptic Analyses, 5-, 2-, and 0.4-Mb Surfaces for 1965 (based on observations of the Meteorological Rocket Network during the IQSY). Staff, Upper Air Branch, National Meteorological Center, August 1967, 173 p. (AD 662 053)
- WB 4 The March-May 1965 Floods in the Upper Mississippi, Missouri, and Red River of the North Basins. J. L. H. Paulhus and E. R. Nelson, Office of Hydrology, August 1967, 100 p.
- WB 5 Climatological Probabilities of Precipitation for the Conterminous United States. Donald L. Jorgensen, Techniques Development Laboratory, December 1967, 60 p.
- WB 6 Climatology of Atlantic Tropical Storms and Hurricanes. M. A. Alaka, Techniques Development Laboratory, May 1968, 18 p.
- WB 7 Frequency and Areal Distributions of Tropical Storm Rainfall in the United States Coastal Region on the Gulf of Mexico. Hugo V. Goodyear, Office of Hydrology, July 1968, 33 p.
- WB 8 Critical Fire Weather Patterns in the Conterminous United States. Mark J. Schroeder, Weather Bureau, January 1969, 31 p.
- WB 9 Weekly Synoptic Analyses, 5-, 2-, and 0.4-Mb Surfaces for 1966 (based on meteorological rocketsonde and high-level rawinsonde observations). Staff, Upper Air Branch, National Meteorological Center, January 1969, 169 p.
- WB 10 Hemispheric Teleconnections of Mean Circulation Anomalies at 700 Millibars. James F. O'Connor, National Meteorological Center, February 1969, 103 p.
- WB 11 Monthly Mean 100-, 50-, 30-, and 10-Millibar Charts and Standard Deviation Maps, 1966-1967. Staff, Upper Air Branch, National Meteorological Center, April 1969, 124 p.
- WB 12 Weekly Synoptic Analyses, 5-, 2-, and 0.4-Millibar Surfaces for 1967. Staff, Upper Air Branch, National Meteorological Center, January 1970, 169 p.

NOAA Technical Reports

- NWS 13 The March-April 1969 Snowmelt Floods in the Red River of the North, Upper Mississippi, and Missouri Basins. Joseph L. H. Paulhus, Office of Hydrology, October 1970, 92 p. (COM-71-50269)
- NWS 14 Weekly Synoptic Analyses, 5-, 2-, and 0.4-Millibar Surfaces for 1968. Staff, Upper Air Branch, National Meteorological Center, May 1971, 169 p. (COM-71-50383)
- NWS 15 Some Climatological Characteristics of Hurricanes and Tropical Storms, Gulf and East Coasts of the United States. Francis P. Ho, Richard W. Schwerdt, and Hugo V. Goodyear, May 1975, 87 p. (COM-75-11088)

(Continued on last page)

NOAA Technical Report NWS 28

GEM: A Statistical Weather Forecasting Procedure

Robert G. Miller Techniques Development Laboratory Systems Development Office

Silver Spring, Md. November 1981

U.S. DEPARTMENT OF COMMERCE

Malcolm Baldrige, Secretary

National Oceanic and Atmospheric Administration

John V. Byrne, Administrator

National Weather Service Richard E. Hallgren, Director

CONTENTS

Pre	face
Abs	tract
1.	Introduction and background
	What is GEM
	What does the acronym stand for
	Why GEM
	An example of a GEM forecast
	Analysis of the example
	Overview of the report
2.	Creating GEM \ldots \ldots 1
	Mathematical model
	Preparation
	Transformations
	Statistical analyses
3.	Experimental results, old and new
	Air Weather Service single-station experiment 3
	Conditional climatology experiment
	GEM experiments
	Testing the value of two observations in the predictor set 5
	Analyzing anomaly effects
	Conclusions
4.	Independent verification results
5.	Operational GEM systems
6.	Summary
	Characteristics of GEM that deserve special emphasis
	Possible areas of research for enhancing GEM 6
	Data preparation
	Data transformation
	Computational
	Statistical analysis
	Output

7. New	results	•	• •	•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	73
	Improvin Includi:																														
Acknowle	dgments	•	s +	•	•	•	•	• .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	81
Bibliogr	aphy .	٠	•••	•	•	•	•	•	•	•	.•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	81
Glossary	of term	ns .	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	83
Glossary	of sym	501	5.	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	87
Appendix	: "A 1	beta	a c	las	si	fi	ca	ti	on	m	od	el	,"	R		G.	M	fi1	le	r	an	d	D.	L	. •	Be	st		•	•	A-1

Figures

.

1-1.	Reproduction of the 1200 GMT, March 21, 1980, Daily Weather Map 3
1-2.	Reproduction of part of the official March 21, 1980, Washington National Airport WBAN form
1-3.	GEM's predicted hourly probability distributions for March 21, 1980, at Washington National Airport
1-4.	GEM categorical predictions for the March 21, 1980, example 8
2-1.	Locations selected to provide data for GEM
2-2.	Criterion for specifying each dummy predictor and predictand 18
3-1.	Plot of difference between anomaly additive constants for NO WX/WX . 57
5-1.	Example of minicomputer output of GEM
5-2.	Example of TSO output of GEM
5-3.	Example of batch output of GEM

Tables

2-1.	A display of quantities derived for GEM for the predictand Y=NO WX/WX	25
2-2.	A display of quantities derived for GEM, for all predictands and for a l-hr projection	33
3-1.	Analysis of covariance Brier scores and significance-test results	44

4-1.	Independent sample Brier scores from 26,328 cases at seven stations for GEM and persistence	59
4-2.	Brier score and hit comparisons between GEM and persistence	61
4-3.	Brier score comparison of GEM with station-derived climatology versus GEM with generalized climatology for Minneapolis-St. Paul airport	62
7-1.	Normalized weights for exponential GEM model for $t=2,\ldots,12$ and from 1 to 24 powers of <u>A</u>	74
7-2.	Comparison of Brier scores and hits between exponential GEM and geometric GEM	78
7-3.	Brier score comparison between GEM, with exponential decay and local-hourly climatology, and persistence	80

Microfiche

- A Z'Z matrix, labeled "GROUPS 123 ZZ"
- B Y'Z matrix, labeled "GROUPS 123 YZ"
- C <u>A</u> matrix, labeled "GROUPS 123 EQUATIONS"
- D <u>B</u> matrix, labeled "PLODITE A NO. 1, NO. 2"
- E Beta coefficient of B, labeled "BETA COEFFICIENTS"
- F <u>Aa</u> anomaly <u>A</u> matrix, labeled "A ANOMALY"
- G <u>Ba</u> anomaly <u>B</u> matrix, labeled "B ANOMALY"
- H $\mu_0 \mu_1 R^2$, labeled "MU1, MU0, R SQUARE"
- I P* thresholds, labeled "BETA THRSHLD"
- J AO additive constants, labeled "AO ADDITIVE CONSTANTS EACH STATION"

PREFACE

The philosophy underlying GEM has its roots in the writings and lectures of the late Professor Norbert Wiener of the Massachusetts Institute of Technology (1948, 1950, 1956). He cites the case for a probabilistic approach to prediction in meteorology and for a linear solution to the problem. Much of his argument is abstract, but his personal assurance that efforts such as GEM are on the right track is encouraging.

The first detailed description of a GEM model appeared in a 1964 proposal to the U.S. Air Force's Air Weather Service (AWS) in response to a need to incorporate specials and other randomly observed weather conditions such as those provided by pilot reports, radar, and satellites. (See Miller, 1968.) AWS did not fund the proposed effort at that time. However, in 1977, the work was undertaken by AWS in conjunction with St. Louis University. (See Miller et al., 1977.)

This Technical Report gives computational details and results of a direct followup to the AWS effort. The data bases have been enlarged and the scope increased to include the formulation and testing of a generalized operator-- applicable anywhere, any time, for any element in a surface weather observation, and for any projection into the future.

A Glossary of Terms and a Glossary of Symbols are provided at the end of the report for clarification of some of the specialized nomenclature employed in the text.

GEM: A STATISTICAL WEATHER FORECASTING PROCEDURE

Robert G. Miller Techniques Development Laboratory Systems Development Office National Weather Service, NOAA Silver Spring, Md.

<u>ABSTRACT</u>. A procedure is developed for providing weather forecasting guidance over the short period between 0 and 12 hours. It uses only the local surface observation elements as predictors. The same equations are used for any location and project probabilistic predictions iteratively hour by hour. The model is founded on a Markov assumption and utilizes multivariate linear regression as the statistical operator. Details are given on how the model is constructed. Experimental results that probe the basic characteristics of the approach are presented, followed by independent verification of results. Features of the model's operational implementation are discussed under a variety of possible configurations. Certain future efforts are proposed for enhancing the technique.

1. INTRODUCTION AND BACKGROUND

What is GEM

GEM is a statistical technique for predicting the probability distribution of all local surface weather elements hour by hour. It uses only the current local surface weather conditions as predictors. From these probability distributions, categorical predictions are made for each surface weather element.

What Does the Acronym Stand For

"G" means that the technique is generalized. The same statistical equations can be applied at any location and for any time period. "E" stands for <u>equivalent</u>,* because of its equivalence (as a linear approximation) to a Markov chain. "M" is for its being a <u>Markov</u> process, which is briefly described in the following quotation from William Feller (1950):

In stochastic processes the future is never uniquely determined, but we have at least probability relations enabling us to make predictions . . . The term "Markov process" is applied to a very large and important class of stochastic processes . . . Conceptually, a Markov process is the probabilistic analogue of the processes of classical mechanics, where the future development is completely determined by the present state and is independent of the way in which the present state has developed . . in contrast to processes . . . where the whole past history of the system influences its future.

^{*}For reasons that are given in chapter 7, New Results, the "E" is more recently for exponential.

Why GEM

The Techniques Development Laboratory (TDL) of the National Weather Service has the responsibility for providing statistical weather guidance to field forecasters. Model output statistics (MOS) is the accepted procedure for providing this guidance. (See Glahn and Lowry, 1972.) However, since the input to MOS requires data from analyzed dynamical models, there is a gap of about 6 hours between the taking of observations and the availability of MOS. In general, persistence has represented the most skillful guidance available during the 0- to 6-hr period. Since GEM could incorporate all weather element information contained in the surface observation, including persistence, it seemed reasonable to expect that it would provide predictive information between 0 and 6, or possibly 12, hours with some skill. The results of the experiments reported here confirm this surmise.

An Example of a GEM Forecast

- Observation Time: 0700 LST, March 21, 1980
- Location: Washington National Airport (DCA)
- Forecast projection: 1 to 12 hours

Figure 1-1 shows the 1200 GMT, March 21, 1980, Daily Weather Map.

Figure 1-2 gives a reproduction of part of the official March 21, 1980, Washington National Airport WBAN form for verification purposes.

Figure 1-3 gives GEM's predicted hourly probability distributions (GEMTRIX) of all subsequent weather conditions from 1 to 24 hours for the March 21, 1980, example.

Figure 1-4 shows the GEM hourly categorical predictions (GEM) for the March 21, 1980, example.

Analysis of the example

Note: The daily synoptic weather map is provided only to show the reader the situation and, except for DCA's 0700 LST surface observation, was not used anywhere in GEM.

GEM's forecasts for the 12-hr period show good agreement with the actual record and special observations on the official WBAN form for temperature, dewpoint temperature, pressure, weather, wind, and clouds, with a definite indication of a frontal passage at about noon.

In particular, a complicated system was approaching the Washington, D.C., area. The GEM forecast anticipated DCA's entry into the warm sector before noon, with an increase in precipitation intensity, the onset of showers, and a fairly determined wind shift around the noon hour. An accompanying pressure rise and a continuing fall in temperature and dewpoint were predicted through the period along with a lessening of precipitation.

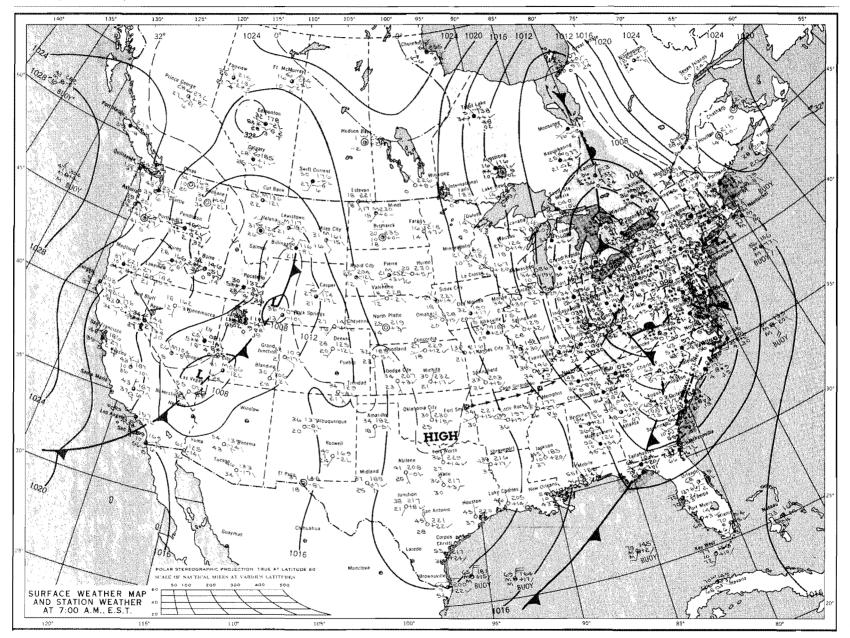


Figure 1-1.--Reproduction of the 1200 GMT, March 21, 1980, Daily Weather Map.

19- 10.	9.4 ° 34.4	. D. E AN	4. 	5. DEPARTMENT (**MCSFHER - 20 	97 CC 444 19-16 1-16 1-16 1-53	19802 1-08 1-08			(Waabi	ngiou)	imi, D. Lational	U. Airport)		
	SURFACE WEATHER OBSERVA	TIONS					0.1	" MAR	2:	1 19	80	TOLONY	ERT LST H		
7	1	*1518		WEATHER	1 144	1				4.14		ADD_ 5	_ <u>~` \$UB</u>	TRACT	
	SAT AND CEILING			AND DESTRUCTION	LEVEL	TE MP	0.E.#				1				
1.1			* ***	TO VISION		1	1				WEMAR	ES AND SUPI	PLEMENTAL C	GOED DATA	15
ames	Mia ovc.	7	{ • − −	R-	in	58	58	19:10	<u> </u>	98		min	11 67		10
			1.	ter de de la companya	4.		+			-10.	-				3
	105 81910 61616 10219	3-	14/	14630 R-			79	19 11		0-	2000	2 ~4 ~4	67450	,	3
AC152	mis ok	17		RF	085					1976			004	-	
MODA	MI3 BAN 20 OVC	63		1	6.4			a dealer and the second	÷	46			98155		B
Ab353		L		RHF R-	014	157	124	18 1	Ľ	96	PRest	R/75	833 17	11	3
x jone	7 SCT EIL OVC	7	├ ──	A			1	17 1		4.5					B
monsa	6 SOT EIL OVC	8	+	R-	150					44	· · · ·				3
A 10552	L SCT EIC OVC	8		R-	010	μ£_	54	1146	2;	95					(B)
\$10607		5	I	R-F	0.1			16:1	L;	954					US .
A 04.54	MABKH I OVC	6	ļ	RE_	1990	160	59	15 1	<u>-</u> t_	450	1	ERZT		2/	B
1_			1	\vdash	100	1.	<u> </u>				7	200		*	/
4 12	105 81513 59616 99016) 2/	15754	690	66	4	6180		-			6757 (<u> </u>	<u>G</u>
0723		7	ļ	<u>R-</u>		<u> </u>		15 14			PRES		-		A.A
£075Z	MAN BKN 120VC	7		R	956	6	51					<u>BNIO</u>	PRESER	2	NO
P 3811	MIOBKN 120VC	Б			l			16:1							AD
8086 2	9SCT MID BKN 15 OVC	15			8:6	61	60	15 1	62	093	HREOZ	PRES	FR		NP
0927	9 SCT MIL BKN 16 OVC	4		R-F				14:13	5 :	92	PRES	FR			N
20930	8 SCT MIC OVC	24		RF RF				15 A	L _	92	RE	FR			AT P
P 0957	MIZ BKN ZS OVC	4		RF				13 1		92	PRES	FR		(FIBI)	AP
A 0952	9 SCT MILBKN 25 OVC	15			402	61	60	14:11	1	92	R80	5E45	PRESI		AW
A 1050	DOCT MILLERN 25 OVC -	15					-			-47		8810	172/		7
A 1052	IOSCT MIH BKN 25 OVC	15			885	63	62	17.1	7	94					AST.
AILS	HSCTEZS BKN 90 BKN	10	†		861	65	63	18:17				CU A	A 200	RESFR	NOP
Pron	NSMY E25 OK	1	†	RWH				17:1				R50		I MARINE I V	41
0 17 11	ILLSET F25 OVE	4	1	RW-	-	-	†	22 1	67	\$913		LINNA.	¥ 1-8-4, 1		all
Diruh	25 SET ESO BKN 90 BKN	15		NW	ł			21 K		91	4			(RG)	- He
01757	25 SCT ESO BKN 90 BKN	15			00	11	11	20:12			RBS	2821/	53420		2.4750
7 7		85	5	75346	60,	100	3		200		1.1.44		-	BOSTH	
0.22/1	405 62012 74258 86819		ru i	1227 6	104		YAI			AOIS		KS OF			
P 1334		15			ar	10	10					DARQ		man	- 4
	13 SCT E 25 BKN 90 BKN	15		0.1	202	67	μĽ	29:14				ÇU A.		RKRK	N.
1441	15 SCT M25 OVC	5		RW-	ļ			A.C	1 Ge	qчn	PRES	KK -	94. A.	1.04	<u>z a</u> j
								1	1				(*	KSI)	
HJHD3	15 SCT M 25 BKN 50 OVC	7		RW-	885	56	51	30,5	2 63	開た		O PRES		iona .	ME
4					_							<u>and c</u>	98/3	7	1
	25 SCT E40 BKN	15			-			29:2					136/1	- ?***	
Alissi	25 SCT 40, BAN EIDO BAN	15			905	58	43	31 2	53	492		YPKI		40/17	TH
1									1				3'706 -		
1									1		ľ		· ·	<u>₩70</u>	·
1.2	25 SCT EHOBKN 100 BAN	15						80 20	64	193	IRE:	SAR			TH
	ENOBEN 100 BEN	15			9.36	9	a	30 24	\$3	193	PX	NO 30	248/22		TH
	E26 BKN 40 OVC	20			I			29:2	3 64	293	And a		0424	\$	NO
					1			1	1		BINC	MC.		(คผ)	
9 9521	EZG BKN 40 BKN 100 OVC	20			90	50	K	30:2	122	WQ8	24 A	WAN V	ST A	K AMD	AN
Y A	A THE PARTY IN THE PARTY AND ALC	ا نعده		<u> </u>					احتقی ۔ ا	400	204	2/29		Lans	
0,070	SOSCT EGO OVC	ZU		ew-	1			512	102	dau	DACC	88 -	x	Sal	R
1'out	SAUL CON LOKE	S.V.		<u>.</u>	1			A 100	r 197	sq m	TACY	6A	N. M. MARRIE	FISI	
incol	30 GT ELD ON	15		Ø1 1	0/1	11-7	2:	20 0		201	000	0 0.11	10 ×	21 100	1
الحصيلة	30 SCT EGO OVC	124	ا کچ	RU-	766	1	N by	3012	2.84	qr£	abo	D TK	AUSZ		40g
/1 ·							~ *						8. 1. 1.	Ka 77	
7	2405 83025 74808 96608	470	74	14601	101	T A		hoir	· 17-		12.6	6106 4694	177/		hit

PRITE IIII MAR VELAR PPTT HLCLOCALL TJTAME BRARADE 28-20-20 HL BRACK HL PLASMERS 28-28-28-28-28-28-28-28-28-28-☆ U.S.GPO 1978-665-010/1109 Region No. 6

Figure 1-2.--A reproduction of part of the official March 21, 1980, Washington National Airport WBAN form.

FOR STATION: OUA

VALID FOR 24 HOURS AFTER MAR 21.1980 7 LOCAL

	085	1	~ ~ ~ ~				нон	RLY	FORF	CAST	 S 4F	TER	DBSE	RVAT	 10N	 (1.06	 Ai S	TAND						~~~~	
CATEGORY	1)	l a	9	10	11	12	13	14	15		17	18	19	20	21	22	53	0	1	2	, 3	4	S	ь	7
10 11 10 12 10 12 10 12 10 12 10 12 11 10 12 10 13 10 14 10 15 10 14 10 15 10 15 10 15 <			00000000111100000000000000000000000000	000000000000000000000000000000000000000	000000112020020200000000000000000000000	1020294339200000	00000000000000000000000000000000000000	10000000000000000000000000000000000000	72039052231	00011112050458	14 8939191800000	00001111222225703807052010000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000			00080000000111110000000000000000000000	70245764924542000	0000011045663814542000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	1	000000001492544451714451000
DPT DPR (F) 1 DPT DPR (F) 1 DPT DPR (F) 2 DPT DPR (F) 5 DPT DPR (F) 2 DPT DPR (F) 12 10 DPT DPR (F) 12 10 15 DPT DPR (F) 120 10 25 DPT DPR (F) 20 10 25 DPT DPR (F) 30 10 25 DPT DPR (F) 36 10 50 DPT DPR (F) 36 10 59 DPT DPR (F) 36 10 59		15352210100	333024310	45240443220	+124-653		1077 1077 100 -270 1062	10560 11560 11261 1185	94512015183 14512015183	1424115	222	134 54 159 43 54 59 43 54	93582632121	9370 1370 1472 -1210	93 3382 157 123 00	930366 42366 	9311 24256034 0	9 13 24 15 0 3 4 15 0 3 4 1 1	44 25 15	94544403414 24403411	11421 15421	156	15 46 23 12	100000000000000000000000000000000000000	1
VS87 (ST MII .00 TO .74 VS87 (ST MII .55 TO .74 VS87 (ST MI) .55 TO .99 VS87 (ST MI) .15 TO .149 VS87 (ST MI) .20 TO .249 VS87 (ST MI) .20 TO .249 VS87 (ST MI) .25 TO .249 VS87 (ST MI) .25 TO .249 VS87 (ST MI) .25 TO .249 VS87 (ST MI) .50 TO .549 VS87 (ST MI) .50 TO .649 VS87 (ST MI) .50 TO .649 VS87 (ST MI) .50 TO .649 VS87 (ST MI) .50 TO .649		101 12 24 14 10 37 34	11335266969		-211446276651	111445266545	1435265554	11405265534 6		52655	111100 4000000 4	111130342455545	4255545	12113542000546	11324255546	113242555466	*2113242555546		11324	N4 N0004			4215044		100 H000 4 00 0 4 0
NO FIF FIF	100	21	36	46 54	53	59 41	- <u>6</u> 3 37	- <u>6</u> 6	69 31	71 29	72	74 26	25	76	77	78	-79 21	79 21	79	80				79	79
NO GF	100	100	102	102 -2	102 -2	102	101	101	101 -1	-101 -1	100	100	100	100	- 99 1	99	99	98 2		97				-94	- 95 5
NO K.H.D.KH.KO.HD.KHO K.H.D.KH.KD.HD.KHD	100	112		113			107	105						97	97	95	- 9 <u>6</u>	- 96			-			- 52	90 10
NO BS, BD, 3N BS, BD, BN	100	100		- 99 1		- 55		- 95	- 98			_	- 98 2	98	98 2			- 98 2		÷		- 9ê		-98	
NO L L.L+	100	96	- 94		- 93		94 6	- 94 6 U				795	- 95 95	95 5 0		96 4 0	96 96							ື 96 4 ປ	96 4 0
NO R R+ R+	100	22	1	49 46 4	38 3 1		69 28 20	73 25 20	0	¢	Û	0	82 17 1	83 16 1		84 15 1	85 14 1	85 14 1	1	86 13 1	86		87 12 1 0	87 12 1	88 11 1
NO RW RWL RW RWH	1 100 1 0 1 0 1 0	96	0	92 7 1 0	0		91 8 1 0		Û		1	1	91 8 1 0	91 8 1 0		92 7 1 0	-92 7 1 0		1 0	Q Q		6	6	້ 95 ນັ້ນ ບັ	6
NO S-IC- S-IC- S+IC S+IC+	1 100 1 0 1 0 1 0	99	8	97 2 0	0 0		96 4 0	96 4 0	95	0	0	0 0	95 5 0	94 5 0	94 5 0		-94 5 0	94 5 0	94 6 0	5 0		600	6 0 0	-94 00 0	
NO SW.IP SW-IP- SW.IP SW.IP SW+IP+		100	1 0 0	99 1 0 0	1 0 0		98 2 0 0	98 2 0				97 2 0	97 2 0	97 3 0		97 3 0	-97 3 0						97 3 0 0	-97 3 0	
NO ZL 2L-+ZL+ZL+	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	-īōō	100	100 0	100	100	100	100	100
NO ZR ZR++ZR+ZR+	100	100	100	100	100	100	100	ĩõõ	100	-1ôõ	100	100	100	100	iõõ	100	īōõ	īõõ						้าอีผู้	
NO TSTMAA TSTMA	1 100	1 100		99 1	99 1	99 1	99 1	- 98 2				-	98	98	98		99 1	- 99 1		- 99	- 99		- · · ·	-99 1	
NO TSTM+ TSTM+	1-100-	1 100		ĩõõ		****	100	100				100	100	100		ารีอียี	- ĩõõ				Ĩ	100		100	

Figure 1-3.--GEM's predicted hourly probability distributions (GEMTRIX) of all subsequent weather conditions, 1-24 hr, for March 21, 1980, at Washington National Airport. Negative and greater than unity estimates of the probabilities are due to nonadditivity and should not be of great concern, since thresholding alleviates the problem.

$\begin{array}{c} \textbf{L} \textbf{N} \textbf{N} \textbf{D} \\ \textbf{L} \textbf{L} \textbf{L} \textbf{L} \textbf{L} \textbf{L} \textbf{L} \textbf{L}$			1414024003125502011562	101013409345204343434583	1715144976261814132594	515143862260015132504 2 1 1 1 5 1 3 2 5 0 4	15151437492511177142405		 15242636242809052405 105	62.4		3354231413025238	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000040040040000001001000	112224299499999999999999999999999999999		1333424358595949351275		24257&869494	2000		242465869505126		***************************************	144 3424 2365 869 5 55 6 A 265
SLP (MB) 800.0 10 935 SLP (MB) 985.1 100 935 SLP (MB) 995.1 100 935 SLP (MB) 995.1 100 100 SLP (MB) 1005.1 100 100 SLP (MB) 1005.1 100 100 1005.5 SLP (MB) 1005.1 100 100.105.5 SLP (MB) 1005.5 100.105.5 SLP (MB) 100.55.5 100.105.5 SLP (MB) 100.105.5			72 21 -1 -1	0 19 637 4 -10 -12 0 0 0	0 10 555 31 -23 -10 0	0 11 149 34 11 -3 -3 -4 -0 0	021 11 446 14 -56 -20 0	0 22 11 40 377 18 77 18 -6 -7 -0 0 0	-7 -7 -3 -1	-1	-1	1097511268310	12076622 1276622 1276622 1276622 1276622 1276622 1276622 1276622 1276622 1276622 1276622 1276622 12076622 12076622 12076622 12076622 12076622 12076622 12076622 12076622 12076622 12076622 12076622 12076622 12076622 10776622 10776622 10776622 10776622 107767 107777 107777 107777 107777 1077777 1077777 1077777777	120 1264 224 1254 1254 154 -73 -10	1294362 23222 1637310	1 23 25 25 25 15 -2 -2 -5 -1 0	129217 29217 14726310 -310		80986826310 0	C	1			2792 12 12 12 12 12 12 12 12 12 12 12 12 12	
CLD CVR #1 CLD CLD CVR #1 SCD CLD CVR #1 SCD CLD CVR #1 BKN CLD CVR #1 OVC CLD CVR #1 OVC CLD CVR #1 OVC		25 25 24	319 392 30	+4 34 35 0	37 37 36 1	-99 33 36 1	-11 40 33 36 2	- 122	-13 44 31 34 3	-13 45 30 34	-11 45 35	-8 42 28 33 4	407 427 55	-1 36 26 34 5	32555	51 24 35 5	293 225 35	1 223 223 223 223 223 223 223 223 223 223	10 27 22 35	11	1 2 2 3	10	3	34 25 36	
CLD HGT #1 0 TO 14 CLD HGT #1 5 TO 6 CLD HGT #1 5 TO 9 CLD HGT #1 10 TO 14 CLD HGT #1 10 TO 14 CLD HGT #1 20 TO 24 CLD HGT #1 20 TO 24 CLD HGT #1 20 TO 29 CLD HGT #1 30 TO 39 CLD HGT #1 50 TO 59 CLD HGT #1 60 TO 75 CLD HGT #1 100 TO 150 CLD HGT #1 100 TO 150 CLD HGT #1 1 PART 0BSC			-1529473111121002	-1600405320124152	-168531756201027	166611222 122127695100300 -100	14902 14902 107310 -100 -100			11	11	97 108 54 21	193508696432333	1111769533030323	108114076853322365	1107 1680 XXXX470	113976 842224 103	1397684222413	703976840204	1007766444444444444444444444444444444444			10	168533	6853337
CLO CVR #2 CLR CLO CVR #2 SCO CLO CVR #2 SCO CLO CVR #2 RKN CLD CVR #2 OVC	U U U U U U U U U U U U U	22	29 16 53	31 4 17 48	32 18 45	33 19 43	33 7 19 41		33 8 21 38	21 37	38	38 9 19 34	43 7 17 33	49 5 14 31	54 12 30	57 57 11 29	~59 3 10 28	61 3 10 27	62 27 27	26	-6 .2	62	11	55 13 27	15 28
CLD HGT #2 0 TO 1 CLD HGT #2 TO 4 CLD HGT #2 TO 4 CLD HGT #2 TO 9 CLD HGT #2 10 TO 19 CLD HGT #2 20 TO 29 CLD HGT #2 20 TO 29 CLD HGT #2 40 TO 49 CLD HGT #2 40 TO 49 CLD HGT #2 40 TO 59 CLD HGT #2 40 TO 59 CLD HGT #2 40 TO 75 CLD HGT #2 40 TO 75 CLD HGT #2 100 TO 150 CLD HGT #2 100 TO 150	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	01397264421111 31644211111 12	ļ	023649757423323	02351 1765743434 36	012406657434468	012486546434470	012475546435481 435481	012375446455592	012036444464555005	11 - 12 W - 1 - 12 W - 1 - 12 W - 1	110544004000	011254435434481	C14004555454475	011243334434368	0 1 2 4 0 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 5 4 5 5 5 4 5 5 5 5 4 5	011245334324545	011124335345345345345345345345345345345345345		4734		1104550450454		0 0 1 1 1 2 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5	11243324324
TOTAL CLD DVR CLR Total CLD EVR SCD Total CLD EVR SKN Total CLD EVR SKN Total CLD EVR SVC	 0 0 100	-1	-2 -3 102	-4 -1 99	-7 1 97 97	9 32 12	-11 15 92	-12 7 16 89	-13 8 17 88				-5 8 16 81	-1 8 14 80	27 128 78	6 / 11 76	7 11 75		10 11 73				4	10 16 72	
CETLING 0 TO 14 CETLING 2 TO 14 CETLING 2 TO 3 CETLING 10 TO 14 CETLING 10 TO 14 CETLING 10 TO 14 CETLING 10 TO 14 CETLING 10 TO 239 CETLING 30 TO 239 CETLING 30 TO 339 CETLING 50 TO 559 CETLING 60 TO 75 CETLING 60 TO 75 CETLING 100 TO 150 CETLING 100 TO 150		146005302100113	1	-12 1264206 220645531 1104	-134000756322103	680 # NN	1226707685533212	0 111 1460/68655220 0	10011359 10011359 7686443332	109 129 149 66 86 44 34	0000000	6586443	198028658645351 128658645351	287028658645352 1028658645352	18657645354 18657645354	28/7 11865/6455/6455 16	117657545357 1776575453575453575453575455355754553557545535575455355754553557545535575455355754553557554553557554553557554555755455755555555	176911765 117657558 185358	6911 765754535	1			1	1475575+55	10 7 5 7 5 3 5 3 6
MONTH LLOCAL) JANUARY MONTH LLOCAL) FERUJARY MONTH LLOCAL) AFERUJARY MONTH LLOCAL) APRI MONTH LLOCAL) APRI MONTH LLOCAL) JULY MONTH LLOCAL) JULY MONTH LLOCAL) JULY MONTH LLOCAL) AUGUST MONTH LLOCAL) SEPTEMBER MONTH LLOCAL) OCTOBER MONTH LLOCAL) NOVEMBER MONTH LLOCAL) DECEMBER					0 999 0 0 0 0 0 0 0 0 0 0 0 0	0 99 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	99 99 100000000000000000000000000000000		0 999 1 0 0 0 0 0 0 0 0 0 0		981	98 98 00 00 00 00 00	98 98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	962 962 00 00 00 00 00 00	0 98 92 0 0 0 0 0 0 0	ບ 788 22 ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ	0 98 2 0 0 0 0 0 0 0 0 0 0	977 22 00 00 00 00 00 00	972 972 00000000000000000000000000000000	972000000000000000000000000000000000000	9		9) 07 7 97 5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	950000000000000000000000000000000000000
HOUR (LOCAL) 0 HOUR (LOCAL) 1 HOUR (LOCAL) 2 HOUR (LOCAL) 3 HOUR (LOCAL) 3 HOUR (LOCAL) 5 HOUR (LOCAL) 5 HOUR (LOCAL) 7 HOUR (LOCAL) 7 HOUR (LOCAL) 7 HOUR (LOCAL) 7 HOUR (LOCAL) 7 HOUR (LOCAL) 1 HOUR (LOCAL) 1 HOUR (LOCAL) 1 HOUR (LOCAL) 15 HOUR (LOCAL) 15 HOUR (LOCAL) 15 HOUR (LOCAL) 16 HOUR (LOCAL) 16 HOUR (LOCAL) 16 HOUR (LOCAL) 20 HOUR (LOCAL) 21 HOUR (LOCAL) 22 HOUR (LOCAL) 23										000000000000000000000000000000000000000		00000000000000000000000000000000000000				100 100 100 100 100 100 100 100								3 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000

.

Figure 1-3.--(continued)

.

Figure 1-3.--(concluded)

7	
1	
•	

NO WX	+ ! 0 ! 100	1-24 1 76	36	42 46 58 54	48	-49 51	-50- 50	50	50	-51 49	-51 49	51	52	53	-53-	-54 46	-54-	54	-54-	53	-53-	-51	-43 51	49 51
AUTWTR / DAY7-18 FALSE AUTWTR / DAY7-18 TRUE	1 100	2 93		6 8 94 92	10	11	13	14 86	16	17 83	18	70	70	71	72	73	73	74	74	74	75	-75	75	25
AUTWIR / HUMID EALSE AUTWIR / HUMID TRUE	+ 1 100	102	8	7 25	31	36	40	-44 56	46 54	-48 52	49 51	- <u>50</u> -	50		- 21	-51-	-51	51	-51	52	-52 48	-52-	52	54
AUTWTR / STHWIND FALSE AUTWTR / STHWIND TRUE	+	+	17	24 <u>30</u> 76 70	34	38	42 58	~44 56	47 53	48 52	50	-51 49	52	-52 48	- 53 47	-54 46	- 55 45	-56	-57 43	57 43	-58 42	-58 42	-59 41	59 41
AUTWIR / ESTWING FALSE AUTWIR / ESTWING TRUE	1	27	40	18 54 52 46	58 42	62 38	64 36	- <u>66</u> 34	-67 33	-67 33	- 67-	-68 32	-68 32	-69 31	- 70 30	75	71	72	-72 28	72	72	-72- 28	72	72
AUTWTR / OVCSKY FALSE AUTWTR / OVCSKY TRUE	1 100	1 -2		2 5	92 92	11	14 86	17-	20	- <u>22</u> -	25	27	29	31	32	-34 66	-35 65	36	37	38	-39 61	-40 60	40	41 59
AUTWTR / HISKY EALSE AUTWTR / HISKY TRUE	1-100-	+	104-1	12 100	98	96	-93-	-91-	88 12	-86 14		81	- 80 20	78	76	75	74	73	72	 71 . 29	70	70	-29- 31	69 31
AUTWTR / FARVSBY FALSE AUTWTR / FARVSBY TRUE	1-100-	77	64 36	57 51 43 49	47 53	-44 56	42 58	-46- 60	39 61	38 62	-37 63	-35 65	-34 66		- 33 67	-33 67	32	32	-32 68	32	-31 69	31-	-32	33
AUTWIR / NO WX FALSE AUTWIR / NO WX TRUE	1 100	82 18		51 55 59 45	51	47 53	-44 56	-42 58	40	38	37	36	35	34 66	33	32	32	31	-31-	30	-30	30	-30 70	29
DAY7-18 / HUMID FALSE DAY7-18 / HUMID TRUE	100	+	15	32 42 58 58	50	55	60 40	-62 38	-64 36	- 65 35	- 65 35	80	81 19	82 18	83	84 16	-85 15	86 14	86 14	87	88	-88 12	~89 11	48
DAY7-18 / STHWIND FALSE DAY7-18 / STHWIND TRUE	100	12	21 79	28 33 72 67	37 63	40 60	43 57	46 54	48 52	49 51	50 50	-97 3	98	-98 2	- 7 7 7 7					100			īōī	58
DAY7-18 / ESTWIND FALSE DAY7-18 / ESTWIND TRUE	1	30 70	45 55	53 58 47 42	62 38	65	67 33	-68 32	68 32	-68 32	-67 33	105	106	106	105	10 <u>6</u>	105 -6	106	106 -6	105	105	10 <u>6</u>	106	72
DAY7-18 / OVCSKY FALSE DAY7-18 / OVCSKY TRUE	100	97	92	14 20 86 80	24 76	28 72	-31 69	-34 66	36	-37 63	-39 61	73	75	76	- 77 25	- 78 22	-79- 21	79 21	- A0 20	81 19	81 19	-82 18	83 17	45 55
DAY7-16 / HISKY FALSE DAY7-18 / HISKY TRUE	1 100	98	94 5	90 87 10 13	84 16	81 19	78 22	75 25	72	-70 30	87	130	129	128	127	126	125 -25	124	123	123	122	121	120	52 38
DAY7-18 / FARVSAY FALSE DAY7-18 / FARVSAY TRUE	100	66 34	50 50	40 34 60 66	31 69	28 72	27 73	26 74	25 75	25 75	-25 75	112 -12	112	112	111	111 -11	110 -10	110 -10	110 -10	103	109	109	108	34 66
DAY7-18 / NO WX FALSE DAY7-18 / NO WX TRUE	100	76	40 40	50 43 50 57	39 61	35 65	32 66	-30 70	29 71	73	26 74	115 -15	114	114 -14	115 -15	112 -12	112 -12	111 -11		111 ⁻ 711	110 -10	110 -10	īī0 -10	20
HUMIO / STHWIND FALSE HUMIO / STHWIND TRUE	100	19 51	36	48 56 52 44	61 39	35	68 32	70	71 29	72	73	73	72	72	71	70 30	70 30	70 30	70 30	$[\tilde{3}]{31}$	-69 31	-69 31	70	73
HUMID / ESTWIND FALSE HUMID / ESTWIND TRUE	100	27	45 55	56 63 44 37	68 32	71 29	75 27	75 25	76	77	78	77 23	77 23	23	77	77 23	76	76	76 24	76	76	25	76	78 22
HUMID / OVCSKY FALSE HUMID / OVCSKY TRUE	1 100	104	97 97	12 20 88 80	27 73	32 68	37 63	40 60	43 57	-45 55	-46 54	47 53	48 52	49 51	50 50	-5ī 49	51 49	52 48	52 48	52 48	-52 48	-52 48	53 47	54 46
HUMID / HISKY FALSE HUMID / HISKY TRUE	1 100 1 U	104		10 109 10 -9	107	106	105	104	103	102 -2	101	-99 1	97	94 6	-92 8	89 11	87 13	85 15	83 17	82 18	80	80 20	_81 _19	87 13
HUMID / FARVSBY FALSE HUMID / FARVSBY TRUE	1 100	76		73 74 27 26	75	76	77 23	78 22	78 22	78 22	78	76	74 26	72 28	-70 30	- 68 32	-66 34	-65 35	-63 37	.38 .38	-61 39	-62 38	-65 35	72
HUMID / NO WX FALSE HUMID / NO WX TRUE	100	82 13	82 18	82 82 18 18	81 19	80	80 20	80 20	79 21	-79 21	23	76 24	73 27	70 30	-68 32	-65 35	-63 37	60 40	58 42	56	~54 46	-53 47	- 55 45	62 38
STHWIND / ESTWIND FALSE STHWIND / ESTWIND TRUE	100	39	56	65 71 35 29	- 75 25	79 21	81 19	83 17	84 16	84 16	84 16	84 16	84 16	84 16	-85 15	86 14	88 12	89 11	-89 11	-90 -10	90 10	-90 10	-90 10	90 10
STHWIND / OVCSKY FALSE STHWIND / OVCSKY TRUE	100	12	77	31 38 69 62	44 56	48 52	52	-54 46	56 44	58 42	60 40	61 39	63 37	64 36	65 35	66 34	66 34	67 33	-67 33	68	69 31	69 31	_69 _31	69 31
STHWIND / HISKY FALSE STHWIND / HISKY TRUE	100	- 7 4 6	91	88 87 12 13	87	88 12	88 12	89 11	89 11	90 10	89 11	89 11	89 11	88 12	88 14	88 12	89 11	90 10	-9 <u>1</u>	-92 8	93	-93 7	- 34	-94 6
STHWIND / FARVSAY FALSE STHWIND / FARVSAY TRUE	100	94 56		43 42 57 58	43 57	45 55	49 51	-52 48	54 46	57 43	58 42	50 40	60 40	39 39	62 38	52 38	64 36	55	67 33	<u>.</u> 32	70	72	73	74 26
STHWIND / NO WX FALSE STHWIND / NO WX TRUE	100	70 50	58 42	53 52 47 48	53 47	54 46	56	-58 42	-60 40	62 38	63 37	63 37	63 37	63 37	64 36	64 56	-65 35	67 33	-68 32	31	70 30	71 29	29	70 30
LSTWIND / OVCSKY FALSE ESTWIND / OVCSKY TRUE	1 U 1 10U	27	41 59	50 56 50 44	61 39	64 36	67 33	58 32	69 31	70	71 29	72	73	74 26	74 26	75 25	76	76 24	76	77	77 23	76 24	-76 24	76
ESTWIND / HISKY FALSE ESTWIND / HISKY TRUE	100	! -9 *===	107 1	$5103 \\ -5 -3$	103	103	163	$103 \\ -3$	102 -2	101 -1	100	-99 1	98	98 2	-99- 1	-99 1	100	101	101 -1	102	102	101-1	101 -1	
ESTWIND / FARVSRY FALSE ESTWIND / FARVSRY TRUE	1 100	95 5		94 83 16 17	83 17	83 17	84 16	85 15	85 15	85	85 15	84 16	84 16	84 16	85 15	86 14	87 13	88 12	89 11	90 .10	90 10	-90 10	90 10	⁻⁹ 19
LSTWIND / NO WX FALSE ESTWIND / NO WX TRUE	100	99 1	6	90 88 10 12	88 12	87 13	8/ 13	87 13	87 13	86 14	85 15	84 16	84 16	84 16	85 15	86 14	87 13	88 12	88 12	88 .12	88 12	88 12	87 13	86 14
OVESKY / HISKY FALSE OVESKY / HISKY TRUE	100	99	99 1	99 99 1 1	98 2	98 2	98	97 3	97	96	-97 3	97	97	-98 2	98	- 98 2	98 2	98 2	-98 2	-98 	-98 2	-98° 2	-98 2	~97 3
OVCSKY / FARVSBY FALSE OVCSKY / FARVSBY TRUE	100	74	37	57 55 +3 45	54 46	53 47	53	53	53	53 47	-54 46	54 46	55 45	-55 45	55	- <u>56</u> 44	57 43	57 43	-57 43	58 42	-59 41	-59 41	-60 40	61 39
OVESRY / NO WX TRUE	1 100		27	7 63 33 37	68 40	59 41	58 42	57	57	56 44	56	57 43	\$8 42	58	57	59 41	59 41	59 41	59 41	59 51	59 41	- <u>5</u> 9-	59	58
HISKY / FARVSOY FALSE HISKY / FARVSOY TRUE	1 100	93	10	90 91 10 9	92	93	93	92 8	91	90 10	89	88 12	87 13	86 14	85 15	85 15	84 16	84 16	84 16	84 16	-85 15	86 14	88 12	88 12
HISKY / NO WX FALSE HISKY / NO WX TRUE	1 100 1 0	103	104 1	4 103	103	102	100	-98- 2	96	-93 7	91	89 11	88 12	86	15	83 17	82 18	82 18	81 19	-81 19	81 19	81 19	-81 19	80 20
	-																						•- .	

xxx	XXXXX	x x
X	X	XX XX
X XXX	XXX	XXX
× ×××	X	XXX
ХXX	XXXXX	X X

TECHNIQUES DEVELOPMENT LABORATORY

FOR STATION: DCA

VALID FOR 12 HOURS AFTER MAR 21,1980 7 LOCAL

			~~~~~										
	OD	1		12 HC	DURLY F	ORECAS	TS (LO	CAL ST	ANDARD	TIME)			
	7	8	9	10	11	12	13	14	15	16	17	18	19
TEMPERATURE(F) DEW POINT TP(F) VSRY(100THS SM) FOG, ICE FOC GROUND FOG SMOKE, HAZE PLOWING	60 59 0600 F	61 60 0600 F	64 61 0600 F	66 60 060 F	67 60 0600 F	67 59 0600 F	68 58 0600 F	68 57 0500 F	67 56 0500 F	66 55 0400 F	64 54 040n F	62 53 0400 F	59 53 0400 F
DRIZZLE RAIN SHOWER SNOW, IC SNOW, SHOWER, UP FREEZE DRIZZLE FREEZE RAIN THUNDERSTORM	1 R-	R -	<b>∺</b> -	R <del>-</del>	R- ₽₩-	R RW-	RW <mark>-</mark>	κ- R₩-	R= RW-	R- RW-	R.⊭ R₩⊒	R- R₩-	R- R¥-
THUNDERSTORM+ WIND(DDFF) SLP(10THS ME) CLOUD COVER #1 CLOUD HEIGHT #1 CLOUD HEIGHT #2 TOT CLOUD COVER CLOUD HEIGHT #2 TOT CLOUD COVER CEILING 100S FT	1513 9990 HKN 0VC 10 0VC 7	1718 9993 РКN 7 0VC 10 0VC 7	1719 9999 BKN 7 0VC 10 0VC 7	1820 10000 OVC 7 CLR UNL OVC 7	1921 10000 OVC CLR UNL OVC 7	2021 9997 OVC CLR UNL OVC 7	2121 9995 0VC CLR UNL 0VC 7	2221 9993 0VC CLR UNL 0VC 7	2321 9994 OVC 7 CLR UNL OVC 7	2321 9996 0VC 7 CLR UNL 0VC 7	2420 10000 OVC CLR UNL OVC 7	2419 10004 OVC 7 CLR UNL 0VC 7	2418 10010 OVC 7 CLR UNL OVC 7

Figure 1-4.--GEM categorical predictions for the March 21, 1980, example.

The actual sequence of events was very much in keeping with the forecast. A front or squall line passed around noon and showed an even sharper drop in temperature and dewpoint than predicted. The wind shifted and increased in speed as expected, but in a slightly more dramatic manner. Visibility improved much beyond that predicted by GEM.

In all, the GEM forecast contained useful guidance information. Particularly encouraging was the way the synoptic situation was inferred from only the 0700 LST observation. Incidentally, when GEM was projected out another 12 hours from the same 0700 LST observation, the temperature was predicted to fall another  $13^{\circ}$ F to  $46^{\circ}$ F, and this was closely in line with what actually occurred. Moreover, GEM's wind forecast showed a further veering of  $30^{\circ}$  in direction, which was in line with what was observed.

#### Overview of the Report

The work reported here is the culmination of three decades of research in the application of statistics to meteorological prediction. GEM is a multivariate linear regression system in which all variables, both predictors and predictands, are zero-one. The model underlying the system is Markovian. It uses only the most recent observation of the local surface weather elements to predict the probability distribution of those same weather elements. It does this in hourly increments. A categorical forecast is then made of each element, satisfying an arbitrary constraint of balancing the number of times an element category is predicted with the number of times it is observed to occur.

In the period leading up to the development of GEM, a number of findings-sometimes contrary to common belief--were uncovered. Principal among these is the notion of a generalized operator, by which one can use the same equation to forecast anywhere at any time. Early experimental results at the Massachusetts Institute of Technology began breaking down the notion of stratification of data. The procedure of stratifying data was thought to be advantageous in effecting a kind of nonlinearity in the prediction scheme. Deemed desirable was a synoptic climatology, in which past situations similar to the current situation are grouped and predictions are based on these data. However, it later became evident that dissimilar past events were as useful for prediction as similar past events. Furthermore, using all kinds of events (similar and dissimilar) yielded the best results of all--partly, perhaps, because of the larger sample afforded the scheme.

Experiments that followed, notably one by Harris (1962), boldly predicted temperatures at stations all around the contiguous United States by using only one equation. This equation had the predictors and predictands in standard units (accounting for local means and standard deviations), but the same coefficients were applicable to all locations (including the independent test locations). Even before this remarkable result, it was already becoming the common practice of many researchers not to stratify by the season of the year or the time of day. (See, for example, papers in Shorr 1958.)

In view of this earlier work, the results reported here (on the reliability of generalized operators) are not unexpected. However, this represents the first occasion on which a well founded statistical procedure, the analysis of covariance, has been employed in this context to give convincing evidence of its truth.

If one were to approach the problem of predicting the probability distributions of future weather events by employing the <u>classical</u> Markov-chain model, it would soon become evident that enumerating the required states of nature, under a realistic number of characteristics, is infeasible. A new, or at least different, method must be tried. In GEM, a system of regression equations is set up to estimate the probability of all subsequent events at one time step. Then the transition probabilities in the usual Markov chain are essentially replaced by the regression-estimated probabilities. To accomplish this estimation of probabilities, all predictands are either a zero or a one in each observation. To facilitate the iterative characteristics of the chain, all predictors are similarly expressed as zero or one in each observation. The simplicity of such a system should be evident: Forecast all elements into the future by iterative steps, using only the present observed conditions of the events.

Earlier in this chapter an example was given of the consequences of using the GEM procedure. Chapter 2 describes the mathematical model and explains how the data were prepared for constructing GEM. This is followed by a detailed explanation of how each weather element was transformed into zeroone events. Discussed also are some of the computational conveniences for the resulting binary data set.

The statistical analyses and data manipulations are given in the subsequent sections of chapter 2, ending with a selected set of material on the procedure's characteristics, for interpretation by the reader. Essentially all of the necessary matrices and other computed quantities are on microfiche and appear in a pocket inside the report's back cover.

Chapter 3 presents results of both old and new experiments in which GEM or its forerunners have been used. Some of these pertain only to independent verifications. Others give details of attempts to resolve the issue of singlestation versus generalized operators in an elaborate analysis of covariance experiment. At the end of the chapter, conclusions are drawn from the results of the experiments.

In chapter 4 an independent verification of GEM is presented along with comparative statistics against persistence over the 1- to 12-hr period.

Chapter 5 deals with operational configurations of GEM under a variety of circumstances--involving a large-scale computer, time sharing option (TSO), and minicomputer.

Chapter 6 gives a projected view of GEM from the standpoint of enhancement and other possible applications. The report is summarized in this chapter.

Finally, chapter 7 covers new results-modifications to improve the model and their applications to the independent verification sample showing comparative statistics.

#### 2. CREATING GEM

This chapter describes GEM in its entirety, from the mathematical model to the first step in data selection, and through the making of operational forecasts. It is suggested that Miller, 1968, be read as an introduction to GEM and, following that, Whiton, 1977, for an excellent and exhaustive presentation of the equivalent and Markov aspects of GEM. This should adequately cover all of how GEM was conceived and how it extends in mathematical form. Miller et al, 1977, and Miller, 1979b, might then be read to appraise the consequences of GEM's early comparative capabilities, for ceiling and visibility, under single-station rather than generalized circumstances.

#### Mathematical model

Assumed given are measurements on a set of  $Z_1$ ,  $Z_2$ , ...,  $Z_p$  predictor variables and a set of  $Y_1$ ,  $Y_2$ , ...,  $Y_Q$  predictand variables for a group of N observations. The problem of multivariate regression is to construct a set of 0 linear functions

$$Y_{1} = a_{1,0} + a_{1,1}Z_{1} + a_{1,2}Z_{2} + \dots + a_{1,p}Z_{p} + \dots + a_{1,p}Z_{p}$$

$$\hat{Y}_{2} = a_{2,0} + a_{2,1}Z_{1} + a_{2,2}Z_{2} + \dots + a_{2,p}Z_{p} + \dots + a_{2,p}Z_{p}$$

$$\hat{Y}_{q} = a_{q,0} + a_{q,1}Z_{1} + a_{q,2}Z_{2} + \dots + a_{q};_{p}Z_{p} + \dots + a_{q},_{p}Z_{p}$$

$$\hat{Y}_{Q} = a_{Q,0} + a_{Q,1}Z_{1} + a_{Q,2}Z_{2} + \dots + a_{Q};_{p}Z_{p} + \dots + a_{Q},_{p}Z_{p}$$

$$(2-1)$$

which have the property that the sum of the squares of the errors

$$\varepsilon_{q}^{2} = \sum_{i=1}^{N} (Y_{i,q} - \hat{Y}_{i,q})^{2} = \sum_{i=1}^{N} (Y_{i,q} - a_{q,0} - a_{q,1}Z_{i,1} - a_{q,p}Z_{i,p})^{2} (q = 1, 2, ..., q)$$

$$(2-2)$$

are as small as possible. That is, the problem is to determine values of the  $a_{q,p}$ 's (q = 1,2, ..., Q; p = 1,2, ..., P) which minimize the quantities  $\varepsilon_q^2$  (q = 1, 2, ..., Q). This is done by taking the partial derivatives of the  $\varepsilon^2$ 's with respect to the unknown a's and setting each derivative equal to zero and then solving for the a's. The process yields a set of normal equations which can be written in matrix notation as (underlining signifies a matrix or vector):

$$\underline{\mathbf{A}} = (\underline{\mathbf{Z}}'\underline{\mathbf{Z}})^{-1}(\underline{\mathbf{Y}}'\underline{\mathbf{Z}})$$
(2-3)

Expressed statistically this is the multivariate linear regression of the Y's on the Z's (Tatsuoka, 1971, pp. 26-38). In GEM the Y values are advanced by one hour from the corresponding Z values. Thus  $Y_{q,i+1} = Z_{q,i}$  or

$$Y_{p,i+1} = Z_{p,i}$$
 (i = 1, 2, ..., N; q = 1, 2, ..., 0; p = 1, 2, ..., P).

Once A has been determined, it can then be used to estimate the value of  $\underline{y}$  at one time step, given a set of  $\underline{z}$  values at a zero time step (lower case values denote new observations of  $\underline{Y}$  and  $\underline{Z}$ ):

$$\hat{\mathbf{y}}_1 = \mathbf{z}_0 \,^{\prime} \mathbf{A} \tag{2-4}$$

To employ an iterative scheme, such as in GEM, the estimate of  $\underline{y}$  at time T can be expressed as

$$\hat{\mathbf{y}}_{\mathrm{T}} = \mathbf{z}_{\mathrm{T-1}}\mathbf{A}$$
 (multiplicative form) (2-5)

with z at time T-1 taken to be the previous estimate  $\hat{y}_{T-1}$ .

An equivalent alternative to estimating  $\underline{y}$  at time T is to power A as follows:

$$\hat{\underline{y}}_{T} = \underline{z}_{0}\underline{A}^{T}$$
 (additive form) (2-6)

The distinction between the two forms, multiplicative and additive, is that in the former the operation required is to <u>postmultiply</u> the observation and then subsequent forecasts by <u>A</u>, hour by hour. In the latter, since all observations in  $\underline{z}_0$  are either zero or one, the operation only requires <u>adding</u> the coefficients whose observations are one, at any projection. To permit this, however, the powered versions of <u>A</u> must be determined initially, stored, and made available for the T's desired to complete a forecast.

The GEM model has been demonstrated to converge to climatology when projected out to a large T. (See Whiton, 1977, for further discussion of this point.)

A word about the computing of  $\underline{Z'Z}$  and  $\underline{Y'Z}$ : With all observed elements being only zeros and ones, the data can be packed into the bits of computer words, and all arithmetic operations performed by very speedy, logical, machinelanguage instructions. The data need only to be transposed initially from map form to vector form.

Data

#### Preparation

Steps 1-4 are data preparation activities. Step 5 is data transformation. Steps 6-12 include the statistical analyses.

Step 1 Select Weather Predictors

Notation	Predictor name
х _о	Unity (always one)
XI	Month of year
$x_2^{-}$	Hour of day
$x_{\overline{3}}$	Sea level pressure
X ₄	Dry bulb temperature
X5	Dew point depression
X ₆	Lowest sky cover
X ₇	Visiblity
X ₈	No weather
X9	Fog, ice fog
x10	Ground fog

Notation	Predictor name
x ₁₁	Smoke, haze, or dust
x ₁₂	Blowing snow, dust or spray
x ₁₃	Drizzlelight
x ₁₄	Drizzlemoderate or heavy
x ₁₅	Rainlight
x ₁₆	Rainmoderate
x ₁₇	Rainheavy
x ₁₈	Rain showerslight
X19	Rain showersmoderate
x ₂₀	Rain showersheavy
x ₂₁	Snow or icelight
x ₂₂	Snow or icemoderate
x ₂₃	Snow or iceheavy
x ₂₄	Snow or ice showerslight
x ₂₅	Snow or ice showersmoderate
x ₂₆	Snow or ice showersheavy
x ₂₇	Freezing drizzle
x ₂₈	Freezing rain
x ₂₉	Thunderstorm or light hail
x ₃₀	Thunderstorm, heavy
x ₃₁	Lowest cloud layer height
x ₃₂	Middle sky cover
X33	Middle cloud layer height
X34	Total sky cover
X35	Ceiling
x ₃₆	Wind
X37	Interactions (gross)

# Step 2 Select Weather Predictands

Notation	Predictand name
U ₁	Month of year
$\overline{\mathrm{U}_2}$	Hour of day
$\overline{U_3}$	Sea level pressure
U ₄	Dry bulb temperature
US	Dew point depression
UG	Lowest sky cover
$\overline{U_7}$	Visiblity
Ug	No weather
U9	Fog, ice fog
U10	Ground fog
U ₁₁	Smoke, haze, or dust
$\overline{v_{12}}$	Blowing snow, dust or spray
U ₁₃	Drizzlelight
U14	Drizzlemoderate or heavy
U ₁₅	Rainlight
U ₁₆	Rainmoderate
U17	Rainheavy
U ₁₈	Rain showerslight
U19	Rain showersmoderate

Notation	Predictand name
U ₂₀	Rain showersheavy
$U_{21}$	Snow or icelight
$\overline{U_{22}}$	Snow or icemoderate
U23	Snow or iceheavy
U24	Snow or ice showerslight
$\overline{U_{25}}$	Snow or ice showersmoderate
U26	Snow or ice showersheavy
$\overline{U_{27}^{-2}}$	Freezing drizzle
U ₂₈	Freezing rain
U29	Thunderstorm or light hail
U ₃₀	Thunderstorm, heavy
$U_{31}$	Lowest cloud layer height
U32	Middle sky cover
$U_{3,\overline{3}}$	Middle cloud layer height
U34	Total sky cover
U35	Ceiling
U36	Wind
U ₃₇	Interactions (gross)

# Step 3 Select Weather Stations

Symbol		City	State
L ₁	I	Albuquerque	New Mexico
L ₂		Waco	Texas
L3		Atlantic City (A)	New Jersey
L ₄		Atlantic City (B)	New Jersey
L ₅		Albany	New York
L ₆		Atlanta	Georgia
L ₇	Ι	Bismarck	North Dakota
L ₈		Boise	Idaho
Lg	I	Boston	Massachusetts
L ₁₀		Buffalo	New York
L ₁₁		Baltimore	Maryland
L12		Columbia	South Carolina
L13		Cleveland	Ohio
L14	Ι	Denver	Colorado
L15		Duluth	Minnesota
^L 16		Des Moines	Iowa
L ₁₇		Sioux Falls	South Dakota
L18		Great Falls	Montana
L19		Wilmington	Delaware
L ₂₀		Jackson	Mississippi
L21	I	Jacksonville	Florida
L22	Ι	Los Angeles	California
L ₂₃		Lubbock	Texas
L24	Ι	Memphis	Tennessee
L ₂₅	Ι	Milwaukee	Wisconsin
^L 26	Ι	Oklahoma City	Oklahoma
L27		Norfolk	Virginia
L28	Ι	Portland	Oregon

14

Symbol [missing]		City	State
L29		Phoenix	Arizona
L30	I	Pittsburgh	Pennsylvania
L31	I	Raleigh-Durham	North Carolina
L32	I	Reno	Nevada
L33		Roanoke	Virginia
L34	I	San Antonio	Texas
L35		Savannah	Georgia
L36		Louisville	Kentucky
L37		Seattle-Tacoma	Washington
L38	I	Saint Louis	Missouri
L39		Tallahassee	Florida
L40		Topeka	Kansas
L41		Knoxville	Tennessee

Depicted spatially on the map in figure 2-1. The symbol I denotes station is part of analyses of variance and covariance sample.

Step 4 Select Sample of Observations

The following observation samples came from the years 1954-1965. Atlantic City appears in two forms because of a change in observation site during the period.

Weather station Symbol	Sample size Notation	Sample size Actual
Ll	Nl	105,002
$L_2$	N2	101,521
L ₃	N ₃	47,662
L ₄	N ₄	56,879
$L_5$	N5	103,673
L ₆	N ₆	105,000
L7	N ₇	105,011
L ₈	N ₈	101,105
Lg	N9	104,989
L ₁₀	N10	103,371
L11	N ₁₁	87,562
L ₁₂	N12	104,341
L ₁₃	N13	104,951
L14	N14	104,401
L15	N15	104,999
L16	^N 16	105,025
L ₁₇	N ₁₇	105,047
L ₁₈	N18	98,902
L ₁₉	N19	43,275
L ₂₀	N20	87,147
L ₂₁	N ₂₁	104,890
L ₂₂	N22	105,052
L ₂₃	N23	103,321
L24	N24	105,063



Figure 2-1.--Locations selected to provide data for GEM. An open circle denotes verification stations (7), and a filled-in circle denotes stations comprising the total (41) dependent sample stations.

Weather station	Sample size	Sample size		
Symbol	Notation	Actual		
¥	NT	00.075		
L25	N25	98,865		
L26	N26	105,001		
L ₂₇	N27	84,070		
L28	N28	104,056		
L29	N29	102,307		
L30	N30	103,156		
L31	N31	103,602		
L32	N32	101,962		
L ₃₃	N33	86,467		
L34	N34	102,016		
L ₃₅	N35	86,251		
L36	N36	104,450		
L37	N37	104,919		
L38	N38	103,908		
L39	N39	87,118		
L40	N40	102,564		
L ₄₁	N ₄₁	85,612		
	N	2 064 512		
TOTAL	Ν	3,964,513		

### Transformations

Step 5 Transform the original predictors to zero-one variables (dummies). Leave out one from each original predictor because of redundancy.

Figure 2-2 shows a computer printout of the criterion used to dummy each predictor and predictand variable.

POSITION IN INDEX EXPAND COLLAP	CRAND ARRAI	DESCRIPTION	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 159 2 1661 3 1662 5 1662 5 1663 4 1663 6 1665 8 1666 8 1666 8 1667 169 10 169	MONTH (LOCAL) JANUARY MONTH (LOCAL) FEBRUARY MONTH (LOCAL) MARCH MONTH (LOCAL) APRIL MONTH (LOCAL) MAY MONTH (LOCAL) JUNE MONTH (LOCAL) JULY MONTH (LOCAL) AUGUST MONTH (LOCAL) SEPTEMBER MONTH (LOCAL) OCTOBER MONTH (LOCAL) NOVEMBER	
13 13	12	MONTH (LOCAL) DECEMBER	< LEFT-OUT
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1 & 170\\ 2 & 171\\ 3 & 172\\ 5 & 1773\\ 5 & 1775\\ 6 & 1775\\ 6 & 1776\\ 9 & 1778\\ 101 & 1882\\ 18834\\ 18845\\ 18845\\ 18889\\ 1888\\ 199\\ 1888\\ 199\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 23\\ 199\\ 222\\ 222\\ 23\\ 199\\ 222\\ 222\\ 23\\ 199\\ 222\\ 222\\ 222\\ 222\\ 222\\ 222\\ 222$	HOUR (LOCAL) 0 HOUR (LOCAL) 1 HOUR (LOCAL) 2 HOUR (LOCAL) 3 HOUR (LOCAL) 4 HOUR (LOCAL) 5 HOUR (LOCAL) 6 HOUR (LOCAL) 6 HOUR (LOCAL) 7 HOUR (LOCAL) 7 HOUR (LOCAL) 9 HOUR (LOCAL) 9 HOUR (LOCAL) 10 HOUR (LOCAL) 11 HOUR (LOCAL) 13 HOUR (LOCAL) 14 HOUR (LOCAL) 15 HOUR (LOCAL) 16 HOUR (LOCAL) 16 HOUR (LOCAL) 18 HOUR (LOCAL) 18 HOUR (LOCAL) 19 HOUR (LOCAL) 20 HOUR (LOCAL) 21 HOUR (LOCAL) 21 HOUR (LOCAL) 22	
37 37		HOUR (LOCAL) 23	< LEFT-OUT
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SLP (MB)800.0T0985SLP (MB)985.1T0990SLP (MB)990.1T0995SLP (MB)995.1T01000SLP (MB)1000.1T01005SLP (MB)1005.1T01010SLP (MB)1010.1T01015SLP (MB)1020.1T01025SLP (MB)1020.1T01030SLP (MB)1025.1T01030SLP (MB)1030.1T01035SLP (MB)1035.1T01040SLP (MB)1040.1T01090	
50 45		SLP (MB) 1015.1 To 1020	< LEFT-OUT

Figure 2-2.--Criterion for specifying each dummy predictor and predictand. The first five columns represent indexes for referencing various matrix rows and columns on microfiche.

INDEX	POSIT: EXPAND	COLLAP	WITHIN GROUP	RE- ARRAN(	DESCRIPTION	
555555555666666666677777777777777777777	555555555566666666677777777778 5555556666666666	445555555555666666666666666777777777	127 45678901234567890123456789 111111111112222222222222	23456789012345678901234567890	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
80			<u>2n</u>		DB TEMP (F) 60 TO 64	< LEFT-OUT
81 82 83 85 85 85 85 85 85 85 85 85 85 85 85 85	81 8845 885 887 889 991	7890 7890 8888 888 888 888	1 2 3 4 5 6 7 8 9 10	-2234567890 -3535353534	DPT       DPR       (F)       0         DPT       DPR       (F)       1         DPT       DPR       (F)       5       TO       7         DPT       DPR       (F)       8       TO       11         DPT       DPR       (F)       12       TO       15         DPT       DPR       (F)       16       TO       19         DPT       DPR       (F)       20       TO       25         DPT       DPR       (F)       26       TO       35         DPT       DPR       (F)       36       TO       50         DPT       DPR       (F)       51       TO       99	
91	83		٦ 			< LEFT-OUT
92 93 94 95	92 94 95 96	67 88 89 90	1 2 3 4	106 107 108 109	CLD CVR #1 CLR CLD CVR #1 BKN CLD CVR #1 OVC CLD CVR #1 TOT OBSC	
96	93		2		CLD CVR #1 SCD	< LEFT-OUT
97 98 990 100 100 100 100 100 100 100 100 100	97 98 999 1001 1022 103 104 105 106 107	912 934 956 989 997 990 1001	12345678901 1111	44345678901 44444455	VSBY (ST MI) .00 TO .49 VSBY (ST MI) .50 TO .74 VSBY (ST MI) .75 TO .99 VSBY (ST MI) 1.0 TO 1.49 VSBY (ST MI) 1.5 TO 1.99 VSBY (ST MI) 2.0 TO 2.49 VSBY (ST MI) 2.5 TO 2.99 VSBY (ST MI) 2.5 TO 2.99 VSBY (ST MI) 3.0 TO 3.99 VSBY (ST MI) 3.0 TO 3.99 VSBY (ST MI) 4.0 TO 4.99 VSBY (ST MI) 5.0 TO 5.99 VSBY (ST MI) 6.0 TO 6.99	
108	108		~ ~ ~ ~ ~ ~ ~ ~ ~		VSBY (ST MI) 7.0 TO 100.	< LEFT-OUT
109	109	102	1	193	NO WX	
110	110		2		WX	< LEFT-GUT
111		103	1	5 <b>2</b>	F.IF	
112	111		1		NO F.F	< LEFT-OUT

Figure 2-2.--(continued)

INDEX	POSIT EXPAND	ION IN COLLAP	WITHIN GROUP	RE-	F	DESCR	IPTION			
113	114	104	1	53	GF					
114	113		1		NO GF				<	IEFT-OUT
115	116	105	<u>-</u> 1	54		•D•KH	,KD,HD,K	HD		
116	115	100					•KD•HD•K		<	LEFT-OUT
117	118	106		55		BD.BN				-
118	117		1		NO BS.	-			<	LEFT-OUT
119	120	107	1	56 57			* - ** ** ** ** **			
120	121	108	2	57	Ē,L	+			_	
121	119				NO L				<	LEFT-OUT
122 123 124	123 124	109 110	123	58 59	R- R					
	125	111		60	R+				,	- FFT 647
125	122				NO R				< •• **	LEFT-OUT
126 127 128	127 128 129	$112 \\ 113 \\ 114$	12	61 62 63	RW - RW RW +					
129	125	147	1	60	No RW				(	LEFT-OUT
,	131	115	<u>-</u> 1		S-,	 IC-				
130 131 132	132 133	116 117	23	65 66	Š,ľ S+•	С				
133	130		1		NO S.I	с			<	LEFT-OUT
134	135	118	1	67		, IP-	996 alam 200 alam kina alam kina ₁₉₉₁			
135 136	136 137	119 120	23	68 69	SW.	IP IP+				
137	134		1	-	NO SW.	IP			<	LEFT-OUT
138	139	121	1	70	ZL-	,ZL,ZI				
139	138		1		No zi				<	LEFT-OUT
140	141	122	1	71	ZR-	•ZR •ZI	₹÷			
141	140		1		NO ZR				<	LEFT-OUT
142	143	123	1	72	TST	MαA	-			
143	142		1		NO TST	Μ,Δ		,	<	LEFT-OUT
144	145	124	1	73	TST					
145	144		1		NO TST			, 44	<	LEFT-OUT
146 147	146 147	125 126	1234567	$\begin{array}{c} 110 \\ 111 \end{array}$	CLD HG CLD HG CLD HG	T #1 T #1	0 TO 2 TO	1 4		
148 149	148 149	127 128	3 4	$112 \\ 113$	CLD HG	T #1 T #1	2 TO 5 TO 7 TO	69		
150	150 151	129	5	114	CLD HG CLD HG CLD HG	T #1 T #1	10 TO 15 TO 20 TO 25 TO 30 TO 40 TO	9 14 19 24		
157	152	131	8	116	CLD HG	T #1 T #1	20 TO 25 TO	29		
155	154	134	8 9 10	118	CLD HG	T #1	30 TO 40 TO	299		
19012345678 1552345678	156	130	15	121	CLD HG		50 TO 60 TO 76 TO	59 75 99		
150 159 160	1455234567891 1155555567891	11111111111111111111111111111111111111	112845	11123456789012234 11121111111222234		T ±1	100 TO PART OF	150		
161	160	107	15	16.	CLD HG				<	LEFT-OUT
			**************************************			, 51 J. 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 19				

Figure 2-2.--(continued)

INDEX	POSIT EXPAND	ION IN COLLAP	WITHIN GROUP	RE- ARRAN	GE
162 163 164	163 164 165	140 141 142	123	125 126 127	CLD CVR #2 SCD CLD CVR #2 BKN CLD CVR #2 OVC
165	162		1		CLD CVR #2 CLP < LEFT-OUT
1667 1667 168 177 177 1773 1774 1775 1778 1778 1778 1778	166 167 168 169 170 171 172 173 174 175 176 177 178 179	144567890123456 144567890123456 111115555555555555555555555555555555	1234 567 890 11234 11234	12333333333333333333333333333333333333	CLD       HGT       #2       0       TO       1         CLD       HGT       #2       2       TO       4         CLD       HGT       #2       2       TO       4         CLD       HGT       #2       2       TO       4         CLD       HGT       #2       10       TO       14         CLD       HGT       #2       10       TO       14         CLD       HGT       #2       20       TO       24         CLD       HGT       #2       25       TO       29         CLD       HGT       #2       30       TO       39         CLD       HGT       #2       30       TO       59         CLD       HGT       #2       50       TO       59         CLD       HGT       #2       60       TO       75         CLD       HGT       #2       100       TO       150
180	180		15		CLD HGT #2 151 TO UNL < LEFT-OUT
			1 2 3		TOTAL CLD CVR CLR TOTAL CLD CVR SCD TOTAL CLD CVR BKN
184	184		4		TOTAL CLD CVE OVC < LEFT-OUT
1887 1888 1111 1111 11999 1111 1111 1111	1887 1888 111 111 112 1199 1199 1199 1199 11	11111111111111111111111111111111111111	123456789011234 11234	14444555555555555555555555555555555555	CEILING       0 TO       1         CEILING       2 TO       4         CEILING       5 TO       6         CEILING       10 TO       14         CEILING       10 TO       14         CEILING       15 TO       19         CEILING       20 TO       24         CEILING       25 TO       29         CEILING       30 TO       39         CEILING       50 TO       59         CEILING       50 TO       59         CEILING       76 TO       99         CEILING       76 TO       99         CEILING       100 TO       150
199	199		15		CEILING 151 TO UNL < LEFT-OUT
22222222222222222222222222222222222222	2012345689011234567890 222222222222222222222222222222222222	11111111234567890123 7777776628888888899999	12345678901234567890 111234567890	77777788888888899999 88888888899999	WIND       CALM       /       LT 2         WIND       NNF TO NE       /       LE 9         WIND       ENF TO E       /       10 TO 19         WIND       ENF TO E       /       10 TO 19         WIND       ENF TO E       /       10 TO 19         WIND       ENF TO SE       /       10 TO 19         WIND       ESF TO SE       /       10 TO 19         WIND       ESF TO SE       /       10 TO 19         WIND       SSF TO S       /       10 TO 19         WIND       SSW TO SW       /       LE 9         WIND       SSW TO SW       /       LE 9         WIND       WSW TO W       /       LE 9         WIND       WSW TO W       /       10 TO 19         WIND       WSW TO W       /       10 TO 19         WIND       WNW TO NW       /       10 TO 19         WIND       WNW TO NW       /       10 TO 19         WIND       WNW TO NW       /       10 TO 19         WIND       WNW TO N       /       10 TO 19         WIND       NNW TO N       /       10 TO 19         WIND       NNW TO N       /
220	207		A 		WIND SSF TO S / LE 9 < LEFT-OUT
221	222	194	1	194	AUTWTR / DAY7-18 TRUE
_222	221		1.	. ~ ~ ~ ~ ~	AUTWTR / DAY7-18 FALSE < LEFT-OUT

Figure 2-2.--(continued)

INDEX	POSITI EXPAND	COLLAP	WITHIN GROUP	RE-	DESCRIPTION GE	
223	224	195	1	195	AUTWTR / HUMID TRUE	
224	223		1		AUTWTR / HUMID FALSE	< LEFT-OUT
225	226	196	1	196	AUTWTR / STHWIND TRUE	
226	225		1		AUTWTR / STHWIND FALSE	< LEFT-OUT
227	228	197	1	197	AUTWTR / ESTWIND TRUE	
228	227		1		AUTWTR / ESTWIND FALSE	< LEFT-OUT
229	230	198	1	198	AUTWTR / OVCSKY TRUE	
230	229		1		AUTWTR / OVCSKY FALSE	< LEFT-OUT
231	232	199	1	199	AUTWTR / HISKY TRUE	
232	231		1		AUTWTR / HISKY FALSE	< LEFT-OUT
233	234	200	1	200	AUTWTR / FARVSBY TRUE	
234	233		1		AUTWTR / FARVSBY FALSE	< LEFT-OUT
235	236	201	1	201	AUTWTR / NO PRECIP TRUE	
236	235		1		AUTWTR / NO PRECIP FALSE	< LEFT-OUT
237	238	202	1	202	DAY7-18 / HUMID TRUE	*
238	237		11	***	DAY7-18 / HUMID FALSE	< LEFT-OUT
239	240	203	1	203	DAY7-18 / STHWIND TRUE	
240	239		1		DAY7-18 / STHWIND FALSE	< LEFT-OUT
241	242	204	7	204	DAY7-18 / ESTWIND TRUE	
242	241		1	*****	DAY7-18 / ESTWIND FALSE	< LEFT-OUT
243	244	205	1	205	DAY7-18 / OVCSKY TRUE	
_244	243		1		DAY7-18 / OVCSKY FALSE	< LEFT-OUT
245	246	206	1	206	DAY7-18 / HISKY TRUE	
246	245		1,		DAY7-18 / HISKY FALSE	< LEFT-OUT
247	248	207	1	207	DAY7-18 / FARVSBY TRUE	
_248	247		1		DAY7-18 / FARVSBY FALSE	< LEFT-OUT
249	250	208			DAY7-18 / NO PRECIP TRUE	
250	249				DAY7-18 / NO PRECIP FALSE	< LEFT-OUT
251	252	209	1	209	HUMID / STHWIND TRUE	
252	251		1		HUMID / STHWIND FALSE	< LEFT-OUT
253	254	210			HUMID / FSTWIND TRUE	
					HUMID / FSTWIND FALSE	< LEFT-OUT
255		211	1	211	HUMID / OVCSKY TRUE	
_256	255					< LEFT-OUT
	258	212	1	212	HUMID / HISKY TRUF	
258	257		1		HUMID / HISKY FALSE	< LEFT-OUT

Figure 2-2.--(continued)

259       260       213       1       213       HUMID / FARVSBY TRUE         260       259       1       HUMID / FARVSBY FALSE       < LEFT-OUT         261       262       214       1       214       HUMID / HO PRECIP       THUE         262       261       1       LIFT STHWIND / HO PRECIP       FALSE       < LEFT-OUT         263       264       215       1       215       STHWIND / ESTWIND TRUE       < LEFT-OUT         264       263       1       STHWIND / OVCSKY TRUE       < LEFT-OUT         265       266       216       1       215       STHWIND / HISKY TRUE         266       265       1       STHWIND / HISKY FALSE       < LEFT-OUT         267       263       1       STHWIND / HISKY FALSE       < LEFT-OUT         268       267       1       STHWIND / HISKY FALSE       < LEFT-OUT         270       216       1       218       STHWIND / HISKY FALSE       < LEFT-OUT         271       272       219       1       219       STHWIND / NO PRECIP TRUE       < LEFT-OUT         273       274       220       1       220       ESTWIND / OVCSKY TRUE       < LEFT-OUT         276	INDEX	POSITI EXPAND	COLLAP	WITHIN GROUP	RE- ARRAN	DESCRIPTION	
261       262       214       1       214       HUMID / NO PRECIP       TRUE         262       261       1       HUMID / NO PRECIP       FALSE       < LEFT-OUT	259	260	213	1	213	HUMID / FARVSBY TRUE	
262       261       1       HUMID / NO PRECIP       FALSE       < LEFT-OUT	260	259		1		HUMID / FARVSBY FALSE	< LEFT-OUT
263       264       215       1       215       STHWIND / ESTWIND TRUE         264       263       1       STHWIND / ESTWIND FALSE       < LEFT-OUT	261	262	214	1	214	HUMID / NO PRECIP TRUE	
264       263       1       STHWIND / ESTWIND FALSE       < LEFT-OUT	262	261		1		HUMID / NO PRECIP FALSE	< LEFT-OUT
265       266       216       1       216       STHWIND / OVCSKY TRUE         266       265       1       STHWIND / OVCSKY FALSE       < LEFT-OUT	263	264	215	1	215	STHWIND / ESTWIND TRUE	
266       265       1       STHWIND / OVCSKY FALSE       < LEFT-OUT	264	263		1		STHWIND / ESTWIND FALSE	< LEFT-OUT
267       268       217       1       217       STHWIND / HISKY TRUE         268       267       1       STHWIND / HISKY FALSE       < LEFT-OUT	265	,266	216	1	216	STHWIND / OVCSKY TRUE	
268       267       1       STHWIND / HISKY FALSE       < LEFT-OUT	266	265		1		STHWIND / OVCSKY FALSE	< LEFT-OUT
269       270       218       1       218       STHWIND / FARVSBY TRUE         270       269       1       STHWIND / FARVSBY FALSE       < LEFT-OUT	267	268	217	1	217	STHWIND / HISKY TRUE	
270       269       1       STHWIND / FARVSBY FALSE       < LEFT-OUT	268	267		1		STHWIND / HISKY FALSE	< LEFT-OUT
271       272       219       1       219       STHWIND / NO PRECIP TRUE         272       271       1       STHWIND / NO PRECIP FALSE < LEFT-OUT	269	270	218	1	218	STHWIND / FARVSBY TRUE	
272       271       1       STHWIND / NO PRECIP FALSE       < LEFT-OUT	270	269		1		STHWIND / FARVSBY FALSE	< LEFT-OUT
273       274       220       1       220       ESTWIND / OVCSKY TRUE         274       273       1       ESTWIND / OVCSKY FALSE       < LEFT-OUT	271	272	219	1	219	STHWIND / NO PRECIP TRUE	
274       273       1       ESTWIND / OVCSKY FALSE       < LEFT-OUT	272	271		1		STHWIND / NO PRECIP FALSE	< LEFT-OUT
275       276       221       1       221       ESTWIND / HISKY TRUE         276       275       1       ESTWIND / HISKY FALSE       < LEFT-OUT	273	274	220	1	220	ESTWIND / OVCSKY TRUE	
276       275       1       ESTWIND / HISKY FALSE       < LEFT-OUT	274	273		1		ESTWIND / OVCSKY FALSE	< LEFT-OUT
277       278       222       1       222       ESTWIND / FARVSBY TRUE         278       277       1       ESTWIND / FARVSBY FALSE       < LEFT-OUT	275	276	221	1	221	ESTWIND / HISKY TRUE	
278       277       1       ESTWIND / FARVSBY FALSE       < LEFT-OUT	276	275		1		ESTWIND / HISKY FALSE	< LEFT-OUT
279       280       223       1       223       ESTWIND / NO PRECIF TRUE         280       279       1       ESTWIND / NO PRECIP FALSE       < LEFT-OUT	277	278	222	1	222	ESTWIND / FARVSBY TRUE	
280       279       1       ESTWIND / NO PRECIP FALSE       < LEFT-OUT	278	277		1		ESTWIND / FARVSBY FALSE	< LEFT-OUT
281       282       224       1       224       0VCSKY / HISKY TRUE         282       281       1       0VCSKY / HISKY FALSE       < LEFT-OUT	279	280	223	1	223	ESTWIND / NO PRECIF TRUE	
282       281       1       0VCSKY / HISKY FALSE       < LEFT-OUT	280	279		1		ESTWIND / NO PRECIP FALSE	< LEFT-OUT
283       284       225       1       225       0vCSKY / FARVSBY TRUE         284       283       1       0vCSKY / FARVSBY FALSE       < LEFT-OUT	281	282	224	1	224	OVCSKY / HISKY TRUE	
284       283       1       0VCSKY / FARVSBY FALSE       < LEFT-OUT	282	281		1		OVCSKY / HISKY FALSE	< LEFT-OUT
285       286       226       1       226       0VCSKY / NO PRECIP TRUE         286       285       1       0VCSKY / NO PRECIP FALSE       < LEFT-OUT	283	284	225	1	225	OVCSKY / FARVSBY TRUE	
286       285       1       OVCSKY / NO PRECIP FALSE       < LEFT-OUT	284	283		1		OVCSKY / FARVSBY FALSE	< LEFT-OUT
287       288       227       1       227       HISKY / FARVSBY       TRUE         288       287       1       HISKY / FARVSBY       FALSE       < LEFT-UUT	285	286	226	1	226	OVCSKY / NO PRECIP TRUE	
288       287       1       HISKY / FARVSBY FALSE       < LEFT-UUT	286	285		1		OVCSKY / NO PRECIP FALSE	< LEFT-OUT
289 290 228 1 228 HISKY / NO PRECIP TRUE	287	288	227	1	227	HISKY / FARVSBY TRUE	
	288	287		11		HISKY / FARVSBY FALSE	< LEFT-OUT
290 289 1 HISKY / NO PRECIP FALSE < LEFT-OUT	289	290	228	1	228	HISKY / NO PRECIP TRUE	
	290	289		1	• •• •• •• ••	HISKY / NO PRECIP FALSE	< LEFT-OUT

Figure 2-2.--(concluded)

#### Statistical Analyses

Step 6 Compute the  $\underline{Z'Z}$  and  $\underline{Y'Z}$  matrices.

Step 7 Solve for A from  $A = (Z'Z)^{-1} (Y'Z)$ .

Step 8 Construct PLODITE (Putting Left Out Dummy In The Equation) matrix <u>B</u> by adding in left-out coefficients and left-out equations.

Step 9 Solve for  $\mu_0$ 's and  $\mu_1$ 's. (For details, see appendix.)

Step 10 Solve for  $R^2$ 's where  $R^2 = \mu_1 - \mu_0$ .

Step 11 Solve for threshold probabilities P*. (For details, see appendix.)

The method selected to describe the steps that were performed in the statistical analyses will be by way of deriving the quantities actually obtained for a particular predictand, NO WX/WX at a 1-hr projection. An entire display of these quantities for all 289 predictands for a 1-hr projection is contained on microfiche given in the pocket inside the back cover of this report.

Derivation of the two crossproduct matrices  $\underline{Z'Z}$  and  $\underline{Y'Z}$ , in step 6, was accomplished, as was mentioned previously, by packing the zero-one observations in  $\underline{Z}$ and  $\underline{Y}$  and obtaining the products by logical "anding" two computer words together and counting the number of resulting bits. This gives a two-order-of-magnitude improvement in computing efficiency over ordinary floating-point multiplication, since it treats simultaneously as many observations as can fit into a computer word. These two matrices are on microfiches A and B, respectively.

For the labeled predictors in table 2-1, column 1 gives the sum row of the  $\underline{Z'Z}$  matrix and column 2 the NO WX/WX row of the  $\underline{Y'Z}$  matrix. This gives the products between the Y variable for NO WX/WX times each of the 290 predictors over the sample N.

Solving for the regression coefficient matrix <u>A</u> in step 7 was performed using the Crout method (Crout, 1941). This method does not require solving for the inverse matrix,  $(\underline{Z'Z})^{-1}$ , but instead accomplishes deriving the regression coefficients by a forward and then a backward solution, avoiding many of the computational instabilities encountered by inverting large matrices. This matrix solution yields a 228 x 228 matrix--228 predictor coefficients for each of 228 predictands. In step 8 this matrix is expanded to include the otherwise redundant left-out dummy variables by simple arithmetic to a 290 x 290 PLODITE matrix called B. Both A and B are on microfiches C and D, respectively.

The NO WX/WX equations for the <u>A</u> and <u>B</u> matrices appear as columns 3 and 4, respectively, in table 2-1. One further variation is presented in column 5 of this table, namely, the BETA coefficient form of the PLODITE equation in column 4. That is,

$$\beta_{iy} = B_{iy} \frac{\sigma_y}{\sigma_{Z_z}}$$
 (i=1,2,...,290) (2-7)

where  $\sigma_{\rm Y}$  and  $\sigma_{\rm Z}$  are the standard deviations of Y and the predictor  $\rm Z_i$ ,

Table 2-1.--A display of quantities derived for GEM for the predictand Y = NO WX/WX at 1 hour. Included in the six columns are: 1) sum of Z's, 2) sum of cross-products Y and Z's, 3) generalized operator equation, A, 4) PLODITE generalized operator equation, B, 5) PLODITE beta coefficients,  $\beta$ , and 6) anomaly generalized operator equation, A_a. No entries indicate left out elements as described in the text.

			1	2	3	Ļ	5	6
	Pred	ictor Z						
			$\Sigma \mathbf{Z}$	ΣΥΖ	А	В	β	Aa
Number	Element	Category	<del></del>					
1	Always	Unity	3964513	3163668	.38544	.79800		.00000
2	Month	Jan	338217	244842	00137	00778	00541	00183
3	nonen	Feb	307968	225026	00057	00698	00465	00012
4		Mar	337739	260983	.00123	00518	00360	.0038
		Apr	326031	268881	.01326	.00685	.00469	.01899
5 6		May	334902	281645	.01358	.00717	.00497	.02314
7		June	322102	270724	.01327	.00686	.00467	.02633
8		July	334584	281778	.00991	.00350	.00242	.0250
9		Aug	334753	277415	.00894	.00253	.00175	.0234
10		Sept	325820	270242	.01349	.00708	.00484	.0251
11		Oct	337465	274164	.00302	00338	00235	.01095
12		Nov	326774	256558	.00234	00407	00279	.00534
13		Dec	338158	251410	•00200	00641	00446	
14	Hour (LST)	00	166568	134684	00055	03368	01683	00058
15		01	166726	132855	00083	03396	01698	00120
16		02	166735	130876	.00020	03292	01646	0004
17		03	166689	128316	00213	03526	01762	0030
18		04	166317	123926	01213	04526	02260	0134
19		05	165737	118783	01728	05040	02513	0191
20		06	165186	116016	00718	04031	02006	0096
21		07	164787	117551	.06922	.03610	.01795	.0636
22		08	164506	122028	.08391	.05078	.02522	.0785
23		09	164340	127147	.08712	.05399	.02681	.0827
24		10	164174	131377	.08334	.05021	.02492	.0803
25		11	164109	134157	.07648	.04336	.02151	.0747
26		12	164148	136042	.07171	.03858	.01914	.0711
27		13	164137	137009	.06750	.03438	.01706	.0678
28		14	164144	137407	.06365	.03053	.01515	.0647
29		15	164144	137286	.05991	.02679	.01329	.0613
30		16	164149	137104	.05899	.02587	.01284	.0603
31		17	164109	136898	.06014	.02701	.01340	.0610
32		18	164250	136787	.06093	.02781	.01380	.0610
33		19	164867	137466	00219	03531	01756	.0004
34		20	165625	138116	00044	03357	01673	.0013
35		21	166239	138225	00009	03322	01658	.0011
36		22	166419	137428	00033	03346	01671	.0004
37		23	166408	136184		03313	01655	
38	SLP (MB)	800.0-985.0	1033	401	04081	03965	00159	0342
39		985.1-990.0	3330	1453	05600	05484	00396	0514
40		990.1-995.0	12091	6404	03520	03403	00467	0315
41		995.1-1000.0	40561	25369	02730	02613	00655	0256
42		1000.1-1005.0	131828	94263	01723	01607	00717	0173
43		1005.1-1010.0	417276	326015	00966	00850	00650	01093
44		1010.1-1015.0	977206	776339	00481	00365	00392	0056

Table	2-1(	(continued)
-------	------	-------------

			1	2	3	4	5	6
	Pred	lictor Z	$\Sigma \mathbf{Z}$	ΣΥΖ	A	В	β	Aa
Number	Element	Category	۲ ۲ ۲				ئر بر	**a
45	SLP (MB)	1015.1-1020	.0 1215826	977442		.00116	.00134	
46		1020.1-1025	.0 698126	565405	.00447	.00563	.00535	.00533
47		1025.1-1030	.0 320069	265407	.00868	.00984	.00668	.00891
48		1030.1-1035		94859	.01415	.01532	.00630	.01384
49		1035.1-1040		25259	.02001	.02117	.00449	.02017
50		1040.1-1090		5052	.01762	.01878	.00181	.01726
51	DBT (°F)		31 58	49	05010	04796	00046	04502
52		- 30	26 200	150	12243	12029	00213	11731
53			21 605	486	06280	06067	00187	05735
54		- 20	16 1554	1239	06883	06670	00329	06419
55			11 3593	2965	04363	04150	00311	03878
56			6 6389	5045	03865	03651	00365	03379
57		- 5	1 10824	8495	03496	03282	00427	02927
58		0 -	4 16616	12689	03409	03195	00514	02743
59		5 -	9 24249	17893	03454	03240	00629	02563
60			14 38117	27921	02734	02520	00612	01709
61			19 58450	42606	02226	02012	00604	01206
62			24 95590	69632	01301	01087	00415	00347
63			29 150006	111102	00299	00085	00040	.00626
64			34 228311	163105	.00302	.00516	.00300	.01129
65			39 260201	197412	.00017	.00231	.00142	.00695
66			44 287560	220306	00183	.00031	.00020	.00309
67			59 299105	231217	00288	00074	00048	.00055
68			54 320497	248365	00262	00048	00033	00019
69			59 339288	264102	.00010	.00224	.00156	.00166
70			64 357114	279059		.00214	.00153	
71			69 364476	288963	00046	.00168	.00121	00276
72			74 369781	303117	.00442	.00656	.00475	00145
73			79 296915	263132	.00783	.00997	.00654	00189
74			84 204536	187816	00559	00346	00190	01801
75			39 132182	122965	01461	01247	-,00558	03041
76		90 -	94 68166	64526	01683	01469	00476	03610
77			99 22412	21726	00812	00598	00112	03087
78			04 5883	5774	00265	00051	00005	02736
79		105 - 10	09 1608	1586	00320	00107	00005	03116
80		110 - 14	40 227	225	.00127	.00341	.00006	02842
81	DPD (°F)	0	109186	17940	02448	01174	00478	02942
82		1	174045	58378	03100	01825	00931	03401
83		2 - 4	4 701496	417802		.01274	.01211	
84			7 607722	474044	03113	01838	01650	02437
85		8 - 11	1 634664	548258	01887	00612	00559	01182
86		12 - 13	5 479162	437078	01252	.00022	.00018	00566
87		16 - 19		341999	00782	.00492	J00354	00148
88		20 - 2		359623	00510	.00765	,00557	.00022
89		26 - 35		315346	00217	.01058	.00721	.00124
90		36 - 50		152289	00207	.01067	.00517	00070
91		51 - 99		40911	.00494	.01768	.00451	.00742
92	CC #1	CLR	1120221	1047709	.00534	.00165	,00186	.00829

Table	2-1(	(continued)
-------	------	-------------

Predictor Z		1	2	3	4	5	6	
Number	Element	Category	ΣΖ	$\Sigma \mathbf{YZ}$	A	В	β	Aa
number	Lichen	Galegory						
94	CC #1	BKN	723024	5 <b>519</b> 84	.00969	.00600	.00577	.00953
95		OVC	615688	379718	.00009	00360	00325	.00111
96		TOT OBSC	71706	1820	.02204	.01835	.00609	.0202
97	VIS (M)	.0049	38648	764	38011	33544	08209	3550
98		.5074	16166	485	36691	32224	05115	3433
99		.7599	15970	409	36683	32216	05082	3419
100		1.00 - 1.49	36608	1162	35939	31472	07498	3370
101		1.50 - 1.99	32702	1023	36081	31614	07122	3378
102		2.00 - 2.49	52298	2355	35117	30650	08710	33174
103		2.50 - 2.99	26827	1092	36235	31768	06487	34149
104		3.00 - 3.99	84881	6176	32985	28518	10281	31292
105		4.00 - 4.99	100832	10398	30306	25839	10132	2865
106		5.00 - 5.99	117557	20596	23455	18988	08022	2205
107		6.00 - 6.99	99064	29629	11556	07089	02756	1021
108		7.00 -100.00	3342960	3089579	10110	.04467	.04045	1/10
109	WEATHER	NO WX	3164088	3022632	.46116	.09311	.09309	.46190
110	500	WX No. Too	800425	141036		36805	36798	
111	FOG	NO FOG	3715675	3145063	00716	00045	00027	0000
112	CRAINE FAC	FOG	248838	18605	.00716	.00671	.00405	.0086
113	GROUND FOG	NO GF GF	3894272	3154942	00747	.00013	.00004	- 0077
114	UATE CMORE		70241	8726	00747	00733	00241	0077
$\frac{115}{116}$	HAZE, SMOKE	NO H, K	3707903 256610	3126531	08212	.00532	.00326	0715
117	BLOWING	H, K NO B	3953950	37137 3162175	00212	00011	00001	0/15.
117	DLOWING	B	10563	1493	.04212	.04200	00001 .00539	.0364
119	DRIZZLE	NO L	3921226	3158802	.04212	00073	00019	.0.304
120	DRIGGES	L-	42654	4842	.06678	.06605	.01697	.0644
121		L, L+	633	24	.04754	.04681	.00147	.0044
122	RAIN	NO R	3816374	3140084	•047.54	00025	00012	•0423
123	CALLE IN	R-	139674	23170	.00623	.00597	.00274	.0072
124		R	7365	361	.00977	.00952	.00102	.0111(
125		R+	1100	53	.05508	.05483	.00227	.0580
126	RAIN SHOWERS		3865835	3126202	•03300	00325	00126	.0500
127		RW-	90735	35887	.13083	.12758	.04752	.1330
128		RW	5343	1062	.11266		.01000	.1106
129		RW+	2600	517	.16532	.16207	.01033	.1612
130	SNOW	NO S	3887264	3154652		.00007	.00002	
131		S-	73929	8915	00414	00407	00137	0058
132		S	2812	96	.00374	.00381	.00025	.0057
133		S+	508	5	.02768	.02775	.00078	.03343
134	SNOW SHOWERS	NO SW	3928234	3155246		00012	00003	
135		SW-	35777	8343	.01166	.01154	.00272	.0194
136	SNOW SHOWERS	S SW	422	65		.09450	.00243	.0974
137		SW+	80	14	.11854	.11842	.00132	.1263
138 FI	REEZING DRIZZ	LE NO ZL	3960295	3163455		00002	00000	
139		ZL-, ZL, ZL+	4218	213	.02176	.02173	.00176	.0155
140 FI	REEZING RAIN	NO ZR	3961427	3163426		.00002	.00000	
141		ZR-, ZR, ZR+	3086	242	01939	01938	00135	0216
142	THUNDERSTORM,		3934524	3154044		.00032	.00007	
143		TSM, A	29989	9624	04187	04155	00897	04706

Table 2-1.--(continued)

					1	2	3	4	5	6
	Predic	tor	Z		ΣΖ	ΣΥΖ	٨	В	0	٨
Number	Element	Cat	tego	ry		L 1 Z	A	D	β	Aa
144	THUNDERSTORM+	- N(	) TS	M+	3964343	3163621		00000	00000	
145			rsm+		170	47	.02605	.02605	.00042	.022
146	CH #1 (00')	0		1	30238	727	00973	00755	00164	016
147	••••	2	-	4	99175	12704	00798	00580	00226	013
148		5	_	6	82305	22041	00627	00409	00145	009
149		7		9	117536	46459	00763	00545	00230	010
150		10	_	14	167404	91377	00618	00400	00200	008
151		15	-	19	137539	89861	00207	.00011	.00005	003
152		20	_	24	126142	90903	00302	00084	00037	003
153		25	_	29	124929	95429	00623	00404	00176	005
154		30	_	39	255504	207213	00544	00326	00199	004
155		40	_	49	239335	201578	00673	00455	00270	005
156		50	-	59	179660	154800	00464	00246	00127	004
157		60		75	196152	169871	00297	00079	00043	004
158		76	-	99	146333	127535	00056	.00162	.00076	000
159		100		150	393002	353357	.00467	.00685	.00510	.003
160		151	_	UNL	1606392	1495066	•00407	.00218	.00267	•005
161			RT O		62867	4747	01608	01390	00432	022
162	CC #2	f Ai	CLR		2767330	2291124	01000	.00010	.00012	• • • • • •
							.00137	.00148	.00012	.000
163			SCD		248836	214265				.000
164			BKN		429316	345235	.00312	.00322	.00249	
165	aa #a (aat)	~	OVC		519031	313044	00403	00393	00330	002
166	CC #2 (00')	0		1	463	16	.00982	.01192	.00032	.009
167		2		4	10179	528	.01813	.02023	.00255	.020
168		5	_	6	10982	1026	.01058	.01268	.00166	.014
169	00 40 (001)	7		9	18773	2913	.00493	.00704	.00120	.009
170	CC #2 (00')	10	-	14	39841	10612	00617	00407	00101	001
171		15	-	19	32803	12422	00567	00357	00081	001
172		20	-	24	33036	14724	00885	00675	00153	005
173		25		29	31732	15708	01281	01071	00238	009
174		30	-	39	56921	31344	01254	01044	00309	009
175		40	-	49	51003	30933	01675	01464	00411	014
176		50	-	59	42636	27895	01347	01137	00292	012
177		60	-	75	74059	51567	01663	01453	00490	016
178		76		99	82201	59923	01650	01440	00511	015
179		100	-	150	263050	214315	01092	00882	00547	011
180		151	-	UNL	3216834	2689742		.00210	.00205	
	OTAL CLOUD COV	ER	CLR		1120039	1047568	.10674	.03642	.04084	.110
182			SCD		781373	708165	.11068	.04036	.03999	.119
183			BKN		722434	634205	.10070	.03038	.02921	.109
184			OVC		1340667	773730		07032	08286	
185	CEILING (00')		-	1	29306	409	02309	02692	00574	011
186		2	-	4	82348	6190	02128	02511	00892	009
187		5	-	6	63621	12297	01730	02113	00661	005
188		7	-	9	91444	30329	00459	00842	00315	.006
189		10	-	14	124886	58656	.00723	.00340	.00148	.018
190		15		19	97079	55230	.00856	.00473	.00182	.020
191		20		24	84488	51830	.00633	.00250	.00900	.019
192		25	_	29	81316	52922	.00819	.00435	.00154	.021

Table	2-1(	(continued)
-------	------	-------------

		-	1	2	3	4	5	6
	Pred	ictor Z	77.00	5370		D	0	
Number	Element	Category	ΣΖ	ΣΥΖ	A	В	β	Aa
Humber	LL CINCILC	- Jaccgory						
193	CEILING (00')	30 - 39	138928	93757	.00438	.00055	.00025	.01758
194		40 - 49	117208	82160	.00482	.00099	.00042	.01787
195		50 - 59	86289	62269	.00659	.00276	.00100	.01936
196		60 - 75	123976	91868	.01212	.00829	.00360	.02512
197		76 - 99	106856	80800	.01967	.01584	.00639	.03235
198		100 - 150	278263	230392	.03901	.03518	.02238	.05187
199		151 – UNL	2458505	2254559		00383	00463	
200	WIND	CALM	246054	181207	01431	01227	00737	01680
201		NNE-NE < 11	246345	187201	01373	01168	00703	01816
202		NNE-NE 11-19	124812	90701	01244	01040	00452	01755
203		ENE-NE < 11	236015	177244	01772	01568	00924	02210
204		ENE-NE 11-19	97973	68699	02232	02027	00784	02664
205		ESE-SE < 11	296348	230062	00417	00213	00139	00406
206		ESE-SE 11-19	125249	97250	00679	00475	00207	00856
207		SSE-S < 11	333410	266918		.00204	.00141	
208		SSE-S 11-19	235668	199396	.00423	.00627	.00369	.00220
209		SSW-SW < 11	308593	251306	.00207	.00411	.00275	.00286
210		SSW-SW 11-19	221594	187791	.00377	.00581	.00333	.00936
211		WSW-W $< 11$	274823	223645	.00459	.00663	.00420	.00767
212		WSW-W 11-19	183671	155349	.00807	.01011	.00529	.01737
213		WNW-NW $< 11$	264684	220670	.00399	.00604	.00375	.00410
213		WNW-NW 11-19	221901	193870	.01304	.01509	.00864	.01554
215		NNW-N $< 11$	242261	193639	00135	.00069	.00041	00285
215		NNW-N 11-19	162243	129082	.00427	.00631	.00311	.00319
217		NNE-E $> 19$	17012	9166	03147	02942	00479	03644
217		ESE-S > 19	22770	17875	01313	01109	00209	01578
210		SSW-W > 19	52815	43452	00237	00033	00009	.00402
220		WNW-N > 19	50272	39145	.00482	.00686	.00191	.00232
221	AUTWTR/DAY 7-		2976307	2406499	*00402	.00141	.00152	.00252
222	ROLWER, DRL /	T	988206	757169	00568	00426	00459	00772
223	AUTWTR/HUMID	F	3423800	2924115	•00500	.00095	.00082	.00772
223	AUTWIR/ HOHID	T	540713	239553	00700	00604	00517	00546
225	AUTWTR/STHWIN		3117865	2509058	•00700	00024	00025	+00040
226	ROTWIR/ DIHWIR	р Т	846648	654610	.00113	.00089	.00023	.00172
227	AUTWTR/ESTWIN		3310339	2702304	.00113	.00073	.00068	•00172
228	no min horm	T T	654174	461364	00445		00344	00286
229	AUTWTR/OVCSKY		3173036	2734234	*0044J	00058	00058	*00200
230	NOTWIR/ 0400KI	r T	791477	429434	.00290	.00232	.00231	.00343
230	AUTWTR/HISKY	F	2813734	2114116	±00290	.00038	.00231	•00545
232	AUTMIN/ III OKT	T	1150779	1049552	00132	00094	00106	00275
232	AUTWTR/FARVSB		2353778	1689631	00152	.00295	.00360	00275
234	AUTWIR/ PARVOD	r T	1610735	1474037	00725	00430		00497
234	AUTWTR/NO PRE		2238847	1694084	00725	00430	00527 01232	00497
235	AUTWIR/NO PRE AUTWIR/NO PRE				00000			.02022
236	DAY 7-18/HUMI		1725666	1469584	.02293	.01295	.01599	•02022
237	DAL /-10/ NUML	D F T	3660849	3048541 115127	.01208	00092	00061	01150
230	DAY 7-18/STHW		303664		.01208		.00739	.01159
	DAL /-10/SIHW		3062803	2429687	00071	00083	00086	00100
240	DAX 7 10/DOM	T INT IT	901710	733981	.00364	.00281	.00294	.00403
241	DAY 7-18/ESTW	IND F	3279867	2640071		.00049	.00046	

Table 2-1.--(concluded)

idbic 2	2-1(conclude	eu)	1	2	3	4	5	6
	Predi	.ctor Z	~				-	
Number	Element	Category	ΣΖ	ΣΥΖ	А	В	β	Aa
number	Liement	Galegoly						
242	DAT 7-18/ESTWI	ND T	684646	523597	00283	00234	00220	00197
243	DAY 7-18/OVCSE	KY F	3290996	2766486		.00218	.00204	
244		Т	673517	397182	01285	01067	00998	01341
245	DAY 7-18/HISKY	C F	2770508	2056488		00063	00072	
246		Т	11 <b>9</b> 4005	1107180	.00209	.00146	.00167	.00554
247	DAY 7-18/FARVS	SBY F	2313266	1622299		.02676	.03286	
248		Т	1651247	1541369	06425	03749	04603	06182
249	DAY 7-18/NO PF	RECIP F	2194022	1617489		.00334	.00413	
250		Т	1770491	1546179	00748	00414	00512	00755
251	HUMID/STHWIND	F	35367 <b>39</b>	2932143		00174	00135	
252		Т	427774	231525	.01614	.01440	.01113	.01748
253	HUMID/ESTWIND	F	3581001	2994083		.00068	.00050	
254		Т	383512	169585	00703	00635	00468	00575
255	HUMID/OVCSKY	$\mathbf{F}$	3389470	2971521		.00318	.00279	
256		Т	575043	192147	02190	01872	01642	01973
257	HUMID/HISKY	F	3597156	2892308		.00056	.00041	
258		Т	367357	271360	00606	00550	00397	00511
259	HUMID/FARVSBY	F	3400485	2708249		.00540	.00469	
260		Т	564028	45541 <b>9</b>	03792	03253	02830	03478
261	HUMID/NO PRECI	IP F	3254549	2711930		.00477	.00456	
262		Т	709964	451738	02666	02189	02090	02774
263	STHWIND/ESTWIN	ND F	3289904	2631037		•000 <b>79</b>	.00074	
264		Т	674609	532631	00463	00384	00360	01123
265	STHWIND/OVCSKY	(F	3350249	2788220		.00141	.00127	
266		Т	614264	375448	00908	00767	00691	00689
267	STHWIND/HISKY	F	2825851	2115806		00319	00360	
268		т	1138662	1047862	.01112	.00792	.00893	.01099
269	STHWIND/FARVSB	SY F	2500541	1721777		00174	00212	
270		т	1563972	1441891	.00441	.00267	.00325	.00428
271	STHWIND/NO PRE	CIP F	2314388	1729057		.00886	.01087	
272		т	1650125	1434611	02128	01242	01525	02076
273	ESTWIND/OVCSKY	f F	3407845	2862200		.00109	.00094	
274		Т	556668	301468	00774	00665	00576	00725
275	ESTWIND/HISKY	F	3163955	2430289		00133	00133	
276		Т	800558	733379	.00661	.00527	.00527	.00878
277	ESTWIND/FARVSB	Y F	2825763	2123829		00075	00085	
278		Т	1138750	1039839	.00262	.00187	.00211	.00381
279	ESTWIND/NO PRE	CIP F	2745453	2128237		00208	00239	
280		Т	1219060	1035431	.00676	.00468	.00538	.00612
281	OVCSKY/HISKY	$\mathbf{F}$	3772933	2 <b>993</b> 018		00264	00141	
282		Т	1 <b>9</b> 1580	170650	.05466	.05201	.02778	.05463
283	OVCSKY/FARVSBY	F	3043461	2429841		.00482	.00507	
284		Т	921052	733827	02077	01594	01677	01705
285	OVCSKY/NO PREC	CIP F	3008067	2464303		01959	02088	
286		Т	956446	699365	.08120	.06161	.06566	.08379
287	HISKY/FARVSBY	F	1691683	<b>93927</b> 0		03571	04399	
288		Т	2272830	2224398	.06229	.02658	.03275	.06369
289	HISKY/NO PRECI	P F	1513640	912557		.01602	.01938	
290		Т	2450873	2251111	02591	00989	01197	01744

respectively. Constructing the beta coefficients is a common way for statisticians to give the coefficients relative status through standardizing; the higher the absolute value, the more important the predictor. The author gets more satisfaction in judging the importance of a predictor by realizing, in the B form, that the coefficient shows what a predictor (when it is "on") contributes to the estimated probability of Y=1, all other things equal. Such an appraisal is not ironclad either, owing to the effects of partial correlation, so let the reader beware of misinterpretation.

Another interesting equation, both for prediction and for interpretation, is the anomaly equation for NO WX/WX, where the station means have been removed. This equation appears in column 6 of table 2-1. A full version of the anomaly matrix Aa and its PLODITE form are given on microfiches F and G, respectively. When station-climatology adjustments are desired, the Aa matrix is employed with one additional ingredient: The additive constants, which are zero in Aa, are replaced by the appropriate additive constants for the station desired. For 48 stations the additive constants have been determined from their respective climatologies and the Aa matrix and are on microfiche J.

### Observations regarding Table 2-1:

Note: Some of the calculations performed below are applicable only because the observed values of Z's and Y's are zero or one; e.g.,  $\Sigma Z = \Sigma Z^2$ .

• Simple calculations that are possible--NO WX/WX both as predictor and predictand as an example:

Sample size is N = 3964513

- Predictor means:  $\overline{Z} = \Sigma Z/N$  ,  $\frac{3164088}{3964513} = .79810$ 

- Predictand mean:  $\overline{Y} = \Sigma Y/N$  ,  $\frac{3163668}{3964513} = .79800$ 

- Simple correlation coefficient squared:

$$R^{2} = \frac{[\Sigma YZ - (\Sigma Y) (\Sigma Z)/N]^{2}}{(\Sigma Y - (\Sigma Y)^{2}/N) (\Sigma Z - (\Sigma Z)^{2}/N)}$$

$$= \frac{[3022632 - (3163668) (3164088)/3964513]^2}{(3163668 - (3163668)^2/3964513)} = .60675$$

- Since in Table 2-2 the multiple correlation coefficient squared is .65004, then (.65004-.60675) = .04329 or 4.33% is added to the reduction in variance over persistence by the other predictors.

• The beta coefficients reflect the influence of the predictor variances especially for visibility and weather when compared to PLODITE coefficients.

- Most elements have the same size coefficients for anomaly and regular regression.
- Some strong interactions are evident based on their coefficients. For example, OVCSKY/NO PRECIP = .06566, HISKY/FARVSBY = .03275, and DAY7-18/FARVSBY = -.04603. This last coefficient's sign is strange, but it is more acceptable realizing FARVSBY is =.04045, which tends to diminish the apparent strength of that interaction, giving a kind of nonadditivity correction.
- Month is stronger for anomaly equation of NO WX/WX predictand than regular regression.
- Higher temperatures show more of an effect on anomalies also.

The next important quantities, required for converting a probability forecast into a categorical forecast, are in step 9. These are  $\mu_0$  and  $\mu_1$ .  $\mu_0$  is the mean of the predicted values  $\hat{Y}$  over the sample N when the event was observed not to have occurred. Similarly,  $\mu_1$  is the mean of the predicted values  $\hat{Y}$  over the sample N when the event was observed to have occurred. Their principal value is in the fact that the multiple correlation coefficient squared,  $R^2$ , for a particular predictand is

$$R^2 = \mu_1 - \mu_0 \tag{2-8}$$

(See the appendix.) This then satisfies step 10.

An important additional point to make here is as follows:

 $R^2$  for one hour is easily obtained from <u>A</u> and <u>Y'Z</u>. However, for subsequent hours such as 2, 3, ..., 24, the values for  $\mu_0$  and  $\mu_1$ , and thereby  $R^2$ , cannot be obtained exactly from the quantities thus far derived. However, since  $(\underline{Z'Z})\underline{A} = (\underline{Y'Z})_1$  with a 1 subscript on  $(\underline{Y'Z})$  to denote that Y is a one-hour prediction, a reasonable estimate of  $(\underline{Y'Z})_T$  for time T can be obtained from  $(\underline{Z'Z})\underline{A}^T \approx (\underline{Y'Z})_T$ .

This method of approximation was employed to get subsequent  $R^2$ 's after the first hour.

The final derived quantity, in step 11, is the threshold probability P* for converting a probability forecast into a categorical forecast. That is, if the predicted probability of the first category exceeds the threshold of the first category, it becomes the category of the element that is predicted categorically. If it fails to exceed the threshold, the procedure is to accumulate probabilities, by adding the probability of the next category, and then to compare that accumulated probability against its threshold and so forth. A very detailed presentation on the thresholding method employed here is given in the appendix. The  $\mu$ 's and R²s and P*'s for the hours 1-24 are given on microfiches H and I. Table 2-2 contains the values of  $\mu_0$ ,  $\mu_1$ , R², and P* for hour 1 for demonstration purposes. Table 2-2.--A display of quantities derived for GEM, for all predictands and for a 1-hr projection. Included in the four columns are: 1)  $\mu_0$  -- the mean of  $\hat{Y}$  when Y did not occur, 2)  $\mu_1$  -- the mean of  $\hat{Y}$  when Y did occur, 3)  $\mathbb{R}^2$  -- the multiple correlation coefficient squared (cumulative), and 4) P* -- the cumulative threshold probability for tripping categorical prediction, if exceeded by cumulative predicted probabilities. Month, hour of day, and interaction values are not shown for obvious reasons. SLP, DBT, DPD, and WIND P*s are not shown, because their categorical values are derived by a weighted-mean procedure, not by thresholding.

-		ctand			0	
Number	Element	Category	μ0	μ1	R ²	P*
38	SLP (MB)	800.0-985.0	.00007	.71912	.71904	
39		985.1-990.0	.00025	.77570	.77545	
40		990.1-995.0	.00076	.81783	.81707	
41		995.1-1000.0	.00229	.84308	.84079	
42		1000.1-1005.0	.00666	.86677	.86011	
43		1005.1-1010.0	.01848	.89760	.87913	
44		1010.1-1015.0	.04207	•93671	.89464	
45		1015.1-1020.0	.06805	.97170	.90365	
46		1020.1-1025.0	.08621	.98851	.90229	
47		1025.1-1030.0	.11342	.99566	.88224	
48		1030.1-1035.0	.13788	.99877	<b>.</b> 86089	
49		1035.1-1040.0	.17613	.99973	.82360	
50		1040.1-1090.0	1.00000	1.00000		
51	DBT (°F)	-14031	.00001	.52471	<b>.</b> 52471	
52		-3026	.00002	.63842	.63840	
53		-2521	.00006	.71410	.71404	
54		-2016	.00015	.76036	.76021	
55		-1511	.00031	.79567	.79536	
56		-106	.00055	.82562	.82507	
57		-51	.00085	.85549	.85463	
58		0 - 4	.00128	.87390	.87262	
59		5 - 9	.00186	.88655	.88469	
60		10 - 14	.00288	.89142	.88855	
61		15 - 19	.00445	.89474	.89029	
62		20 - 24	.00718	.89614	.88896	
63		25 - 29	.01141	.90010	.88869	
64		30 - 34	.01734	.90903	.89169	
65		35 - 39	.02287	.92157	.89870	
66		40 - 44	.02883	.93218	<b>.</b> 90335	
67		45 - 49	.03560	.94034	<b>.</b> 90474	
68		50 - 54	.04434	.94680	.90246	
69		55 <del>-</del> 59	.05578	.95251	.89673	
70		60 - 64	.07176	.95790	.88614	
71		65 - 69	.09591	.96311	.86720	
72		70 - 74	.13716	.96896	.83181	
73		75 - 79	.18145	.97765	.79620	
74		80 - 84	.23464	.98552	.75088	
75		85 - 89	.30018	.99236	.69219	
76		90 - 94	.35057	.99731	.64675	
77		95 - 99	.35431	.99931	.64500	

	Predic				2	
Number	Element	Category	μ0	μ1	R ²	P*
78	DBT (°F)	100 - 104	.39564	.99982	.60418	
79		105 - 109	.52118	.99997	.47879	
80		110 - 140	1.00000	1.00000	• • • • • •	
81	DPD (°F)	0	.01451	.48796	.47345	
82	、- ,	1	.03022	.60747	.57725	
83			.07031	.78750	.71720	
84		2 – 4 5 – 7	.10010	.85105	.75094	
85		8 - 11	.12829	.90001	.77173	
86		12 - 15	.15220	.92929	.77709	
87		16 - 19	.17851	.94798	.76947	
88		20 - 25	.22087	.96658	.74572	
89		26 - 35	.27878	.98534	.70656	
90		36 - 50	.37146	.99602	.62456	
91		51 - 99	1.00000	1.00000	.02150	
92	CC #1	CLR	.08246	.79062	.70816	.4700
93		SCD	.36028	.80124	.44095	.54400
94		BKN	.45660	.90427	.44768	.5980
95		OVC	.46891	.99136	.52246	.62000
96		TOT OBSC	1.00000	1.00000	692240	.0200
97	VIS (M)	.0049	.00483	.50962	.50479	.3720
98		.5074	.00660	.52953	.52293	.3790
99		.7599	.00823	•54739	.53916	.38600
100		1.00 - 1.49	.01185	•57459	.56273	.3950
101		1.50 - 1.99	.01486	.59437	.57950	.40200
102		2.00 - 2.49	.01943	.61912	.59968	.4100
103		2.50 - 2.99	.02158	.63150	.60992	.41400
104		3.00 - 3.99	.02727	.67196	.64469	.42700
105		4.00 - 4.99	.03385	.70268	.66883	.43700
106		5.00 - 5.99	.04134	.72784	.68650	.4450
107		6.00 - 6.99	.04657	.74968	.70311	.45200
108		7.00 -100.00	1.00000	1.00000	•,0311	• - 5 2 0 0
109	WEATHER	NO WX	.27926	.92930	.65004	.55000
110	WHELEILUIC	WX	1.00000	1.00000	:05004	•33000
111	FOG	NO FOG	.26936	.98195	.71259	.61028
112	100	FOG	1.00000	1.00000	•/1237	•01020
113	GROUND FOG	NO GF	.54583	.99013	.44430	.68307
114	OROUND 100	GF	1.00000	1.00000	•+++50	•00507
115	HAZE, SMOKE	NO H, K	.31622	.97811	.66189	.62492
116	mine, onore	н, к	1.00000	1.00000	•••••	•02491
117	BLOWING	NO B	.43409	•99884	.56474	.62489
118	DHOWING	B	1.00000	1.00000	:50474	•0240.
119	DRIZZLE	NOL	.59113	.99347	.40235	.72844
120	17 17 2 Cd Cd Ld Ld	L	•92270	.99985	.07715	.87368
120			1.00000	1.00000	•07713	•07500
121	RAIN	L, L <del>+</del> NO R	.45163	.98246	.53083	.71714
122	KALN		.43163	.98248	.33083 .17194	
123		R-	.02029	•99823 •99974	.06152	.81235 .8923
144		R	• 7 30 4 4	• 7 7 7 / 4	*001JZ	•U743

Table 2-2.--(continued)

	Predict					
Number	Element	Category	μ0	μ1	R ²	Р*
126	RAIN SHOWERS	NO RW	.73079	.98133	.25055	.81162
127		RW-	.94572	.99810	.05237	.91063
128		RW	<b>.9</b> 8506	.99935	.01429	.97673
129		RW+	1.00000	1.00000		
130	SNOW	NO S	.32060	.99363	.67303	.64591
131		S-	.74376	<b>.</b> 99938	.25562	.75443
132		S	.84568	.99989	.15421	.80694
133		S+	1.00000	1.00000		
134	SNOW SHOWERS	NO SW	.57411	<b>.99</b> 470	.42059	.71637
135		SW-	•94327	.99988	.05661	.89612
136		SW	.96917	.99998	.03081	.99363
137		SW+	1.00000	1.00000		
138	FREEZING DRIZZLE	NO ZL	.54380	.99942	.45562	.66785
139		ZL-, ZL, ZL+	1.00000	1.00000		
140	FREEZING RAIN	NO ZR	.60584	.99953	.39368	.69000
141		ZR-, ZR, ZR+	1.00000	1.00000		
142	THUNDERSTORM, A	NO TSM, A	.80106	.99390	.19283	.81687
143		TSM, A	1.00000	1.00000		
144	THUNDERSTORM +	NO TSM+	.99501	.99996	.00494	.99628
145		TSM+	1.00000	1.00000		
146	CH #1 (00')	0 - 1	.00403	.47510	.47107	.36000
147		2 - 4	.01460	.56754	•55295	.39300
148		5 - 6	.02167	.61597	.59430	.41000
149		7 – 9	.02931	.67639	.64708	.42900
150		10 - 14	.04063	.71636	.67574	.44200
151		15 - 19	.04890	.74326	.69436	.45100
152		20 - 24	.05731	•75853	.70123	.45700
153		25 - 29	.06470	.77501	.71031	.46300
154		30 - 39	.08200	.79708	.71508	.47200
155		40 - 49	.09816	.81626	.71810	.48000
156		50 <b>-</b> 59	.11076	.82931	.71854	.48600
157		60 - 75	.12499	.84286	.71787	.49300
158		76 - 99	.13687	.85168	.71480	.49700
159		100 - 150	.16962	.87668	.70706	.51100
160		151 – UNL	.60225	.99027	.38801	.66900
161		PART OBSC	1.00000	1.00000		
162	CC #2	CLR	.37015	.83975	.46960	.55600
163		SCD	.44941	.85867	.40926	.58500
164		BKN	.60896	.90828	.29931	.65600
165		OVC	1.00000	1.00000		
166	CH #2 (00')	0 - 1	.00011	.03649	.03638	.08091
167		2 - 4	.00221	.17946	.17725	.21800
168		5 - 6	.00429	.21987	.21558	.24400
169		7 - 9	.00762	.26086	.25324	.26700
170		10 - 14	.01418	.31402	.29985	.29500
171		15 - 19	.01925	.34480	.32555	.31000
172	CH #2 (00')	20 - 24	.02430	•34480 •36540	•32333 •34110	.32000
11/						

# Table 2-2.--Continued

	Predicta				<b>?</b> .	
Number	Element	Category	μ0	μ1	R ²	Р*
174	CH #2 (00')	30 - 39	.03698	.41296	.37598	.34300
175		40 - 49	.04387	.43572	.39186	.35300
176		50 - 59	.04957	.45160	.40202	.36000
177		60 - 75	.05937	.47501	.41564	.37100
178		76 - 99	.07010	.49117	.42707	.38100
179		100 - 150	.10420	.55217	.44797	.40700
180		151 – UNL	1.00000	1.00000		
181	TOTAL CLOUD COVER	CLR	.08244	.79063	.70819	.47000
182		SCD	.14692	.84060	.69368	<b>.497</b> 00
183		BKN	.21239	<b>.</b> 89148	<u>.67909</u>	•52500
184		OVC	1.00000	1.00000		
185	CEILING (00')	0 - 1	.00383	.48589	<b>.</b> 48207	.36400
186		2 - 4	.01177	•59383	"58206	.40100
187		5 - 6	.01691	.63444	.61753	.41400
188		7 - 9	.02323	.67799	۰65477°	.42800
189		10 - 14	.03188	.70914	.67726	.43800
190		15 - 19	.03846	.72646	<b>.688</b> 00	•44400
191		20 - 24	•0447 <b>9</b>	.73498	.69019	.44800
192		25 - 29	.05087	.74270	.69183	.45100
193		30 - 39	.06230	.75100	.68870	.45600
194		40 - 49	.07195	.75871	.68676	.46000
195		50 - 59	.07883	.76533	.68651	.46300
196		60 - 75	.08782	.77718	.68936	.46800
197		76 - 99	•0 <b>9</b> 504	.78813	.69309	.47200
198		100 - 150	.11576	.81102	.69527	.48300
199		151 - UNL	1.00000	1.00000		
200	WIND	CALM	.04679	.29338	.24659	
201		NNE-NE $< 11$	.09370	.33947	.24577	
202		NNE-NE 11-19	.10888	•40968	.30081	
203		ENE-NE < 11	.13679	.50128	.36449	
204		ENE-NE 11-19	.14030	.55559	.41528	
205		ESE-SE < 11	.17143	.62665	.45522	
206		ESE-SE 11-19	.17696	.66589	.48893	
207		SSE-S < 11	.21899	.71017	.49118	
208		SSE-S 11-19	.23799	.75211	.51412	
209		SSW-SW < 11	.28091	.78605	.50514	
210		SSW-SW 11-19	.30517	.81577	.51059	
211		WSW-W $< 11$	.35446	.84289	.48843	
212		WSW-W 11-19	.39551	.86048	.46497	
213		WNW-W $< 11$	.46160	.88889	.42729	
214		WNW-NW 11-19	.57672	.90763	.33091	
215		NNW-N < 11	.57349	.95218	.37869	
216		NNW-N 11-19	.59861	.97762	.37901	
217		NNE-E > 19	.60779	.98007	.37229	
218		ESE-S > 19	.60357	.98389	.38032	
219		SSW-W > 19	.66175	.99150	.32975	
220		WNW-N $> 19$	1.00000	1.00000		

# Table 2-2.--Continued

Remarks regarding table 2-2:

Computationally,

$$\mu_{1} \stackrel{290}{=} \sum_{i=1}^{N} \left[ \frac{\Sigma YZ}{N} \right] \cdot B_{i} \quad \text{or} \quad \mu_{1} \stackrel{228}{=} \sum_{j=1}^{N} \left[ \frac{\Sigma YZ}{N} \right] \cdot A_{j}$$

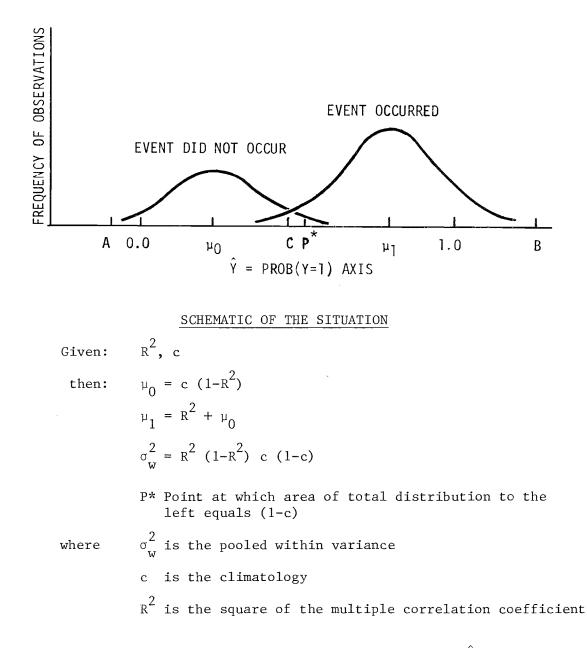
or

$$\mu_1 = \frac{3163668}{3964513} (.79800) + \frac{244842}{338217} (-.00778) + \frac{225026}{307968} (-.00698) + \dots + \frac{2251111}{2450873} (-.00989)$$
$$= .92930$$

Also,

$$\mu_{0} = \sum_{i=1}^{290} [1 - \frac{\Sigma YZ}{N}] \cdot B_{i} \text{ or } \mu_{0} = \sum_{j=1}^{228} [1 - \frac{\Sigma YZ}{N}] \cdot A_{j}$$

or


$$\mu_{0} = \left(1 - \frac{3163668}{3964513}\right) \left(.79800\right) + \left(1 - \frac{244842}{338217}\right) \left(-.00778\right) + \left(1 - \frac{225026}{307968}\right) \left(-.00698\right) + \dots + \left(1 - \frac{2251111}{2450873}\right) \left(-.00989\right)$$
$$= .27926$$

Thus,

$$R^2 = \mu_1 - \mu_0$$

= .65004 or 65.004 percentage reduction in variance.

Furthermore, these parameters can be represented diagrammatically as:



Depicted here are two distributions of the predicted value  $\hat{Y}$ , for when the event did not occur and the other for when the event did occur.  $\mu_0$  and  $\mu_1$  are the respective means of these distributions, while c is the grand mean of the total of the two distributions. The terminuses A and B are discussed in the appendix.

### 3. EXPERIMENTAL RESULTS, OLD AND NEW

Certain questions regarding GEM's capabilities have already been answered--if not completely, at least in part. The first question tested was: Can a comprehensive multiple-regression equation improve upon persistence in the very difficult problem of short-range forecasting of ceiling and visibility? The answer is that it can. At first, a screening of predictors succeeded in showing that this was true (Miller, 1964; Crisci and Lewis, 1973). For a single location, a similar answer was obtained in an equivalent Markov system on independent data using over 100 predictors at 3 hours and with an iterative scheme out to 6 hours. (See Miller et al., 1977.)

Another equivalent Markov approach, still not a generalized operator, yielded an affirmative answer on a large independent sample at 7 weather stations scattered over the continental United States. (See Miller, 1979b.) This Markov approach compared favorably with a regression-estimation-of-event-probabilities (REEP) method that made its projections directly.

These encouraging results prompted a series of GEM experiments designed to test 1) the value in a generalized operator of using all available predictors over a screened set, 2) the significance in a generalized operator of interactive predictors, 3) the importance in a generalized operator of including a location's climatology, and 4) the significance of a single-station set of equations over a generalized operator where climatology of the station has been included. The following sections will give detailed results of these experiments.

### Air Weather Service Single-Station Experiment

The results in the Rickenbacker Air Force Base, Ohio, ceiling and visibility study yielded the following comparative Brier scores (Brier, 1950):

Weather element	GEM-like statistical technique	Conditional expectancy of persistence	Percent improvement
3-hr ceiling	• 3755*	.4043	+7.1
3-hr visibility	•2564*	•2732	+6.1
6-hr ceiling	•4397*	.4763	+7.7
6-hr visibility	•2998*	.3175	+5.6

*Signifies superiority

where the statistical technique is a single-station (rather than generalized operator) iterative Markov approach, and where persistence utilizes probabilities conditioned on the hour of the day, month of the year, and the observed condition of the element at forecast time. The above figures were

based on an independent sample of 29,154 forecasts. Other comparable figures were obtained for the other weather elements in the observation for the same independent sample tested.

### Conditional Climatology Experiment

From a subsequent experiment, again applying single-station equations, a set of Brier scores, given below, compares the GEM-like procedure with the terminalalert procedure (see Vercelli and Heffernan, 1978), which has already been shown to be more skillful than persistence. The terminal-alert procedure uses a REEP model.

Weather element	GEM-like statistical technique	Terminal alert procedure
DCA 1-hr ceiling	.193*	.198
DCA 1-hr visibility	.173*	.176
DCA 6-hr ceiling	.320	.319*
DCA 6-hr visibility	.306*	.310
SF0 1-hr ceiling	.192*	.200
SFO 1-hr visibility	.128*	.129
SFO 6-hr ceiling	.336*	.337
SFO 6-hr visibility	•215*	.216
SLC 1-hr ceiling	.133*	.135
SLC 1-hr visibility	.073	.072*
SLC 6-hr ceiling	.224	.223*
SLC 6-hr visibility	.121	.121
MSP 1-hr ceiling	.193*	.199
MSP 1-hr visibility	.109*	.110
MSP 6-hr ceiling	•354*	.357
MSP 6-hr visibility	.180	.180
MSY 1-hr ceiling	.196*	.201
MSY 1-hr visibility	.143*	.144
MSY 6-hr ceiling	•294*	.296
MSY 6-hr visibility	.222	.221*
PHL 1-hr ceiling	.237*	•245
PHL 1-hr visibility	.267*	.273
PHL 6-hr ceiling	.381	•380*
PHL 6-hr visibility	<b>.</b> 453 <b>*</b>	•461
MIA 1-hr ceiling	•212*	.216
MIA 1-hr visibility	.066*	.069
MIA 6-hr ceiling	.284	.282*
MIA 6-hr visibility	.091	.091

*Signifies superiority

40

These results are based on an independent sample of approximately 50,000 forecasts for each location. GEM-like forecasts, from data at the station being tested, were made for one hour on a direct basis, while the 6-hr forecasts were iterated hour by hour. The terminal-alert procedure forecasts were also single station, but the 6-hr forecasts were made directly. Paired comparison t tests were performed on each Brier score comparison. The conclusion was that the GEM-like technique was statistically significantly better than the terminal-alert procedure.

### GEM Experiments

Analyses of variance and covariance experiments have been designed to test, in a hierarchical fashion, levels 1 through 5 (implicit here is a level 0 which uses climatological averages as a base):

- Experiment 1.--Using all noninteractive predictors versus screened noninteractive predictors (level 2 versus level 1)
- Experiment 2.--Adding interactive predictors versus no interactive predictors (level 3 versus level 2)
- Experiment 3.--Station-adjusted climatology versus no station-adjusted climatology (level 4 versus level 3)
- Experiment 4.--Single-station equations versus station-adjusted climatology (level 5 versus level 4)

The first two tests employ the analysis of variance in regression, while the last two tests use the analysis of covariance.

At the outset, the question is how many independent observations there are in the sample, considering the likelihood of high serial correlation in a set of consecutive hourly observations. This will have a decided bearing on the degrees of freedom specified in the statistical tests.

While serial correlation can be measured directly, there appears to be no available procedure for relating it to the issue of determining the number of independent observations in a sample. There is, however, a rational approach to the problem of determining the degree of "serial correlation," since all of the observations are zero-one. That is, calculate the number of runs in the sample for each predictor; then determine the sample size n that would, with no correlation, be expected to yield the number of runs r in that predictor having the fewest number of runs  $r_{min}$ . The determination of n is:

$$n = r_{\min}/(2pq) \tag{3-1}$$

because the expected value is 2npq (see Mood, 1950) where p is the ratio of ones in the sample and q is the ratio of zeros in the sample. Finally, a factor f is determined to suggest the separation needed between observations to deem them independent:

$$f = N/n \tag{3-2}$$

In lieu of doing a random sampling of one out of f observations, a simpler but equivalent scheme is employed here: Divide each term in the  $\underline{Z'Z}$  and  $\underline{Y'Z}$ matrices by f. In this way the means, variances, and covariances would remain unbiased; however, the degrees of freedom in the test would be commensurate with the number of independent sample cases. Furthermore, it was considered unnecessary to use more than 1 1/2 million observations in performing these experiments. This degree of economy was accomplished by using data from only 15 representative stations of the original 41. The 15 chosen are identified in the station list in step 3 of chapter 2 by a I alongside the station name.

For this smaller sample (N=1,556,974) the factor f was found to be 18. Specifically, the predictor variable was the interactive term cold season (AUTWTR) and visibility  $\geq$  7 miles (FARVSBY) where

$$n = r_{min}/(2pq) = 40768/.48315 = 84380$$
 (3-3)

then

$$f = 1556974/84380 = 18.45 \tag{3-4}$$

Thus f = 18 was used as the divisor of Z'Z and Y'Z.

It needs to be pointed out that the following tests apply only to the prediction scheme set up for 1-hr projections; retesting would be needed on other projections for which inferences are desired.

## EXPERIMENT 1.--Using all non-interactive predictors versus screened noninteractive predictors (level 2 versus level 1)

The analysis-of-variance test is that of comparing the Brier score before and after adding all remaining non-interactive predictors to those screened non-interactive predictors. In particular, the F statistic is:

```
F (all predictors vs screening) =
    [BS (screening) - BS (all predictors)] • [n - P - 1]
    [BS (all predictors)] • [(P - 1) - ave. # screened]
    (3-5)
```

where

and where

$$P = 193$$
 (3-6)

Ave. # screened = 18

$$F_{\text{crit}}$$
 .01 (174,86305) = 1.28 (3-7)

The results from this test are given in the fourth column of table 3-1 with the two Brier scores, BS (screening) and BS (all predictors), shown in the first and third columns, respectively. An asterisk in column 4 indicates a significant F value (1% level) was obtained and thereby suggests that adding all remaining predictors is important. Incidentally, for all predictands the use of screened predictors (level 1) was shown to be significant over climatological probability (level 0) and is reflected by all asterisks in column 2.

n = 86499

# EXPERIMENT 2.--Adding interactive predictors versus no interactive predictors (level 3 versus level 2)

The appropriate procedure for testing the effects of adding interactive predictors to the set of all non-interactive predictors is again the analysis of variance; here the F statistic is:

F (with interactions vs no interactions) =

$$\frac{[BS (no interactions) - BS (with interactions)] \cdot [n - P - 1]}{[BS (with interactions)] \cdot Q}$$
(3-8)

where

$$n = 86499$$

$$P = 228$$

$$(3-9)$$

$$Q = Number of interactive predictors = 35$$

and where

 $F_{crit}$  (35, 86270) = 1.64 (3-10)

The results from performing this test are given in the sixth column of table 3-1 with the Brier score, BS (with interactions), shown in the fifth column. An asterisk in the sixth column denotes the computed F statistic exceeded  $F_{crit}$ , thereby suggesting that adding these interactive predictors is important.

The interactive predictor set just tested and found to be significant for most predictands was initiated out of a discrete likelihood function study. (See Miller, 1979a.) Results from that study showed, in predicting NO WX/WX at Rickenbacker AFB, that there was a significant amount of interactive information--in the order of 4 percent of the remaining Brier score--over not using interactions. As a consequence, a set of very gross boolean interactive terms were constructed and used in the above test.

EXPERIMENT 3 and EXPERIMENT 4.-Station-adjusted climatology versus no station-adjusted climatology (level 4 versus level 3) and Single-station equations versus station-adjusted climatology (level 5 versus level 4)

One of the objectives in designing such a short-range forecasting procedure as GEM is to permit its use on a minicomputer. Efficiency in storage space would be achieved if individual station forecast equations would give way to a universal or generalized operator, applicable anywhere. For this to be possible, the usual stratification of data by location would have to be shown to be unnecessary.

The early concepts of restricting statistical prediction equations to particular seasons and hours of the day have already been shown to be questionable in this context. In fact, the enhancement in sample size afforded by the elimination of stratifying the data has more than compensated for the implied nonlinear effect in the system. However, rather than to accept this concept on faith, a statistical experiment was conducted to confirm or deny the desirability of station destratification.

								Terrardo contra a diversión		
Categories	(1) Screen- ing/No inter- actions	(2) 0-1	(3) All pre- dictors/ No inter- actions	(4)	(5) All pre- dictors w/inter- actions	(6) 2-3	(7) All pre- dictors/ Stn. adj. climatol.	(8) 3-4	(9) All pre- dictors/ single station	(10)
DRY BULB TEMPER	איזיזסד									
(°F)	ATOKE									
-14026	.00003	*	.00003	*	.00003	*	.00003		.00003	
-2521	.00009	*	.00008		.00008	*	.00008		.00008	
-2016	.00018	*	.00018		.00018		.00018		.00018	
$\cdot 1511$	.00036	*	.00036		.00036		.00036		.00036	
-106	.00068	* *	.00067		.00067		.00067		.00067	
-51	.00112	*	.00112		.00112		.00112		.00111	
0 - 4	.00171	*	.00171		.00171		.00171		.00169	
5 9	.00255	*	.00254		.00254		.00254		.00251	
10 - 14	.00396	*	.00396		.00396		.00396		.00391	
15 - 19	.00628	*	.00627		.00627		.00627		.00619	
20 - 24	.01033	*	.01032		.01032		.01032		.01014	
25 - 29	.01638	*	.01636		.01635		.01635		.01601	
30 - 34	.02372	*	.02365		.02364		.02364		.02304	
35 - 39	.02976	*	.02970		.02969		.02969		.02892	
40 - 44	.03452	*	.03448		.03448		.03447		.03364	
45 - 49	.03824	*	.03822		.03821		.03820		.03734	
50 - 54	.04254	*	.04251		.04250		.04250		.04150	
55 - 59	.04639	*	.04636		.04631	*	.04629	*	.04512	
65 - 69	.04913	*	.04910		.04906	*	<b>.</b> 04905		<b>.</b> 04777	
70 - 74	.04668	*	.04661		.04657	*	.04657		.04520	
75 - 79	<b>.0397</b> 0	*	.03961		.03957	*	<b>.</b> 0 <b>39</b> 54	*	.03841	
80 - 84	.02890	*	.02875	*	.02867	*	.02866		.02811	
85 - 89	.017 <b>9</b> 5	*	.01781	*	.01775	*	.01775		.01742	
90 - 94	.00884	*	.00877	*	<b>.</b> 00876	*	.00876		.00859	
95 - 99	.00264	*	.00263	*	.00263		.00263		.00257	
100 - 104	.00037	*	.00037		.00037		.00037		.00036	
105 - 140	.00003	*	.00003	*	.00003		.00003		.00002	*
Total aster	risks:	27		6		9		2		1

Table 3-1.--Analyses of variance and covariance Brier scores and significance of test results. (Asterisk indicates significant result.)

.01110 .02493 .08795 .09486 .08049 .06479 .05910 .04299 .02092 .00579	* * * * * * * * 9	.01108 .02490 .08786 .09483 .08046 .06477 .05908 .04296 .02088 .00578	* * * * * * * * * 9	.01069 .02434 .08615 .09326 .07918 .06396 .05808 .04184 .02023 .00540	*
.02493 .08795 .09486 .08049 .06479 .05910 .04299 .02092 .00579	* * * * *	.02490 .08786 .09483 .08046 .06477 .05908 .04296 .02088	* * * * *	.02434 .08615 .09326 .07918 .06396 .05808 .04184 .02023	
.09486 .08049 .06479 .05910 .04299 .02092 .00579	* * * * *	.09483 .08046 .06477 .05908 .04296 .02088	* * * * *	.09326 .07918 .06396 .05808 .04184 .02023	
.08049 .06479 .05910 .04299 .02092 .00579	* * * *	.08046 .06477 .05908 .04296 .02088	* * * *	.07918 .06396 .05808 .04184 .02023	
.06479 .05910 .04299 .02092 .00579	* * *	.06477 .05908 .04296 .02088	* * *	.06396 .05808 .04184 .02023	
.05910 .04299 .02092 .00579	* * *	.05908 .04296 .02088	* *	.05808 .04184 .02023	
.04299 .02092 .00579	* * *	.04296 .02088	* *	.04184 .02023	
.02092 .00579	*	.02088	*	.02023	
.00579	*		*		
		.00578		.00540	
	9		9		1
		يوير الالف يلحم المريد			
.00433 .00329 .00335 .00698 .00741 .01061 .00737 .01620 .01974 .02189	* * * * *	.00433 .00329 .00335 .00698 .00740 .01060 .00736 .01619 .01973 .02187	* * *	.00423 .00324 .00331 .00688 .00729 .01046 .00724 .01598 .01973 .02187	
.01861	*	.01859	*	.01833	
	7		4		0
	.00698 .00741 .01061 .00737 .01620 .01974 .02189	.00698 .00741 * .01061 * .00737 .01620 * .01974 * .02189 * .01861 *	.00698       .00698         .00741       *       .00740         .01061       *       .01060         .00737       .00736         .01620       *       .01619         .01974       *       .01973         .02189       *       .02187         .01861       *       .01859	.00698       .00698         .00741       *       .00740       *         .01061       *       .01060       *         .00737       .00736       *         .01620       *       .01619         .01974       *       .01973       *         .02189       *       .02187         .01861       *       .01859       *	.00698.00698.00688.00741*.00740*.01061*.01060.01046.00737.00736*.00724.01620*.01619.01598.01974*.01973*.01973.02189*.02187.02187.01861*.01859*.01833

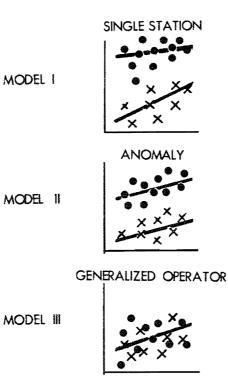
Categories	(1) Screen- ing/No inter- actions	(2)	(3) All pre- dictors/ No inter- actions	(4)	(5) All pre- dictors w/inter- actions	(6)	(7) All pre- dictors/ Stn. adj. climatol.		(9) All pre- dictors/ single station	(10)
		0-1		1-2		2-3	·····	3-4		4-5
WEATHER (cont.)	)									
R-	.01620	*	.01594	*	.01587	*	.01585	*	.01555	
R	.00159	*	.00158		.00158	*	.00158		.00156	
R+	.00027	*	.00027		.00027		.00027		.00026	
RW-	.01768	*	.01736	*	.01724	*	.01722	*	.01692	
RW	.00135	*	.00134	*	.00133	*	.00133		.00132	
RW+	.00063	*	.00062	*	.00062		.00062		.00062	
S	.00616	*	.00600	*	.00596	*	.00595	*	.00575	
S	.00054	*	.00053	*	.00053	*	.00053		.00051	*
S+	.00008	*	.00008	*	.00008		.00008		.00007	*
SW-	.00472	*	.00466	*	.00464	*	.00462	*	.00446	
SW, SW+	.00009	*	.00009		.00009		.00009	*	.00008	*
ZL-, ZL, ZL+	.00051	*	.00051	*	.00051		.00051	*	.00050	
ZR-, ZR, ZR+	.00043	*	.00042	*	.00042		.00042	*	.00042	
TSM-	.00530	*	.00523	*	.00522	*	.00522	*	.00510	
TSM+	.00005	*	.00005		.00005		.00005		.00004	*
Total aste	risks:	22		17		13		13		7
WIND	, 									
Calm	.04542	*	.04471	*	.04461	*	.04392	*	.04258	
NNE-NE LE 10	.04645	*	.04637	.1.	.04633	*	.04624	*	.04482	.1.
NNE-NE 11-19	.02030	*	.02023	*	.02019	*	.02013	*	.01937	*
ENE-E LE 10	.04543	*	.04535		.04529	*	.04508	*	.04353	
ENE-E 11-19	.01736	*	.01731		.01728	*	.01725	*	.01673	
ESE-SE LE 10	.05794	*	.05783	.d.	.05760	*	.05743	*	.05578	
ESE-SE 11-19	.02418	*	.02405	*	.02390	*	.02384	*	.02294	*
SSE-S 11-19	.03659	*	.03644	*	.03636	r *	.03598	۰. ۲	.03466	
SSW-SW LE 10	.06190	*	.06176	ىلە	.06126	*	.06102	*	.05905	
SSW-SW 11-19	.03351	*	.03339	*	.03308	*	.03293	*	.03191	
WSW-W LE 10	.05628	*	.05596	*	.05585	*	.05536	*	.05329	*

Table 3-1.--(continued)

WSW-W 11-19	.03067	*	.03037	*	.03026	*	.02 <b>999</b>	*	.02838	*
WNW-NW LE 10	.05522	*	.05512		.05496	*	.05447	*	.05260	
WNW-NW 11-19	.03358	*	.03336	*	.03320	*	.03306	*	.03190	
NNW-N LE 10	.05091	*	.05078		.05071	*	.05043	*	.04873	
NNW-N 11-19	.02709	*	.02701		.02698	*	.02690	*	.02613	
NNE-E GE 20	.00325	*	.00324	*	.00323	*	.00323	*	.00308	*
ESE-S GE 20	.00467	*	.00466		.00466	*	.00465	*	.00454	
SSW-W GE 20	.00628	*	.00623	*	.00622	*	.00621	*	.00606	
NNW-N GE 20	.00816	*	.00810	*	.00809	*	.00807	*	.00778	
Total asteris	sks:	20		11		20		20		5
				,,	4000 000 0000 0000 0000					
SEA LEVEL PRESSUI	RE									
800.0 - 985.0	.00008	*	.00008		.00008		.00008		.00008	*
985.1 - 990.0	.00032	*	.00032		.00032		.00032		.00032	
990.1 - 995.0	.00099	*	.00098		.00098		.00098		.00098	
995.1 - 1000.0	.00305	*	.00305		.00305		.00305		.00303	
1000.1 - 1005.0	.00873	*	.00871		.00871		.00871		.00866	
1005.1 - 1010.0	.02256	*	.02248	*	.02248		.02246	*	.02232	
1010.1 - 1015.0	.04262	*	.04246	*	.04246		.04239	*	.04209	
1020.1 - 1025.0	.02946	*	.02937	*	.02937		.02937		.02917	
1025.1 - 1030.0	.01403	*	.01399		.01399		.01399		.01390	
1030.1 - 1035.0	.00536	*	.00534		.00534		.00534		.00531	
1035.1 - 1040.0	.00145	*	.00145		.00145		.00145		.00144	
1040.1 - 1090.0	.00026	*	.00025	*	.00025		.00025		.00025	
Total asteris	sks:	12		4		0		2		1
	موجد المحمد المحمد المريد									
CLOUD COVER #1										
Clear	.06313	*	.06212	*	.06196	*	.06185	*	.06105	
Broken	.12003	*	.11930	*	.11896	*	.11875	*	.11741	
Dvercast	.07603	*	.07437	*	.07390	*	.07351	*	.07214	
[otal										
observation	.00759	*	.00745	*	.00741	*	.00741		.00725	
observation										

Categories	(1) Screen- ing/No inter- actions	(2)	(3) All pre- dictors/ No inter- actions	(4)	(5) All pre- dictors w/inter- actions	(6) 2-3	(7) All pre- dictors/ Stn. adj. climatol.	(8)	(9) All pre- dictors/ single station	(10)
CLOUD HEIGHT #1	**************************************			*****						
(100 ft)										
0-1	.00342	*	.00340	*	.00338	*	.00338		.00330	
2-4	.01298	*	.01273	*	.01270	*	.01270	*	.01248	
5-6	.01456	*	.01440	*	.10438	*	.01438		.01421	
7-9	.02119	*	.02102	*	.02097	*	.02096	*	.02061	
10-14	.02940	*	.02919	*	.02910	*	.02908	*	.02850	
15-19	.02633	*	.02617	*	.02614	*	.02613	*	.02575	
20-24	.02417	*	.02397	*	.02395	*	.02394		.02366	
25-29	.02326	*	.02306	*	.02305		.02304		.02276	
30-39	.03678	*	.03630	*	.03628	*	.03623	*	.03566	
40-49	.03379	*	.03341	*	.03338	*	.03337	*	.03286	
50-59	.02783	*	.02759	*	·02757		.02755	*	.02717	
60-75	.03028	*	<b>.</b> 029 <b>97</b>	*	.02995		.02993	*	.02935	
76-99	.02368	*	.02339	*	.02338		.02326	*	.02244	
100-150	.04696	*	.04646	*	.04640	*	.04633	*	.04577	
Partial										
obscuration	.01065	*	.01044	*	.01043	*	.01042	*	.01007	
Total aster	risks:	15		15		11		11		0
CLOUD COVER #2	∙ ~~nt της ωτό πωα γητ	نے می <i>ر</i> عد					-	***		
Scattered	.05294	*	.05229	*	.05226		.05204	*	.05124	
Broken	.07650	*	.07564	*	.07534	*	.07517	*	.07423	
Overcast	.07813	*	.07712	*	.07701	*	.07688	*	.07591	
			• • • • • • • •		**///*		•07000		*****	0
	asterísks:	3		3		2		3	1918; 1968; 2018; 1978; 1988;	0
CLOUD HEIGHT #2 (100 ft)	2									
0-1	.00016	*	.00016	*	.00016		.00016		.00015	*
2-4	.00257	*	.00254		.00254		.00254	*	.00248	

Table 3-1.--(continued)


5-6	.00248	*	.00247	*	.00247		.00247		.00243	
7-9	.00421	*	.00417	*	.00416		.00416	*	.00409	
10-14	.00851	*	.00836	*	.00835	*	.00835	*	.00820	
15-19	.00762	*	.00756	*	.00755	*	.00755	*	.00746	
20-24	.00765	*	.00760	*	.00759		.00759		.00730	
25-29	.00747	*	.00743	*	.00743		.00743		.00737	
30-39	.01305	*	.01295	*	.01294	*	.01292	*	.01276	
40-49	.01167	*	.01157	*	.01156	*	.01154	*	.01137	
50-59	.00986	*	.00979	*	.00979		.00977	*	.00966	
60-75	.01471	*	.01470	*	.01470		.01467	*	.01445	
76-99	.01392	*	.01387	*	.01386		.01386	*	.01374	
100-150	.04347	*	.04284	*	.04275	*	.04263	*	.04177	
						_				
Total aste	risks:	14		13		5		10		1
			anah mate with sum was				مەر مېرە مەر مەر مەر مەر			
TOTAL CLOUD CO	VER									
Clear	.06311	*	.06211	*	.06195	*	.06184	*	.06105	
Scattered	.11021	*	.10924	*	.10909	*	.10894	*	.10775	
Broken	.10863	*	.10740	*	.10691	*	.10684	*	.10567	
						<u>~</u>				
Total aste	rísks:	3		3		3		3		0
			ويتحك الحسر الجرب الحريل الجمع		1966 (Park State					
CEILING										
(100 ft)										
0-1	.00327	*	.00324	*	.00322	*	.00322		.00315	
2-4	.01061	*	.01043	*	.01041	*	.01040	*	.00974	*
5-6	.01130	*	.01121	*	.01120	*	.01120	*	.01105	
7-9	.01686	*	.01676	*	.01673	*	.01672	*	.01643	
10-14	.02219	*	.02209	*	.02205	*	.02204		.02164	
15-19	.01870	*	.01863	*	.01861	*	.01861	*	.01839	
20-24	.01649	*	.01638	*	.01637	*	.01636		.01619	
25-29	.01599	*	.01589	*	.01588		.01588	*	.01575	
30-39	.02463	*	.02444	*	.02443		.02441		.02418	
40-49	.02224	*	.02211	*	•0220 <b>9</b>		.02206	*	.02185	
50-59	.01730	*	.01721	*	.01721		.01719	*	.01705	
60-75	.02283	*	.02275	*	.02273	*	.02272	*	.02251	
76-99	.01840	*	.01834	*	.01833		.01833	*	.01818	
100-150	.04112	*	.04092	*	.04087	*	.04086		.04047	
Total aster		14		14		9		9		1
IVLAL ASLE		+ 		14 		, 				

The appropriate model for testing the effects of grouping data is that of R. A. Fisher's analysis of covariance. For a lucid exposition of the analysis of covariance see Tatsuoka (1971).

The effort here will be to determine which one of the following three models is most appropriate for representing the true situation:

- Model I: The prediction of a weather element one hour hence should be represented by an individual-station (<u>single-station</u>) regression equation.
- Model II: The prediction of a weather element one hour hence should be represented by the same regression equation everywhere except the station's climatology should be accounted for (anomaly).
- Model III: The prediction of a weather element one hour hence should be represented by the same regression equation without restriction (generalized operator).

A schematic representation of these models for the analysis of covariance is depicted in the following:



Symbolized are data from two stations on a predictor-predictand graph. Dots are for one station and crosses are for the other. Model I denotes fitting is required for each station separately. Model II denotes that the same function between predictor and predictand suffices, but there is a difference in means. Model III denotes a single relationship applies for all of the data. The analysis of covariance, in helping to decide which model to use, takes into account the important fact that the predictor observations differ from one location to another and therefore could account for the apparent predictand variations. Briefly, the procedure is to create cross-product matrices among all of the predictors and predictands,  $\underline{Z'}\underline{Z_k}$  and  $\underline{Y'}\underline{Z_k}$ , for station k's data. Then each matrix is made into an anomaly matrix for each station by removing the mean values. Finally, composite anomaly matrices are made by summing these k (k=1, 2,..., K) station matrices.

Using Tatsuoka's nomenclature, the procedure is written for one of the Y's and one of the Z's as:

 $Y_{ki}$  = Predictand value of observation i at station k.

 $Z_{ki}$  = Predictor value of observation i at station k.

$$Y_{k}$$
. =  $\Sigma Y_{ki}$  = Sum of Y values for kth station, where  $n_k$  equals the   
i=1 number of observations from the kth station.

$$Z_{k} = \sum_{i=1}^{n_{k}} Z_{ki} = Sum of Z values for kth station.$$

K  
Y.. = 
$$\Sigma$$
 Y_k. = Grand total of Y values in entire sample of K stations  
k=1 combined.

$$Z_{\cdot \cdot} = \sum_{k=1}^{K} Z_{k} \cdot = Grand total of Z values in entire sample of K stations k=1 combined.$$

(3-11)

In the present situation, the number of stations is K=15, and the individual station sample sizes  $m_k$  (k=1, 2, ... K) are given in step 4 of chapter 2, Creating GEM.

The analysis of covariance proceeds by computing the customary withinstation and total sums-of-squares of Y as given by

$$SS_{w} = \sum_{k=1}^{K} [\sum_{i=1}^{n_{k}} Y_{ki}^{2} - Y_{k}^{2}/n_{k}]$$
(3-12)

and

$$SS_{t} = \sum_{k=1}^{K} \sum_{i=1}^{n_{k}} Y_{ki}^{2} - Y_{\cdot}^{2} / N \qquad \text{where } N = \sum_{k=1}^{K} n_{k} \qquad (3-13)$$

respectively.

m

τź

Again following Tatsuoka, similar quantities are needed for each of the Z's. In Tatsuoka's revised notation:

$$S_{k,yy} = \sum_{i=1}^{n_{k}} Y_{ki}^{2} - Y_{k.}^{2} / n_{k}$$
(3-14)

and

$$S_{k.zz} = \sum_{i=1}^{n_k} Z_{ki}^2 - Z_{k.}^2 / n_k$$
(3-15)

with

$$S_{k,zy} = S_{k,yz} = \sum_{i=1}^{n_k} Z_{ki} Y_{ki} - Z_k Y_{k.} Y_{k.}/n_k$$
 (3-16)

Needed now is a pooling of these within-group quantities, letting  ${\tt W}$  and  ${\tt T}$  represent their values as:

$$W_{yy} = \sum_{k=1}^{K} S_{k,yy}$$

$$W_{zz} = \sum_{k=1}^{K} S_{k,zz}$$

$$W_{zy} = W_{yz} = \sum_{k=1}^{K} S_{k,zy}$$
(3-17)

and

$$T_{yy} = \sum_{\substack{k=1 \ i=1}}^{K} Y_{ki}^2 - Y_{\cdot}^2 / N$$

$$T_{ZZ} = \sum_{k=1}^{K} \sum_{i=1}^{n_{k}} Z_{ki}^{2} - Z_{\cdot}^{2} / N$$

$$T_{ZY} = T_{YZ} = \sum_{k=1}^{K} \sum_{i=1}^{n_{k}} Z_{ki} Y_{ki} - Z_{\cdot} Y_{\cdot} / N \qquad (3-18)$$

Extensions of the notation for P predictors  $Z_1$ , ...,  $Z_p$ , and letting  $Z_0$  denote Y (for the moment), which is still only a single predictand, gives

 $Z_{\alpha ki}$  = The value of  $Z_{\alpha}$  ( $\alpha$ =0,1,...,P) of the ith observation at the kth location

$$Z_{\alpha k.} = \sum_{k=1}^{n_k} Z_{\alpha k i} \qquad (\alpha = 0, 1, \dots, P)$$

$$Z_{\alpha ..} = \sum_{k=1}^{n_k} Z_{\alpha k.} \qquad (\alpha = 0, 1, \dots, P) \qquad (3-19)$$

Now the quantities are prepared for testing whether Model I, II, or III obtains. That is,

$$S_{k,\alpha\beta} = \sum_{i=1}^{n_{k}} Z_{\alpha k i} Z_{\beta k i} - Z_{\alpha k}, Z_{\beta k} / n_{k}$$

$$(k = 1, \dots, K; \alpha, \beta = 0, 1, \dots, P)$$

$$W_{\alpha\beta} = \sum_{k=1}^{K} S_{k,\alpha\beta}$$

$$(within locations)$$

$$T_{\alpha\beta} = \sum_{k=1}^{K} \sum_{i=1}^{n_{k}} Z_{\alpha k i} Z_{\beta k i} - Z_{\alpha}, Z_{\beta} / N$$

$$(3-20)$$

These terms are collected into several matrices- $-S_k$  (k=1, ..., K),  $\underline{W}$ , and  $\underline{T}$ . Ultimately, for testing, the following quantities are needed:

$$S_{1} = W_{00} - \sum_{k=1}^{K} \underline{S}_{k}, op \underline{S}_{k}^{-1}, pp \underline{S}_{k}, p0$$

$$S_{2} = W_{00} - \underline{W}_{0p} \underline{W}_{pp}^{-1} \underline{W}_{p0}$$

$$S_{3} = T_{00} - \underline{T}_{0p} \underline{T}_{pp}^{-1} \underline{T}_{p0}$$
(3-21)

with

$$s_4 = s_2 - s_1$$
  
 $s_5 = s_3 - s_2$  (3-22)

then

$$\mathbf{F}_{\eta} = (\mathbf{S}_4/\mathbf{v}_4) / (\mathbf{S}_1/\mathbf{v}_1)$$
 (3-23)

is the test statistic for judging whether the hypothesis in Model II is acceptable. Here the degrees of freedom,  $\nu_1$  and  $\nu_4,$  are:

$$v_1 = n - (P+1) K$$
  
 $v_4 = P(K-1)$  (3-24)

Also,

$$\mathbf{F}_{\mu} = (\mathbf{S}_{5}/\mathbf{v}_{5}) / (\mathbf{S}_{2}/\mathbf{v}_{2}) \tag{3-25}$$

is the test statistic for judging whether the hypothesis in Model III is acceptable, provided the hypothesis in Model I was not accepted, where the appropriate degrees of freedom,  $v_2$  and  $v_5$ , are:

$$v_2 = n - K - P$$
  
 $v_5 = K - 1$  (3-26)

In the particular analysis of covariance problem analyzed here,

$$n = 86499$$
  
 $P = 228$   
 $K = 15$ 

Furthermore, tests were conducted for all predictand Y's, excluding one predictand in each weather element.

The results of the  $F_{\eta}$  and  $F_{\mu}$  tests are presented in columns 10 and 8, respectively, in table 3-1. An asterisk is used to show significance at the 1-percent level. For example, if an asterisk appears in column 10, then accept Model I; if an asterisk is in column 8 (provided one does not appear in its corresponding column 10), then accept Model II. By default, Model III is accepted when neither column 10 nor 8 has an asterisk for that predictand variable.

An example of the calculations performed in this series of tests for NO WX/WX is given in the following:

k	Weather station	nk	Single-station Brier score
1	MKE	98865	.06068
2	DEN	104401	.03561
3	LAX	105052	.06474
4	BIS	105011	.04787
5	BOS	104989	.06377
6	ABQ	105002	.02499
7	MEM	105063	.04853
8	STL	103908	.05728
9	JAX	104890	.06369
10	OKC	105001	.03715
11	PIT	103156	.08902
12	SAT	102016	•03787
13	RDU	103602	.05641
14	PDX	104056	.08782
15	RNO	101962	.02407
	BS (single	e-station)	<b>-</b> .05329
	BS (anoma	ly)	= .05458
	BS (genera	alized opera	ator) = .05505

Predictand--NO WX/WX 1 hour hence

Then

$$F_{\eta} = \frac{[BS (anomaly) - BS (single station)] \cdot [n - (P+1)K]}{[BS (single station)] \cdot [P(K-1)]}$$
(3-28)

Thus

$$F_{\eta} = \frac{(.05458 - .05329) \cdot (83064)}{(.05329) \cdot (3192)} = .63, \qquad (3-29)$$

which is not significant, since  $F_{crit.01}$  ( $\infty, \infty$ ) = 1.00.

The hypothesis of Model II is not rejected, and therefore no asterisk appears in column 10 for NO WX/WX in table 3-1.

Proceeding now to test whether Model III should be rejected,  $\textbf{F}_{\mu}$  is tested. That is,

$$F_{\mu} = \frac{[BS (generalized operator) - BS (anomaly)] \cdot [n - K - P]}{[BS (anomaly)] \cdot [K-1]}$$
(3-30)

Thus

$$F_{\mu} = \frac{(.05505 - .05458) \cdot (86256)}{(.05458) \cdot (14)} = 53.05$$
(3-31)

This causes a rejection of Model III, because F exceeds the  $F_{crit.01}$   $(14,^{\infty}) = 2.08$ . This leaves Model II as the appropriate one to accept. This rejection appears as an asterisk in column 8 of table 3-1 for NO WX/WX. All of the other predictand elements were tested in a similar manner, with their results in columns 8 and 10. It may be noted that the left-out predictand dummy was not tested along with the others. This was considered a redundant test and, if it is of special interest the test result may be inferred from the results of those that were tested for that weather element.

In summary, the proper way to interpret the results in table 3-1 is to:

- Accept Model I (single-station equation is best) if an asterisk is in column 10.
- Accept Model II (station-adjusted climatology, anomaly generalized operator) if an asterisk appears in column 8 but not in column 10.
- Accept Model III (straight generalized operator) if no asterisk appears in column 8 or 10.
- Prefer including interactive predictors to not including interactive predictors if an asterisk appears in column 6.
- Prefer including all predictors over screening if an asterisk appears in column 4.
- Prefer using a screened set of predictors over using climatological probabilities if an asterisk appears in column 2.

### Testing the value of two observations in the predictor set

Another experiment included predictors from two consecutive observations. This scheme is more powerful than explicitly including one-hour tendencies as predictors, since the coefficients for each term can vary, while a tendency coefficient is fixed on both terms. Only single-station data from DCA were used in the two-observation experiment. It amounts to solving a 377-predictor corression problem with the usual 227 predictands for one hour hence. The results were surprising but definitive. They showed that only 1 of the 227 predictands was aided significantly by these 89 additional predictors (not double the original 228, since month of year, hour of day, and the gross interactions were not entered again). The one significant situation that was encountered could have been expected by chance, since a 1-percent test was performed.

### Analyzing anomaly effects

A number of worthwhile investigations can be made from the quantities prepared for GEM, in the matrices and in the equations. One of these will be demonstrated.

In the station-adjusted climatology (anomaly) set of equations, the additive constant is always zero for each predictand, because the predictand equations estimate the deviation of the predictand from its mean, just as the predictors are deviations from their means. However, by taking any station's climatology for each predictor and any particular predictand, a station-tailored additive constant can be determined. The overall climatology (including all 41 stations) also yields an additive constant for each predictand. When this is done for each station for, say, NO WX/WX, the additive constants can be compared in a meaningful way. In particular, a plot can be made of the differences between each station's and the overall additive constant. This has been done in figure 3-1. Positive differences mean that the station would have a higher probability of NO WX by that amount, and vice versa, all other things equal. Note the concentration of negative differences in the northeast, and in other industrialized areas.

Another point that is worth mentioning about these differences is that the squares of the differences are equal to the Brier score reductions that could be realized if station-adjusted climatology equations were invoked in place of straight, generalized-operator equations.

### Conclusions

The Brier score results presented in table 3-1 provide evidence upon which the following observations are based:

- Screening predictors yields a significant improvement over climatology on all elements.
- Adding the remaining predictors to the screened set also provides a significant improvement in 105 of the 155 elements in the predictand set.
- Including interactive predictors to the total set of predictors was significant in 92 of the 155 predictands.
- Adjusting for station climatology was significant in 89 of the 155 predictands.
- Single-station equations were shown to be significantly better in only 17 of the 155 predictands over station-adjusted climatology.



Figure 3.1.--Plot of difference between anomaly additive constants  $[A_0 \text{ (station)} - A_0 \text{ (total)}], \text{ for NO WX/WX}.$ 

It is thereby concluded that adding more predictors in the regression equations increases the skill of the predictions for most of the elements and should be preferable to screening. Adding interactive predictors, even though only grossly representing nonlinear input, has been shown to increase the accuracy of the forecasts and is therefore a recommended procedure to follow.

Station-adjusted climatology is important in improving the results from a statistically significant standpoint.

It is concluded that deriving equations to predict only at individual single stations will not enhance the skill of the forecast system over that of station-adjusted climatology generalized operators when the number of degrees of freedom consumed in the process is duly accounted for. It is concluded, therefore, that effects of local conditions--terrain, proximity to water, latitude, longitude, altitude, and the like--be accounted for by a station-adjusted climatology generalized operator.

Since inclusion of another observation failed to provide a significant improvement in skill, it is concluded also that a Markov model is appropriate in making a 1-hr prediction.

### 4. INDEPENDENT VERIFICATION OF RESULTS

Demonstrating the skill of a new statistical weather prediction system or any prediction system can be accomplished by subjecting it to a large, independent, historical sample or by evaluating its usefulness on a day-by-day exposure to the ultimate users of the guidance product--the practicing forecasters. A feedback of their observations could be most beneficial for tailoring its form and ultimate acceptance. Because of time considerations, however, the verification scheme selected here was the former.

A set of seven locations, not part of the 41 stations making up the dependent sample, was selected for a large-scale verification. The stations selected were the same seven tested and discussed in another context in chapter 3, Experiments. Since GEM predicts for any hour and any month, it was believed desirable to process all the approximately 700,000 independent forecasts. The processing time for making this many hourly forecasts out to 12 hours would have taken excessive computer time. To implement a practical subset verification, the following effort was carried out:

- Seven locations: DCA, PHL, SFO, SLC, MSP, MSY, and MIA.
- 26,328 independent forecasts covering all locations for the years 1954-1965.
- All hours of the day and all months of the year sampled, the scheme being to begin on the first day of the period sampled at 00, the second day at 01, the third day at 02, etc., separating the observations adequately to assure an even distribution without getting involved in randomizing.
- Projections for 1, 3, 6, 9, and 12 hours.
- All predictand elements in GEM except NO WX/WX were tested: T, DPD, V, P, F, GF, HK, B, L, R, RW, S, SW, ZL, ZR, TSM, TSM+, CC#1, CH#1, CC#2, CH#2, TCA, C, and W.
- The comparative method was persistence--measured primarily from the independent sample contingency table conditional probabilities.
- Statistics computed were: Brier score, percent correct (hits), Heidke skill score, and a contingency table of observed versus categorically forecasted conditions. Tables of summarizing statistics have been compiled for easy appraisal of the results.

Brier scores for each projection and for all elements are presented in table 4-1. For comparison, Brier scores were calculated for the conditional probability given persistence, derived from the same observational data used as input for the GEM forecast process for projections of 3, 6, 9, and 12 hours. Since these persistence Brier scores were computed from conditional persistence tables of the independent sample, they are biased favoring persistence. A persistence Brier score for a 1-hr projection, computed from the dependent sample used to develop GEM, is readily available and is also presented. The persistence Brier scores, for each projection and element, are also displayed in table 4-1.*

^{*}The reader is directed to chapter 7, New Results, for the most recent verifications.

BRIER SCORE GEM PERSISTENCE Weather element 12 1 hr. 3 6 9 12 l hr. 3 6 9 Т 1 .22827 .35550 .40768 .42421 .42923 .22884 .35524 .40724 .42397 .42948 DPD 2 .27447 .36235 .39533 .40473 .40871 .27953 .37361 .41315 .42427 .42727 3 .08232 10912 12628 13250 .13776 .08379 11187 12951 13458 .13874 V 5 23 .4 )5

Table 4-1Independent sample Brier scores	from 26,328 cases at	seven stations for GEM and
persistence. Projections are for 1, 3,	6, 9, and 12 hours.	Persistence Brier scores are
computed from a conditional persistence	table of independent	samples (except 1-hr), thus
producing a bias favoring persistence.		

6	л
14	0

V	3	.08232	.10912	<b>.</b> 12628	.13250	.13//6	.08379	.1118/	.12951	.13458	.138/4
F	4	.01304	.02652	.036 <b>9</b> 0	.04093	.04488	.01422	.02926	.03949	.04330	.04735
GF	5	.00901	.01389	.01479	.01566	.01675	.00932	.01467	.01554	.01619	.01723
K,H	6	.02597	.05242	.07157	.07828	.08425	.02735	.05427	.07174	.07619	.08044
,	-										
В	7	.00052	.00072	.00083	.00077	.00105	.00054	.00072	.00084	.00077	.00105
L	8	.00602	.00814	.00913	.00837	.00935	.00615	.00834	.00926	.00846	<b>.</b> 00 <b>9</b> 44
R	9	.01891	.02593	.03045	.03368	.03392	.01961	.02646	.03099	.03419	.03434
RW	10	.01890	.02285	.02356	.02344	.02313	.01950	.02349	.02415	.02387	.02349
S	11	.00603	.00920	.01233	.01358	.01343	.00630	.00970	.01296	.01423	.01409
SW	12	.00292	.00351	.00420	.00323	.00369	.00295	.00350	.00423	.00319	•00369
ZL	13	.00032	.00040	.00061	.00086	.00072	.00033	.00040	.00062	.00086	.00072
ZR	14	.00019	.00049	.0005 <b>9</b>	.00045	.00053	.00019	.00050	.00059	.00046	.00053
TSM	15	.00725	.00763	.00705	.00802	.00684	.00742	.00777	.00715	.00813	.00690
TSM+	16	.00000	.00004	.00000	.00008	•00000	.00000	.00004	•00000	.00008	.00000
W	17	.35686	.42507	.44965	.45840	.46194	.35948	.41183	.43909	.45064	.45556
Р	18	.07517	.17198	.24436	.27796	.30150	.07548	.17329	.24577	<b>.</b> 27587	<b>.</b> 29659
CC#1	19	.20712	.27120	.30048	.31643	.32415	.21565	.28215	.31423	.33127	.33793
CH#1	20	.23330	.32247	.35985	.37805	.38574	.23924	.32809	.36821	.38670	.39391
CC#2	21	.16575	•20936	.22581	•23572	.23971	.17733	.22276	.24016	.24952	.25269
CH#2	22	.12151	.15467	.16503	.16881	.17114	.12681	.16081	.17125	.17504	.17659
TCA	23	.12151	•15487 •25949	.30247	.32417	•17114 •33517	.18611	.26635	.31173	.33369	.34407
							.17222	•20035 •22534	.24774	.26221	.26520
С	24	.16527	.21647	.23999	.25465	.25946	•1/222	•22334	• 2 4 / / 4	• 20221	•20320

For ease in identifying GEM's relative performance against persistence, table 4-2 displays a comparison of the two for each projection and element. A "+" indicates a Brier score favoring GEM, a "-" indicates a Brier score favoring persistence, a "0" indicates the same Brier score for both, and a blank signifies no comparison is justified. A tabulation of pluses, minuses, and ties for each projection appears at the bottom of each column with an asterisk assigned to the technique that performs best overall for each projection.

To convert the probabilistic output of GEM into categorical forecasts for each element, two techniques were used. For the 1- and 3-hr projections, the category within each element with the highest probability was selected. For the 6-, 9-, and 12-hr projections, the category which first exceeds the cumulative P* threshold was selected. The P* thresholding procedure is based on a Beta distribution integration which yields categorical forecasts in the same frequency as those observed in nature while maximizing hits.

Within the constraints of the research effort carried on thus far, this combination of techniques for converting probabilities to categorical forecasts maximizes "hits." The results are displayed in table 4-2. For each projection, GEM scores more hits than persistence. For the 1-hr projection, GEM scores more hits in forecasting ten of the elements, persistence scores more hits for two of the elements, and the two processes tie in forecasting 12 elements.

GEM equations were derived by aggregating data together from nearly 4,000,000 observations from 41 locations in the United States to generate a general climatology. To test the hypothesis of whether forecast performance versus persistence would be improved by deriving the GEM equations using individual station-adjusted climatologies, the following experiment was performed. Station-adjusted climatologies were derived for Washington, D.C., (National) and Minneapolis-St. Paul alrports. Brier scores produced by forecasts which resulted from the GEM process using the station-adjusted climatologies were compared with those using the general climatology. The results for Minneapolis-St. Paul are displayed for each projection in table 4-3.

The results for Washington, D.C., are similar. For this table, a "+" signifies a better (lower) Brier score using station-adjusted climatology, while a "-" signifies a better Brier score using the generalized climatology. Use of the localized climatology improves the Brier score, but at a cost of needing to generate a separate climatology for each station for which GEM forecasts are to be made. The reader will find a more refined use of climatology in chapter 7.

Although the total improvements in tables 4-2 and 4-3 appear comparable, the actual Brier score differences in the latter comparison are generally of smaller size. Incidentally, the equations are virtually the same for all locations, whether station-adjusted or generalized climatologies are used; only a climatology constant in each equation changes, depending on whether a generalized or station-adjusted climatology is used.

### Conclusion

The conclusion is that GEM produces forecasts with better Brier scores and hits than does persistence for 24 weather elements in projections for 1, 3, 6, 9, and 12 hours. Station-adjusted climatology (anomaly) equations show improved skill as was suggested by the analysis of covariance tests.

			ier sco			Hits					
Weather			ojectio				Pro	jectio	ons		
element	1	3	6	9	12	1	3	6	9	12	
т	+	-	-		+	0	+	+	+	+	
DPD	+	+	+	+	+	0	+	+	-	+	
V	+	+	÷	+	÷	+	+	+	+	+	
F	+	+	+	+	+	0	+	+	+	+	
GF	+	+	+	+	÷	0	÷	+	+	+	
К,Н	+	+	+	-		0	+	+	+	+	
В	+	+	+	-	-	0	-	-	-	-	
L	+	+	+	+	+	+	+	+	+	+	
R	+	+	+	+	÷	+	+	+	+	+	
RW	+	+	+	+	+	+	+	- <del> </del> -	+	+	
S	+	+	+	+	+		+	+	+	+	
SW	+	-	+		+	0	+	+	+	+	
ZL			+	+	+	0	+		0	+	
ZR	+	+	-	+	+	0	+			+	
TSM	+	+	+	+	+	+	+	+	+	+	
TSM+		+	1	+		+	≁	+	+	+	
W	+			-	-	0	-		-	-	
Р	+	+	+	-	-	0	0	0	+	+	
CC#1	+	+	+	+	+	÷	+		+	+	
CH#1	+	+	+	+	+	0	-		+	+	
CC#2	+	+	+	+	+	+	+	+	+	+	
CH#2	+	÷	+	+	÷	÷	+	-		÷	
TCA	+	+	+	-	÷	+	+	+	+	+	
C	+	+	+	+	÷	-	+			-	
+	22*	20*	20*	18*	19*	10*	20*	15*	18*	21*	
0	0	0	0	0	0	12	1	1	1	0	
	2	4	3	6	4	2	3	8	5	3	

Table 4-2.--Brier score and hit comparisons between GEM and persistence. (A "+" indicates superiority for GEM, and a "-" superiority for persistence, while a "0" shows equivalence between the two procedures.)

Element		Project (h)	ions		
	1	33	6	9	12
Т	+	+	+	+	+
DPD	+	+	+	+	+
V.	+	+	+	+	+
F	-	-	-	-	+
GF	+	+	+	+	+
н,к	+	+	+	+	+
В	+	+	+	+	+
L	+	-	-	-	+
R	+	+	-	+	+
RW	+	+	+	+	+
S	+	-		+	+
SW	+	+	+	+	+
ZL	+	-	+	+	+
ZR		+	+	+	-
TSM		-		-	-
TSM+	+	+	+	+	+
W	+	+	+	+	+
Р	-	-	-	-	<del>_</del>
CC#1	+	+	+	+	+
CH#1	+	+	+	+	+
CC#2	+	+	+	+	+
СН#2	+	+	+	+	+
TCA	+	+	+	+	+
CIG	+	+	+	+	+
Total +'s	20*	18*	18*	20*	19*
Total -'s	4	6	6	4	5

Table 4-3.--Brier score comparison of GEM with station-adjusted climatology versus GEM with generalized climatology for Minneapolis-St. Paul airport. ("+" favors the former, "-" favors the latter.

### 5. OPERATIONAL GEM SYSTEM

The original format for GEM that appeared in the National Weather Digest (see Miller, 1979b) has been greatly improved. Instead of displaying categories within which the forecast is predicted to fall, the new scheme displays data that are far more readable and which require no legend for translation. Other changes include the following:

• Temperature forecasts are expressed as a value obtained by computing a weighted average--accumulating the product between the estimated probability of temperature falling inside an interval times the midvalue of the interval. At the first projection the observed temperature is applied as the midvalue.

• Dewpoint depressions are also expressed as weighted averages--similar to those for temperature--and the final output is an estimate of the actual dewpoint temperature, which is derived by subtraction from the estimated temperature.

• Pressure is also predicted with a weighted average similar to temperature.

• Wind direction and speed are expressed in degrees and knots, respectively. The direction is derived from trigonometric considerations through U and V components and from weighting the average of these with the predicted probability. The speed is also a weighted-average estimate, similar to temperature, computed from midvalues.

• Hydrometeors such as L, R, RW, S, SW, ZL, ZR, and the elements TSM, A, and TSM+ are treated in a manner suggesting a maximum-threat consideration. More specifically, in the appendix reference is made to predicted probabilities with a predicted lowest value A and highest value B. These have arbitrarily been set to two standard deviations (pooled within group) below and above the values of  $\mu_0$  and  $\mu_1$ , respectively. A and B are not allowed to lie inside the interval 0-1 except at the end points.

• Obstructions to vision are handled in a manner similar to other hydrometeors, except that A and B are determined using one standard deviation.

• Visibility and clouds are also like hydrometeors but use zero standard deviations.

The above procedures have come about from subjecting the GEM output to daily exposure to "live forecasting." Feedback has been the main motivation for the present output form of GEM. In addition, some analyses of large-sample verification, none of which has been severe enough to vitiate the further use of the verification sample, have aided in developing the present form.

GEM is capable of accommodating a variety of operational computing configurations. It was designed primarily to function at short range, with the local observation entered manually or automatically into a minicomputer such as the Data General Eclipse in an Automation of Field Operations and Services (AFOS) (see National Weather Service, 1976) environment. It has been shown to possess this capability, and an example of this kind of output is given in figure 5-1. (For this example, threshold probabilities were used with A=0 and B=1 to arrive at categorical forecasts for all elements.)

63

G G G	GG EEE GGG EEE G E GG EEE GG EEE	M M	m mm m m m				TECHNIQU F ID FOR	OR STA	TION	DCA			OCAL	
!	HOUR !	TT	DPD		WEA	THER	DOFF	PPP	C1	H1	C2	H2	TS	CIG !
! ! !	7	62	1	0600	R-	F	1715	5 9976	BKN	7	ovc	10	ovc	7 !
: ! !	10 !	62	1	0600	R-	F	1715	5 9976	0VC	5	ovc	10	ovc	7 !
: [ ]	13	62	1	0600	R-	F	2615	5 9976	ovc	5	ovc	10	ovc	7 !
! !	16	62	3	0400	R-	RW- H	- 2425	5 9976	ovc	5	ovc	10	ouc	7 !
! ! 	19 !	57	3	0400	<i>R</i> -	RW- H	- 2425	5 9976	ovc	5	ovc	15	ovc	7!

Figure 5-1.--Example of minicomputer output of GEM.

Conversely, using a large computer, the GEM system can employ a Time Sharing Option (TSO) terminal with an assumed observational data base with call letters used in a request-reply mode where the forecast is made in real time. An example of this output is given in figure 5-2.

Another large computer version uses a batch mode. Here the observation is entered with the program. Figure 5-3 shows an example of this output. Both of these large computer versions are tied to the NOAA IBM 360/195.

The small and large computer modes of calculation differ. The minicomputer uses an additive version of GEM, while the large computer versions use a multiplicative version.

Of great promise and potentially wide interest is the capability of the operational GEM to produce its forecasts on a microcomputer or even a hand computer. It is entirely practicable for a person having knowledge of the local weather conditions to make a NO WX/WX, ceiling, or visibility forecast for any projection, in a matter of seconds, on the hand-held computer. The mode visualized here is additive, not multiplicative, and limited to the elements and projections of most concern.

At the other end of the operational spectrum, there is no technological obstacle to the implementation of a telephone system with a real-time, voice response to a specific weather inquiry, whether current or predicted, for any place, any time, and for any weather element in the local observation.

GGG	EEEEE	М	M
G	E	MM	MM
G GGG	EFE	IM M	M
GG	E	М	M
GGG	ĒEEEE	Μ	М

# TECHNIQUES DEVELOPMENT LABORATORY

# FOR STATION: DCA

VALID FOR 12 HOURS AFTER MAR 21,1980 7 LOCAL

-		·					
	0B	12	HOURLY	FORE	CASTS I	(LST)	1
	7	8	9	10	11	12	13
TEMPERATURE(F) DEW POINT TP(F) VSBY(100THS SM) FOG: ICE FOG GROUND FOG SMOKE: HAZE BLOWING	60 59 0600 F	61 60 0600 F	64 61 0600 F	66 60 0600 F	67 60 0600 F	67 59 0600 F	68 58 0600 F
DRIZZLE RAIN RAIN SHOWER SNOW, IC SNOW SHOWER, IP FREEZE DRIZZLE FREEZE RAIN THUNDERSTORM	R-	R <b>-</b>	R <b>-</b>	R-	R- R₩-	R RW-	R₩ <u>−</u>
THUNDERSTORM+ WIND(DDFF) SLP(10THS MB) CLOUD COVER #1 CLOUD HEIGHT #1 CLOUD COVER #2 CLOUD HEIGHT #2 TOT CLOUD COVER CEILING 100S FT	1513 9990 BKN 7 OVC 10 OVC 7	1719 9993 BKN 7 0VC 10 0VC 7	1719 9999 BKN 0VC 10 0VC 7	1820 10000 0VC 7 CLR 160 0VC 7	1921 10000 0VC 7 CLR 160 0VC 7	2021 9997 0VC 7 CLR 160 0VC 7	2121 9995 0VC CLR 160 0VC 7
		14	15	16	17	18	19
TEMPERATURE(F) DEW POINT TP(F) VSBY(100THS SM) FOG, ICE FOG GROUND FOG SMOKE, HAZE BLOWING		68 57 0500 F	67 56 0500 F	66 55 0400 F	64 54 0400 F	62 53 0400 F	59 53 0400 F
DRIZZLE RAIN SHOWER SNOW, IC SNOW SHOWER, IP FREEZE DRIZZLE FREEZE RAIN THUNDERSTORM		RW=	R- RW-	R- RW-	R- RW-	R R W	R- RW-
THUNDERSTORM+ WIND(DDFF) SLP(10THS MB) CLOUD COVER #1 CLOUD HEIGHT #1 CLOUD COVER #2 CLOUD HEIGHT #2 TOT CLOUD COVER CEILING 100S FT		2221 9993 0VC 7 CLR 160 0VC 7	2321 9994 OVC CLR 160 OVC 7	2321 9996 0VC CLR 160 0VC 7	2420 10000 OVC CLR 160 OVC 7	2419 10004 OVC CLR 160 OVC 7	2418 10010 OVC CLR 160 OVC 7

Figure 5-2.--Example of TSO output of GEM.

XXX	XXXXX	хх
X	X	XX XX
X XXX	XXX	XXX
X X	X	XX
XXX	XXXXX	х х

### TECHNIQUES DEVELOPMENT LABORATORY

#### FOR STATION: DCA

### VALID FOR 12 HOURS AFTER MAR 21,1980 7 LOCAL

	ов	     		12 110	URLY F	ORECAS	TS (LO	CAL ST	ANDARD	TIME)			
	7	8	Ģ	1 0	11	12	13	14	15	16	17	18	19
TEMPERATURE(F) DEW POINT TP(F) VSRY(100THS SM) FOG, ICF FOG GROUND FOG SMOKE, HAZE	60 59 0600 F	61 60 0600 F	64 61 0600 F	66 60 060n F	67 60 060n F	67 59 0600 F	68 0600 F	68 57 0500 F	67 56 0500 F	65 0400 F	64 54 040n F	62 53 0400 F	59 53 0400 F
ALOVING DRIZZLE RAIN RAIN SHOWER SNOW SHOWER SNOW SHOWER, IP FREEZE DRIZZLF FREEZE RAIN	R -	R-	. R =	R -	R- ₽₩-	R₩ <del>-</del>	R W	R - R₩-	R - R W -	R- RW-	RW_	R- RW-	R = R ¥ =
THUNDERSTORM THUNDERSTORM+ WIND(DDFF) SLP(10THS MA) CLOUD COVER #1 CLOUD COVER #2 CLOUD HEIGHT #2 TOT CLOUD COVER CEILING 100S FT	1513 4990 BKN 7 0VC 10 0VC 7	1718 9997 PKN 7 UVC 10 0VC 7	1719 9999 BKN 0VC 10 0VC 7	1820 10000 0VC 7 CLR UNL 0VC 7	1921 10000 0VC 7 CLR UNL 0VC 7	2021 9997 0VC 7 CLR UNL 0VC 7	2121 9795 0VC 7 CLR UNL 0VC 7	2221 9993 0VC CLR UNL 0VC 7	2321 9994 0VC 7 CLR UNL 0VC 7	2321 7996 0VC 7 CLR UNL 0VC 7	242n 1000n 0VC 7 CLR UNL 0VC 7	2419 10004 OVC 7 CLR UNL 0VC 7	2418 10010 0VC 7 CLR UNL 0VC 7

# Figure 5-3.--Example of batch output of GEM.

Characteristics of GEM that Deserve Special Emphasis

• GEM predicts for a point in space and at an instant in time--at a weather station location and at the time of observation--which suggests an inherent limitation in the skill obtainable.

• It uses a generalized operator and can therefore be applied to any location in the conterminous United States, on any day or hour, and for any projection (1-12 hours being preferred). It has instantaneous updating capabilities for any weather element any time a surface observation is taken.

• A prediction is made of the total conditional probability distribution at every hour into the future for each element. A categorical forecast is also made for each element. This tends to maximize the number of correct forecasts while maintaining a good fit between the number of times an event is predicted and the number of times it is observed to occur over time. The probability estimates made by the regression equations in GEM occasionally lie outside the 0-1 interval. This is only an aesthetic nuisance, which is duly accounted for in the method that is used to make categorical forecasts.

• The particular GEM configuration described here can very easily be reduced in size (in the number of predictors and predictands) by merely accumulating any subset of elements, except weather like fog and rain, since they can occur simultaneously in nature. This might be required to accommodate a smaller operational forecasting instrument such as a hand held computer or calculator.

• With such a large sample used to develop GEM (nearly 4,000,000 cases), the loss in Brier score when going from a dependent sample to an independent sample should be nil.

• Renormalizing or doing "enhancements" on the probabilities after each iteration has been deemed unnecessary and at times harmful. It is best to keep the probabilities in their original form. In fact, the equivalence between the multiplicative and additive forms would not be maintained under such circumstances.

• A complete set of results has been provided in the microfiche packet in the back cover of this report for any type of interpretation or possible modification that might be desired. For example, a spectral decomposition (Eigenfunctions) could be beneficial for interpreting the results, but this kind of solution has been hard to come by for such large matrices.

• The zero-one or dummy system of variables in GEM is completely nonparametric, implying that no assumptions regarding distributional forms, such as normality, have been made nor are they required. The tests of significance have an underlying assumed form, but they are classified as being robust.

• GEM is quite capable of predicting record events, since the data base covers a broader spectrum than the history of any station in question.

### Possible Areas of Research for Enhancing GEM

### Data Preparation

The present GEM system of predictor-predictand variables does not include cloud types, past precipitation occurrence, ground cover, gustiness of winds, nor any type of observational remarks. Perhaps some of these would provide predictive information unaccounted for by the current set of variables. Tests have denied the existence, however, of predictive information in tendencies, through inclusion of a previous observation, or in cloud types.

Interactive boolean predictors are shown to yield otherwise unaccounted-for information in this report. Perhaps a concerted effort using a screening lattice algorithm (SLAM; see Miller, 1969) or a more exhaustive use of discrete likelihood functions (DLF; see Miller, 1979a), which accounts for all two-variable interactions automatically, can bring new information to bear--even if only to account for the nonadditivity among the present predictors. A set of boolean predictors that should yield important information is hour of the day logically "anded" with other elements that have strong diurnal variations, such as temperature and dewpoint depression. The ultimate method for uncovering interactive sources of information lies in the total enumeration of observed combinations of dummy predictors--their number being certain to be constrained to something under the size of the sample. Obviously, this is a labor-intensive undertaking, and it is not being recommended here.

Upper-air predictors, while inviting as a source of important information, are unavailable except at the two times of the day that soundings are taken. This restriction would limit the present updating capabilities which, of course, are available at any time. When automatic sounding equipment, like that being used by the Prototype Regional Observing and Forecasting Service (PROFS) Project (see Beran, 1980) in Boulder, Colo., can be initiated at any time, this logistical problem will be overcome.

Network observations are also appealing as a potential source of information, possibly in the form of gridpoint data. Interpolations of zero-one observed data would be easy to perform, since they would be like probabilities of the event occurring at the gridpoint. However, more information might be lost by divorcing the system from straight observational data. Nonetheless, the concept has produced useful hurricane forecasting equations when a moving grid is employed. (See Veigas, Miller, and Howe, 1959.) This work also substantiates a generalized-operator formulation.

### Data Transformation

An enhancement of GEM would be to employ a finer specification of event categories--more zero-one variables than are currently being included, especially in time of the year. With the present large sample size, or even one that is easily made larger through the additivity features of the cross product matrices, the resolution of each weather variable can be made as fine as desired. For those who believe that zero-one predictors fail to capture all that a corresponding continuous variable might offer, this feature should dispel that fear entirely. In fact, the ability of the regression coefficients to fit the individual zero-one pieces of the original variable gives it nonlinear capabilties that are not available in the continuous variable, unless the precise nonlinear form is specified a priori.

One type of seemingly important transformation to perform is a weighted regression. For example, 1) a variance stabilization with the ARCSIN, 2) a 0-1 constrainer with the logistic, 3) a standardization with beta coefficients, 4) a spectral decomposition with eigenfunctions, or 5) a normalization transformation. Cox (1970) has pointed out that when the predictors and predictands are all zero-one binary variables, like those employed here, the process of solving for such a weighted regression is simple to perform. Using Cox's approach, however, all efforts have uncovered nothing useful over that achieved by straight unweighted regression. The failure seems to be in overweighting the tails of the element's distribution.

### Computational

Of the two mathematical versions of GEM--multiplicative and additive--the context of its use would dictate the proper mode to employ. If the computer is limited in the space available, then storing one matrix to perform an iterative solution is advantageous. Should speed be the primary consideration, then an additive version is recommended. For such a configuration, the coefficient matrix must be powered to as many iterations as may be desired. This solution requires that only the predictors in the observation that are unity need to have their respective coefficients added together. In an integer form this procedure can be made extremely fast. In contrast, the multiplicative (iterative) version cannot be so conveniently dealt with, since the form of computation would most likely need to be in floating point.

### Statistical Analysis

Variations on the time steps in GEM should be tried. The 1-hr step used here could give way to 3, 12, 24, or even more hours, depending upon the application. Certainly a longer-range forecast system applying the GEM principle would be inefficient if performed hour by hour for situations where time and space averagings were desired.

For certain computing facilities it might be wiser to abandon the principle in GEM of using time-step iterations. Certainly a direct projection to particular hours would have to yield improved results, since the Brier score is minimized at those projections, not just in the first hour as in GEM.

The screening of predictors, for efficiency reasons, has been attempted in GEM. It suffers from the fact that time information is forsaken in the selection process. This causes the elimination from the GEM forecasts of many interesting and useful characteristics, such as manifestation of diurnal variations, deviations from persistence, onset and duration of weather, frontal passages, and discontinuities. Perhaps forcing time elements into the equation while screening would solve this problem.

Other multivariate statistical models may prove to be more powerful than regression. Canonical correlation, discriminant analysis, discrete likelihood

functions, or a distance-neighborhood framework might enhance the technique. The simple elegance of the present model would require a substantial improving upon to be supplanted.

One area that has latitude for improvements is the application of mathematical programming methods--geometric, stochastic, integer, pseudo-boolean, and dynamic. In particular, a derivation of the appropriate utility function would permit a Bayesian solution of the probability-to-categorical forecasting problem under constraints of any type. The need for such a solution is evident from the consistent superiority of GEM's Brier score but with less success on hits. The predictive skill is evident but not fully captured.

Finally, an effort toward a quantitative-precipitation forecast should be attempted, using an expected amount over time based on the intensity of the type and its forecasted probability.

### Output

The variety of output forms of GEM seems to be unlimited. The user's requirements would dictate the form. As guidance to the local forecaster, several versions are obvious. The array of hourly forecasted probability distributions for each element, called GEMTRIX, reflects the conditional climatology given the current observation. This gives the forecaster a quantitative measure of the risk he would be taking in his own "final" forecast should he or she deviate from GEM.

An interesting form of guidance output would be to plot and analyze (manually or automatically) the hourly categorical forecasts made by GEM in, say, a sectional map. The analysis could be based on either one element at one forecast time or on all elements taken jointly at all times in a kind of time lapse. The forecaster could superpose the immediate radar echoes to help resolve the important issue of timing the onset or offset of hydrometeors, frontal passages, squall lines, and the like. A future refinement could be the depicting of the previous or most recent error fields as a feedback source. Initially this might best be done subjectively.

Another application of graphical depiction would be to infer the climatology of stations not in the inventory for implementing station-adjusted climatology (anomaly) equations, since the anomaly equations have been shown to be more skillful than straight generalized operators.

An important use of GEM would be in monitoring and updating automatically in a minicomputer whenever a new record or special observation is received for a particular location. (See Vercelli and Heffernan, 1978.) Automated observing equipment could play an important role here. This is made possible by the real-time capabilities of the GEM model.

A future form of GEM would be its merging with other forecasts in an objective way. Ultimately it should be combined with all that is available--the human forecaster with his experience, MOS with its organization of dynamic model output, radar with its capacity to reflect immediate areal occurrence of precipitation, and satellite information with its timely and wide coverage of certain atmospheric events. A variety of models exist for such a blend, but statistical regression methods will probably be the most effective. Variations in the form of input and output are also in need of testing. Perhaps fractional times (less than hourly time steps) would be of value in such critical situations as the landing or taking off of aircraft, or in military operations. A possible solution is the eigenfunction version of GEM. The types of short-period observing performed by PROFS and the Federal Aviation Administration (FAA) would make a good starting place. Another variation to test would be to input the observations as probabilities (Unger, 1980), depending upon an observed value's relationship to the interval in which it falls. This suggests a source of "free" information available for the taking.

GEM comes already equipped with a "what if" capability. This could increase our understanding of the forecasting problem if not further our understanding of the atmosphere.

It does not require much imagination to foresee the potential applications of GEM as a procedure for making on-demand telephone forecasts for any location in the observational data base. Furthermore, the many home computers now on the market or already in use are ideally suitable for this weather forecasting capability. Cable TV seems to be a natural form of output.

Finally, PROFS and the FAA are planning to use a GEM model, while the AWS (Kelly, 1978) and Air Force Geophysics Laboratory (AFGL) (Geisler, 1979) have already done work on a single-station GEM-like procedure. In the PROFS application, numerous other weather elements are being considered over those in the usual surface observation. In particular, soundings of the temperature, humidity, and wind conditions will be introduced from automated observing equipment at very short time intervals. The FAA also intends to use short-period automatic instrument readings at airfield locations. Data with such high frequencies can be accumulated very rapidly to expedite the implementation of GEM for the purposes desired. Systems such as the Automation of Field Operations and Services (AFOS), Automated Weather Distribution System (AWDS), Naval Environmental Display System (NEDS), Modular Automated Weather System (MAWS), Army field installations, ships at sea, and a standard telephone can quite easily make use of a GEM system for automatic forecasts or for monitoring official forecasts needing revision based on a recent observation. Developing countries might well find GEM inexpensive and easy to implement as a basic forecasting system.

. .

.

1 1 1

#### 7. NEW RESULTS

### Improving the Model

Until now, the Markov process modeled by GEM has accommodated changes only at discrete times. Led partly by empirical evidence and by the appreciation that weather changes can occur at any time, GEM has now been altered to model a continuous-time Markov process. Feller (1950) discusses the change required in a model to switch from discrete time to continuous time--namely, from a geometric to an exponential representation. Howard (1960) gives all of the necessary details for accommodating changes over continuous time.

Specifically, the discrete-time representation of a Markov chain, predicting the probability vector  $\underline{\Pi}$  at time t with  $\underline{P}$  as the transition probability matrix, is:

$$\underline{\Pi}(t) = \underline{\Pi}(0)\underline{P}^{\mathsf{L}} \qquad (t=0,1,\dots) \qquad (7-1)$$

which is from the recursion of  $\underline{\Pi}(t+1) = \underline{\Pi}(t)\underline{P}$ , t=0, 1, ... In the GEM context (7-1) can be represented equivalently as

$$\underline{\Pi}(t) = \underline{\Pi}(0)\underline{A}^{\mathsf{L}} \qquad (t=0,1,\dots) \qquad (7-2)$$

where A is the transition-rate matrix of multiple regression equations.

In the continuous-time case, the difference equations underlying (7-1) and (7-2) give way to a set of differential equations underlying

$$\frac{\mathrm{d}}{\mathrm{d}t}\underline{\Pi}(t) = \underline{\Pi}(t)\underline{A} \tag{7-3}$$

Integrating (7-3) yields

$$\Pi(t) = \Pi(0) e^{At}$$
(7-4)

Equation (7-4) can be written in exponential-series form as

$$\underline{\Pi}(t) = \underline{\Pi}(0) \left[ \underline{I} + t\underline{A} + \frac{t^2}{2!} \underline{A}^2 + \frac{t^3}{3!} \underline{A}^3 + \dots \right]$$
(7-5)

where <u>I</u> is the identity matrix. For any given t the relationship in (7-5) imposes a set of weights onto the powers of <u>A</u>. Observe that when t=1 there is an alteration made to the straight application of the regression equations in <u>A</u>. Since these equations represent the best-linear-unbiased estimates that yield minimum residual variance, based on the least squares principle, a boundary condition will be set to maintain the use of an unweighted <u>A</u> at t=1. That is, the model to accomplish this is

$$\underline{\Pi}(1) = \underline{\Pi}(0)\underline{A}$$

$$\underline{\Pi}(t) = \underline{\Pi}(0)e^{\underline{A}t}$$

$$t > 1$$
(7-6)

Empirical evidence has shown this model is to be preferred to (7-4) or to one that begins dampening after the first hour, such as  $\Pi(t) = \Pi(0)\underline{A}e^{\underline{A}(t-1)}$ , where  $t^{\geq}1$ .

A table of normalized weights, which sum to unity, is given in table 7-1 for t=2 ..., 12 and for powers of A from 1 to 24. Note that the crest of this set of weights appears around the power of A that corresponds to the projection time.

Table 7-1.--Normalized weights for exponential GEM model for t=2,...,12 and from 1 to 24 powers of <u>A</u>.

	VALUES FOR TI	ME 2							
1 .13534D+00 6 .36089D-01 11 .38190D-04 16 .33913D-08 21 .58329D-13	2 .27067D+00 7 .12030D-01 12 .69436D-05 17 .42391D-09 22 .55552D-14	3 .27067D+00 8 .34371D-02 13 .11573D-05 18 .49872D-10 23 .50502D-15	4 .18045D+00 9 .85927D-03 14 .17804D-06 19 .55413D-11 24 .43914D-16	5 .90224D-01 10 .19095D-03 15 .25434D-07 20 .58329D-12					
	VALUES FOR TI	ME 3							
1 .49787D-01 6 .10082D+00 11 .81015D-03 16 .54631D-06 21 .71354D-10	2 .14936D+00 7 .50409D-01 12 .22095D-03 17 .10243D-06 22 .10193D-10	3 .22404D+00 8 .21604D-01 13 .55238D-04 18 .18076D-07 23 .13900D-11	4 .22404D+00 9 .81015D-02 14 .12747D-04 19 .30127D-08 24 .18131D-12	5 .16803D+00 10 .27005D-02 15 .27315D-05 20 .47569D-09					
	VALUES FOR TI	ME 4							
1 .18316D-01 6 .15629D+00 11 .52925D-02 16 .15039D-04 21 .82775D-08	2 .73263D-01 7 .10420D+00 12 .19245D-02 17 .37598D-05 22 .15767D-08	3 .14653D+00 8 .59540D-01 13 .64151D-03 18 .88465D-06 23 .28667D-09	4 .19537D+00 9 .29770D-01 14 .19739D-03 19 .19659D-06 24 .49855D-10	5 .19537D+00 10 .13231D-01 15 .56397D-04 20 .41387D-07					
	VALUES FOR TI	ME 5							
1 .67379D-02 6 .17547D+00 11 .18133D-01 16 .15725D-03 21 .26412D-06	2 .33690D-01 7 .14622D+00 12 .82422D-02 17 .49139D-04 22 .62886D-07	3 .84224D-01 8 .10444D+00 13 .34342D-02 18 .14453D-04 23 .14292D-07	4 .14037D+00 9 .65278D-01 14 .13209D-02 19 .40146D-05 24 .31070D-08	5 .17547D+00 10 .36266D-01 15 .47174D-03 20 .10565D-05					
	VALUES FOR TIME 6								
1 .24788D-02 6 .16062D+00 11 .41303D-01 16 .89126D-03 21 .37251D-05	2 .14873D-01 7 .16062D+00 12 .22529D-01 17 .33422D-03 22 .10643D-05	3 .44618D-01 8 .13768D+00 13 .11264D-01 18 .11796D-03 23 .29026D-06	4 .89235D-01 9 .10326D+00 14 .51990D-02 19 .39320D-04 24 .75721D-07	5 .13385D+00 10 .68838D-01 15 .22281D-02 20 .12417D-04					

		VALUES FOR TIN	МE	7				
6 . 11 . 16 .	91188D-03 12772D+00 70983D-01 33106D-02 29907D-04	2 .63832D-02 7 .14900D+00 12 .45171D-01 17 .14484D-02 22 .99690D-05	8 13 18	.22341D-01 .14900D+00 .26350D-01 .59640D-03 .31720D-05	9 14 19	.52129D-01 .13038D+00 .14188D-01 .23193D-03 .96538D-06	10 15	•91226D-01 •10140D+00 •70942D-02 •85449D-04
		VALUES FOR TIN	ME	8				
6 . 11 . 16 .	33546D-03 91604D-01 99262D-01 90260D-02 15897D-03	2 .26837D-02 7 .12214D+00 12 .72190D-01 17 .45130D-02 22 .60561D-04	8 13 18	.10735D-01 .13959D+00 .48127D-01 .21238D-02 .22022D-04	9 14 19	.28626D-01 .13959D+00 .29617D-01 .94389D-03 .76598D-05	10 15	•57252D-01 •12408D+00 •16924D-01 •39743D-03
		VALUES FOR TI	ME	9				
6. 11. 16.	12341D-03 60727D-01 11858D+00 19431D-01 61671D-03	2 .11107D-02 7 .91091D-01 12 .97021D-01 17 .10930D-01 22 .26430D-03	8 13 18	.49981D-02 .11712D+00 .72766D-01 .57864D-02 .10812D-03	9 14 19	•14994D-01 •13176D+00 •50376D-01 •28932D-02 •42309D-04	10 15	.33737D-01 .13176D+00 .32385D-01 .13705D-02
		VALUES FOR TI	ME	10				
6. 11. 16.	45402D-04 37835D-01 12512D+00 34720D-01 18662D-02	2 .45402D-03 7 .63058D-01 12 .11374D+00 17 .21700D-01 22 .88865D-03	8 13 18	.22701D-02 .90083D-01 .94785D-01 .12765D-01 .40393D-03	9 14 19	.75670D-02 .11260D+00 .72911D-01 .70914D-02 .17562D-03	10 15	.18918D-01 .12512D+00 .52080D-01 .37323D-02
		VALUES FOR TI	ME	11				
6. 11.	16705D-04 22420D-01 11940D+00 53363D-01	2 .18376D-03 7 .41103D-01 12 .11940D+00 17 .36687D-01	8 13	.10107D-02 .64590D-01 .10945D+00 .23739D-01	9 14	.37057D-02 .88811D-01 .92613D-01 .14507D-01	10 15	.10191D-01 .10855D+00 .72767D-01 .83987D-02

Į.

21 •46193D-02 22 •24196D-02 23 •12098D-02 24 •57861D-03

# VALUES FOR TIME 12

1.61484D-05	2.73781D-04	3 .44269D-03	4 .17707D-02	5.53122D-02
6 .12749D-01	7 .25499D-01	8.43712D-01	9.65568D-01	10 .87424D-01
11 .10491D+00	12 .11445D+00	13 .11445D+00	14 .10564D+00	15 .90551D-01
16 .72441D-01	17 .54331D-01	18 .38351D-01	19 .25567D-01	20 .16148D-01
21 .96887D-02	22 .55364D-02	23 .30198D-02	24 .15756D-02	

The consequence of employing (7-6) in contrast to (7-2) will now be demonstrated in an illustrative example.

Given:

<ul> <li>Predictands</li> </ul>	Yl	Total cloud cover clear	0
	¥2	Total cloud cover scattered	Φ
	¥3	Total cloud cover broken	$\oplus$
	Y4	Total cloud cover overcast	$\oplus$
• Predictors	x ₁	Total cloud cover clear	0
	x ₂	Total cloud cover scattered	Φ
	x3	Total cloud cover broken	$\oplus$
	x ₄	Total cloud cover overcast	$\oplus$
• Location	Was	hington, D.C. (DCA)	

• Data (same sample as employed in GEM test)

			to						
		0	Φ	$\square$	$\oplus$				
	0	19133	3166	267	63	22629			
t+1	Φ	2894	10983	3490	805	18172			
	$\square$	508	3343	7840	3316	15007			
	$\oplus$	94	679	3409	27556	31738			
Tota	1	22629	18171	15006	31740	87546			

• Transition probability matrix  $\underline{P}$ 

			t ₀		
		0	Φ	$\oplus$	$\oplus$
	0	.84551	.17423	.01779	.00198
t ₊₁	$\square$	.12789	.60442	.23257	.02536
	$\odot$	.02245	.18397	.52246	.10447
	$\oplus$	.00415	.03737	.22718	.86818

• Regression equations (omitting  $\bigoplus$  as redundant)

Ŷ1	=	.00198	+	.84352	$\mathbf{x_1}$	+	.17225	x ₂	+	.01581	x3
$\hat{\mathtt{Y}}_2$	=	.02536	+	.10253	$x_1$	+	.57906	x ₂	+	.20721	X3
$\hat{\mathbf{Y}}_{3}$	m	.10442	-	.08199	x ₁	+	.07953	x ₂	+	.41802	X3

76

• Comparing the two models, under the separate initial conditions of being clear, scattered, broken, or overcast at a 3-hr projection, gives:

	0	Φ	$\odot$	$\oplus$
Model $\underline{\Pi}(3) = \underline{\Pi}(0)\underline{P}^3$	•65787	.34595	•26265	.71224
Model $\underline{\Pi}(3) = \underline{\Pi}(0) e^{\underline{A} \cdot 3}$	•68532	•41254	•33764	•73472
Actual	.68651	.39494	.32891	.76654

Thus, in each instance the exponential model improved upon the geometric model for total cloud cover at DCA for a 3-hour projection. A similar study at DCA was conducted for 21 categories of wind at 3, 6, 9, and 12 hours. The same comparative results were obtained. In fact, a full-scale verification on the 26,328 sample described in chapter 4 yielded a convincing improvement by the exponential model over the geometric model, in Brier scores and hits, comparing all weather elements at all projections--excluding the 1-hr projection, where the forecasts are equivalent. These results are presented in table 7-2. It must be pointed out that a direct method of forecasting (noniterative) would yield the exact answer; however, it does require separate equations for the desired projections.

Furthermore, employing the continuous-time version of GEM permits predictions to be made for any time into the future beyond the first hour. For example, should a need arise for a 2 1/2-hr forecast, say for a takeoff or landing of an aircraft, such a requirement can be met very easily. No longer is it required to predict in whole-hourly units.

Because of these improved results, henceforth the model's acronym will stand for Generalized Exponential Markov.

### Including Local-Hourly Climatology

Among the predictors used in GEM's regression equations is the hour of the day. Any diurnal variation in the aggregated sample of 41 stations is duly accounted for. However, individual station data possessing diurnal variation, different from the aggregate, might not be accounted for. Evidence from the analysis of covariance indicates that single-station analyses were not sufficiently statistically significant to warrant their use. This judgment, however, was made with regard to utilizing all predictors. Further evidence, primarily from the verification, suggests that individual station hourly climatological effects are significant. Meteorological reasoning also contributes to this surmise.

Fortunately, the inclusion of local-hourly climatology fits into the GEM model very conveniently when viewed in the following manner. Using (7-6) the model can be partitioned as

$$\Pi(t) = \Pi(0) [S + T(t)]$$
(7-7)

	Brier score					Hits				
Weather	Projections					Projections				
element	3	6	9	12		 3	6	9	12	
T.		_	-			+	+	+	+	
DPD	-	~	-				· -			
v	+	+	+	÷				+	+	
F	+	+	+	-		+	+	+	+	
GF	+	+	-	-		+	+	+	+	
к,н	+	+	+	+		+	+		+	
В	+	+	+	÷		0	+	+	+	
L	+	+	+	+		+	+	+	+	
R	+	+ -	+	+		+	+	+	+	
RW	. +	+	+	+		+	+	-	+	
S	+	+	+	+		+	÷	+	+	
SW	+	+	+	+		+	-+-	+	+	
ZL	-	-	+	+		0	+	+		
ZR	+	-	+	+		0	+	+	-	
ГSM	-	-	+	+		+	-	+	+	
rsm+	+		+	+		+		0	0	
W	+	+	+	+		÷	+	+	+	
Р	+	+	+	+		÷	+	+	-	
CC#1	+	+	+			-	+	-		
CH#1	+		+	-		+	+	+		
CC#2	+	+	-			-	+	+	+	
CH#2	+	+	+	-		+	+	+	+	
ſCA	+	÷	+	+		-	-		+	
С	+	+	+	+		+	+	+	+	
+	20*	17*	20*	16*		16*	19*	18*	17:	
0	0	0	0	0		3	0	1	1	
-	4	7	4	8		5	5	5	6	

Table 7-2.--Comparison of Brier scores and hits between exponential GEM and geometric GEM. A "+" favors the exponential, while a "-" favors the geometric. A "0" indicates a tie. Hour 1 is not compared, because the two models are equivalent for that projection.

where <u>S</u> is the <u>steady state</u> component and <u>T(t)</u> is the <u>transient</u> component of the Markov process. <u>S</u> is a stochastic matrix whose elements are non-negative and whose rows sum to unity and <u>T(t)</u> are differential matrices whose rows sum to zero. In this new context, local-hourly climatology is treated in <u>S</u>, while  $e^{At}$ , t>1, and A, t=1, are treated in T(t).

A comparative test of this new concept yields results that are superior to the original geometric form of GEM, for essentially all variables and all projections in the Brier score over the verification sample.

A final comparative test incorporating the exponential weighting and localhourly climatology against persistence is shown in table 7-3. These results demonstrate GEM's superiority in 117 of the 120 comparisons and with an average improvement of 5 percent in the Brier score, despite the fact that persistence Brier scores from 3 to 12 hours are computed using the independent-sample conditional probabilities.

			GEM BRIER SCORE PERSISTENCE								
Weath eleme		1 hr.	3	6	9	12	1 hr.	3	6	9	12
T	1	.22684	.35097	.39826	.41197	.41519	•22884	.35524	.40724	•42397	.42948
DPD	2	.27253	.35554	.38323	.39089	.39418	•27953	.37361	.41315	•42427	.42727
V	3	.08184	.10709	.12199	.12712	.13189	•08379	.11187	.12951	•13458	.13874
F	4	.01297	.02599	.03586	.03963	.04337	.01422	.02926	.03949	.04330	.04735
GF	5	.00894	.01360	.01453	.01541	.01654	.00932	.01467	.01554	.01619	.01723
K,H	6	.02535	.04924	.06412	.06898	.07373	.02735	.05427	.07174	.07619	.08044
B	7	.00052	.00071	.00082	.00076	.00104	.00054	.00072	.00084	.00077	.00105
L	8	.00601	.00805	.00903	.00830	.00928	.00615	.00834	.00926	.00846	.00944
R	9	.01890	.02554	.03006	.03337	.03359	.01961	.02646	.03099	.03419	.03434
RW	10	.01888	.02269	.02346	.02334	.02306	.01950	.02349	.02415	.02387	.02349
S	11	.00603	.00920	.01227	.01351	.01335	.00630	.00970	.01296	.01423	.01409
SW	12	.00291	.00348	.00415	.00317	.00364	.00295	.00350	.00423	.00319	.00369
ZL	13	.00032	.00041	.00064	.00086	.00071	.00033	.00040	.00062	.00086	.00072
ZR	14	.00019	.00049	.00059	.00045	.00053	.00019	.00050	.00059	.00046	.00053
TSM	15	.00722	.00764	.00699	.00795	.00681	.00742	.00777	.00715	.00813	.00690
TSM <del>+</del>	16	.00000	.00004	.00000	.00008	.00000	.00000	.00004	.00000	.00008	.00000
W	17	.35324	.40537	.43342	.44254	.44592	.35948	.41183	.43909	.45064	.45556
P	18	.07501	.17094	.24254	.27499	.29792	.07548	.17329	.24577	.27587	.29659
CC#1	19	.20386	.26169	.28726	.30209	.30946	.21565	.28215	•31423	.33127	.33793
CH#1	20	.23088	.31251	.34725	.36421	.37230	.23924	.32809	•36821	.38670	.39391
CC#2	21	.16348	.20062	.21518	.22453	.22846	.17733	.22276	•24016	.24952	.25269
CH#2	22	.12070	.15056	.16105	.16518	.16738	.12681	.16081	.17125	.17504	.17659
TCA	23	.18004	.25285	.29285	.31312	.32395	.18611	.26635	.31173	.33369	.34407
C	24	.16453	.21382	.23577	.25028	.25517	.17222	.22534	.24774	.26221	.26520

Table 7-3.--Brier score comparison between GEM, with exponential decay and local-hourly climatology, and persistence for the sample in table 4-1.

### ACKNOWLEDGMENTS

Many individuals assisted in this effort. I wish to thank especially the current team of Albert Forst, William Griner, William Herrmann, and Thomas Perrone, without whose efforts this work on GEM would not have been accomplished. Help was also received from Frank Lewis and David Vercelli. Thanks are given also to the AWS and SLU team of Majors Michael Kelly and Roger Whiton, who worked out many of the details and computer programs.

Fundamental ideas were provided by a former colleague and a pioneer in statistical weather prediction, Joseph Bryan.

My sincere appreciation to Larry Best and Jack Jalickee for some helpful ideas.

A very special thank-you to Evelyn Liddel, whose excellent editing and typing brought the report to life.

### BIBLIOGRAPHY

Beran, D. W. 1980: PROFS Proposed policy, mission, goals, and organizational structure. <u>NOAA Technical Memorandum</u>, ERL PROFS-2, Environmental Research Laboratories, NOAA, U.S. Department of Commerce, 49 pp.

Brier, G. W., 1950: Verification of forecasts in terms of probability. Mon. Wea. Rev., 78, 1-3.

Cox, D. R., 1970: Analysis of Binary Data. Chapman and Hall, London, 142 pp.

- Crisci, R. L., and F. Lewis, 1973: Automated probability forecasts of ceiling and visibility based on single-station data. <u>Nat. Wea. Service</u> Report No. FAA-RD-73-13, Silver Spring, Md., 68 pp.
- Crout, P. D., 1941: A short method for evaluating determinants and solving systems of linear equations with real or complex coefficients. <u>Trans. AIEE</u>, 60, 1235-1241.
- Feller, W., 1950: An Introduction to Probability Theory and Its Applications. John Wiley and Sons, New York, 419 pp.
- Geisler, E. B., 1979: Development and evaluation of a tower slant visual range system. Air Force Geophysics Laboratory, Instrumentation Paper No. 281, AFGL-TR-79-0209, 42 pp.
- Glahn, H.R., and D. A. Lowry, 1972: The use of Model Output Statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11, 1203-1211.
- Harris, R., 1962: Personal communication.
- Howard, R., 1960: Dynamic Programming and Markov Processes. The Technology Press, MIT, John Wiley and Sons, New York, 136 pp.
- Kelly, M. J., 1978: Development of single station and area statistical shortrange forecast technique. Unpublished manuscript.
- Miller, R. G., 1964: Regression estimation of event probabilities. <u>Travelers</u> <u>Research Center Tech. Report</u>, 7411-121, Contract Cwb 10704, Hartford, <u>Conn., 153 pp.</u>

1968: A stochastic model for real-time on-demand weather prediction. <u>Proceedings, First Statistical Meteorological Conference</u>, Amer. Meteor. <u>Soc.</u>, 48-51.

- 1969: SLAM: A screening lattice algorithm for non-linear regression estimation of event probabilties, <u>Travelers Research Center, Inc</u>., Hartford, Conn.,23 pp.
- 1979a: Estimating event probabilities by discrete likelihood functions. <u>Proceedings, Sixth Conference on Probability and Statistics in Atmospheric</u> <u>Sciences, Amer. Meteor. Soc., 93-97.</u>
  - _____1979b: Conditional climatology given the local observation. <u>Nat. Wea</u>. Digest, 4, 2-15.
- , R. C. Whiton, and M. J. Kelly, Jr., 1977: Results of a single station forecasting experiment. <u>Proceedings, Fifth Conference on Probability and</u> Statistics in Atmospheric Sciences, Amer. Meteor. Soc., 37-40.
- Mood, A. M., 1950: Introduction to the Theory of Statistics. McGraw-Hill, New York, 433 pp.
- National Weather Service, 1976: Program development plan. Automation of field operations and services (AFOS). NOAA Report 76120603, 129 pp.
- Shorr, B., 1958: Studies in statistical weather prediction. <u>Travelers Ins. Co</u>. Final Report, Contract No. AF19(604)-1590, Hartford, Conn., 238 pp.
- Tatsuoka, M. M., 1971: <u>Multivariate Analysis: Techniques for Educational and</u> Psychological Research. John Wiley and Sons, New York, 310 pp.
- Unger, D., 1980: Personal communication.
- Veigas, K., R. G. Miller, and G. Howe, 1959: Probabilistic prediction of hurricane movements by synoptic climatology. <u>Occasional Papers in Meteorology</u> No. 2, Travelers Ins. Co., Hartford, Conn., 54 pp.
- Vercelli, D. J., and M. M. Heffernan, 1978: AFOS aviation local monitoring and updating program. <u>Preprints Conference on Weather Forecasting and Analysis</u> and Aviation Meteorolgoy, Amer. Meteor. Soc., 369-373.
- Whiton, R. C., 1977: Markov processes. <u>Selected Topics on Statistical Meteor-ology</u>, Ed., R. G. Miller, Air Weather Service Tech. Report AWS-TR-77-273, Scott AFB, Ill., 45 pp.
- Wiener, N., 1948: <u>Cybernetics</u>. The Technology Press, MIT, John Wiley and Sons, New York, 194 pp.
- _____, 1950: Extrapolation, Interpolation, and Smoothing of Stationary Time Series. The Technology Press, MIT, John Wiley and Sons, New York, 163 pp.

^{, 1956:} Nonlinear prediction and dynamics. <u>Proceedings of the Third</u> Berkeley Symposium, Ed., J. Neyman, University of California Press, Berkeley, 247-252.

Additive: Requires only simple additions to obtain a solution.

AFB: Air Force Base

AFGL: Air Force Geophysics Laboratory

AFOS: Automation of Field Operations and Services

- Analysis of covariance: R. A. Fisher's statistical method for testing treatment effects, taking into account concomitant variables through regression
- Analysis of variance: R. A. Fisher's statistical method for testing treatment effects
- Anding: Boolean operation where the resultant is a one only if both conditions are ones; otherwise it is zero.

Anomaly: A condition in which the mean--or climatology--has been removed from the original observations

AWDS: Automated Weather Distribution System

AWS: Air Weather Service

Bayes Solution: A decision-theoretic principle of minimizing risk or maximizing expected gain

Bias: Systematic distortion over a sample

Binary: Having only the value zero or one

- Blending: Bringing together two or more predictions superior to any single prediction
- Booleans: An interactive variable created by a logical operation of Boolean algebra

Brier score: A verification score for probability forecasts where

$$BS = \sum_{i=1}^{N} \sum_{g=1}^{G} (\hat{P}_{ig} - \Theta_{ig})^2 / 2N$$

 $P_{ig}$  is the predicted probability,  $\Theta_{ig}$  is a one or zero, depending upon whether the event occurred or not, and where there are G categories and a sample of N. Actually 1/2 the original score defined by Brier.

Canonical correlation: A multivariate statistical method applied to two sets of variables

Categorical: An unambiguous choice of predicted weather-element category

Continuous variable: An ordered variable on a scale, in contrast to a discrete variable

CPU: Central processing unit

DCA: Washington, D.C.

Degrees of freedom: Parameters of the F distribution

Direct: A type of forecast that attempts to predict for a specific projection, in contrast to one that is obtained by iterating shorter-time projections

Discriminant analysis: A multivariate statistical method in which consideration is given to groups of data conditioned on the predictand

Distance neighborhood: A property of closeness in a Euclidean space

DLF: Discrete likelihood functions

Dummy variable: Having either the value zero or one in all observations

ECLIPSE: A minicomputer (made by Data General), which is an integral part of AFOS

- Eigenfunction: The mathematical operation of decomposition into orthogonal components
- FAA: Federal Aviation Administration
- GEM: Generalized equivalent Markov--more recently, generalized exponential Markov
- GEM-like: Other than a pure GEM procedure. Usually not generalized but based on the Markov assumption and capable of iteration
- GEMTRIX: Matrix of hourly GEM-forecast probabilities of each weather-element category

Generalized operator: A fixed set of equations applicable anywhere

GMT: Greenwich mean time

Gross predictors: A simple Boolean interactive variable between two coarsely defined weather conditions

Hits: Number of correct forecasts

Interactive: A joint condition among two or more variables

Left out dummy: In categorizing a weather element into G categories, there is always one of the G that is redundant, since if all of the others are off, the left-out one must be on.

LST: Local standard time

Map form: Data arrayed where all observed elements for one particular time are together

Markov process: A stochastic process that uses only knowledge of the present state and nothing from any prior state

MAWS: Modular automated weather system

MIA: Miami, Florida

MIT: Massachusetts Institute of Technology

Models I, II, III: Models underlying the analysis of covariance

MOS: Model output statistics

MSP: Minneapolis-St. Paul, Minnesota

MSY: New Orleans, Louisiana

Multiplicative: Requiring multiplication operations to obtain a solution

Multivariate regression: Linear regression where the number of dependent variables regressed on a fixed set of independent variables exceeds one

NEDS: Naval Environmental Display System

NMC: National Meteorological Center

Nonadditivity: The principle that prevents the simple summing of two effects because of synergism

NWS: National Weather Service

OB: Observation

PERSIS: Persistence

PHL: Philadelphia, Pennsylvania

PIREP: Pilot report

PLODITE: Putting left out dummy in the equation

Predictand: A variable for which a forecast is made

Predictor: A variable used to make a forecast

PROFS: Prototype regional observing and forecasting service

REEP: Regression estimation of event probabilities

Renormalizing: Creating a situation where the sum of a set of numbers is made to be unity

85

- Runs: The number of times in a binary string there is a switch from 0 to one or vice versa
- Screening: A procedure which chooses a subset of predictors from a larger set
- Serial correlation: The property that sequential observations are usually related to one another and are therefore not independent observations
- SFO: San Francisco, California
- Single station: A statistical operator based on only data from a certain location or station
- SLAM: Screening lattice algorithm
- SLC: Salt Lake City, Utah
- SLU: St. Louis University
- Spectral decomposition: A mathematical technique for arriving at orthogonal components
- Station-adjusted climatology: The procedure of superimposing the local climatology on an otherwise generalized operator
- Stratification: Grouping of data usually under some antecedent condition such as season
- TDL: Techniques Development Laboratory
- Threat: A verification scoring system that is defined as  $H/(F+\Theta-H)$  where H is the number of hits, F is the number of forecasts, and  $\Theta$  is the number of observed cases
- Threshold: A probability value that, if exceeded by the forecast probability, would initiate a categorical forecast of the event
- TSO: Time sharing option
- TRC: Travelers Research Center
- Vector form: Data arrayed where the same weather element appears over all observations
- WBAN: Weather Bureau-Air Force-Navy observation form

# GLOSSARY OF SYMBOLS

А	Extended limit below 0.0 in beta distribution; or hail
A	Matrix of generalized operator regression coefficients one hour hence
Aa	Matrix of anomaly regression coefficients for predicting one hour hence
В	Extended limit above 1.0 in beta distribution; or blowing weather condition
<u>Ba</u>	Matrix of anomaly regression coefficients in <u>Aa</u> transformed to PLODITE form
B	Matrix of regression coefficients in <u>A</u> transformed to PLODITE form
B _{iy}	Element i of <u>B</u> matrix for predictand Y
β	Matrix of beta coefficients generated from <u>B</u> matrix
β	Beta coefficient in regression analysis; or beta distribution
BS	Brier score
С	Ceiling
CC#1	Lowest cloud cover
CC#2	Second cloud cover
CH #1	Lowest cloud height
CH #2	Second cloud height
DPD	Dew point depression
ε2	Sum of squares of forecast errors
f	Factor for determining the number of independent observations
F	Computed F statistic; or fog
Fcrit	Critical F value
F _ŋ	Test statistic for Model II in the analysis of covariance
$F_{\mu}$	Test statistic for Model III in the analysis of covariance
GF	Ground fog
Γ	Gamma function
н,к	Haze, smoke, dust, or any combination of these

87

- I Denotes station which was part of the analysis of variance and covariance tests
- K Number of stations in sample
- L Drizzle
- L_k Station k
- $\mu_0$  Mean of  $\hat{Y}$  when event did not occur
- $\mu_1$  Mean of Y when event occurred
- n Estimated number of independent observations in a sample based on considering serial correlation
- N Total sample size
- N_k Sample size from station k
- v Degrees of freedom
- NO WX No hydrometeors
- $\Theta$  Observation (0 is event not observed, 1 if event observed)
- P* Threshold probability
- p Predictor index
- P Total number of predictors; or pressure
- II(t) A probability vector at time t
- q Predictand index
- Q Total number of predictands
- r Number of runs
- R Rain
- R² Correlation coefficient squared
- RW Rain showers
- S Snow
- S Steady-state component in GEM
- SSEX Sum of squares explained
- SSR Sum of squares residual or within
- SST Sum of squares total

SSW	Sum of squares within or residual
SW	Snow showers
σ	Standard deviation
Σ	Summation
т	Temperature; or matrix power when superscript
TCA	Total cloud amount
TSM,A	Thunderstorm or hail
TSM+	Thunderstorm heavy
$\underline{T}(t)$	Transient-state component in GEM
U	Raw predictand
v	Visibility
W	Wind
WX	Hydrometeor
Х	Raw predictor
Y	Dummy predictand
<u>Y'Z</u>	Predictand-predictor crossproduct matrix
Z	Dummy predictor
ZL	Freezing drizzle
ZR	Freezing rain
<u>Z'Z</u>	Predictor-predictor crossproduct matrix
^	Signifies a predicted or estimated value
1	Transpose of a matrix
	Underscoring signifies a vector or matrix

•

### APPENDIX

### A BETA CLASSIFICATION MODEL

### Robert G. Miller and Donald L. Best

### 1. INTRODUCTION

This paper introduces a new classification procedure using beta probability density functions (pdf) to compute threshold probability values. The classification problem is this: given a probability distribution for the occurrence of an event, how does one make a categorical decision? In decision theory, such classifications are made under the control of some underlying utility function. The decisionmaker may then choose categorical selections that either maximize some gain or minimize some loss. In weather forecasting, utility is usually some verification statistic which is to be optimized (e.g., percent correct, hits, threat score, or skill score). This paper departs from the decision-theoretic approach by using a much simpler, albeit approximate, procedure incorporating threshold probabilities and a successive pair-wise comparison test. Using threshold probability values is not new; however, what has yet to be achieved is a threshold model that would provide a wide range of desired categorical responses that in turn control the verification statistic. The Beta classification model presented here accomplishes this objective. This procedure can maximize threat score, and can produce a marginal distribution balance (i.e., the number of forecast events equals the number of events observed).

### 2. REGRESSION PROBABILITY MODEL

The first step in the classification problem is to establish a function which can provide event probabilities. Linear regression of a selected dependent variable onto the desired independent variables accomplishes this. Here we define the independent variables, or predictors, as  $X_1$ ,  $X_2$ ,  $X_3$ ,  $\ldots X_K$ . We represent the dependent variable, the predictand, as Y; its estimate is  $\hat{Y}$ . The desired probability model is then:

$$\hat{Y} = d_0 + d_1 X_1 + d_2 X_2 + \dots + d_K X_K$$
 (1)

The solution of the coefficients  $(d_i's)$  is obtained through regular multiple regression techniques with or without screening. The definition of the predictand values is absolutely necessary. The event must be exhaustive and mutually exclusive of all other possible events. If the event over the developmental data sample is observed to fall within this preselected definition of occurrence, the Y-value is assigned a "1"; otherwise it is assigned a "0." The Y-data are, therefore, binary variables representing whether the event occurred or not. The predictor variables may be either scalar, binary, or some combination of either.

Introduction of a binary predictand Y into a least-squares linear regression program produces a model which then will estimate probabilities of future events. Since there are many possible combinations of the predictors, the probability model produces a range of probability values. These values can be grouped according to verification and examined through their frequency distributions as illustrated in figure 1. This figure also shows several features that are important to the understanding of the following discussion.

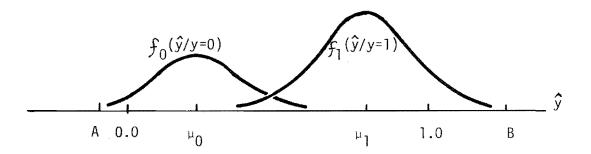



Figure 1.--Schematic depiction of the probability-value  $(\hat{y})$  distributions when Y=1 and Y=0. The  $\mu$  values represent distribution means.

### 3. CLASSIFICATION BY THRESHOLDING

There are two well defined clusters of probability values grouped into occurrence  $f_1(\hat{Y}/Y=1)$  and non-occurrence  $f_0(\hat{Y}/Y=0)$  of the event. The respective means of these distributions are  $\mu_1$  and  $\mu_0$ . Some values fall outside the (0,1) range. The (A,B) interval represents the lower and upper bounds of possible probability values. The property that the "probability" estimate can fall outside the (0,1) range is more a nuisance to the classification problem than a mystical fact.

This property is actually of little concern, because the two distributions' overlapping values are of greater concern to us than the out-of-range values. Figure 2 portrays the overlapping problem with a given threshold value, p*.

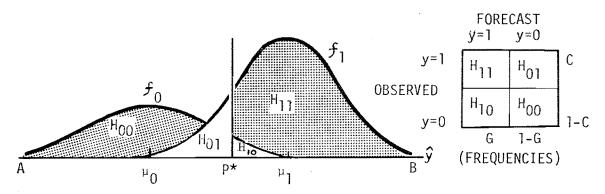



Figure 2.--Illustration of how a chosen p* (threshold probability) would control the frequency of positive classifications. A verification table is also shown. Subscripts on densities  $H_{ij}$  represent forecast category i and verified category j.

Since these two distributions describe the forecast model's response in an expected sense, we can construct an expected verification table upon which various statistical scores can be computed. The verification table's entries  $(H_{ij})$  are estimated from the two distributions and the selected p* by these relationships:

$$H_{11} = C \int_{p^{*}}^{B} f_{1} d\hat{Y}$$

$$H_{10} = (1-C) \int_{p^{*}}^{B} f_{0} d\hat{Y}$$

$$H_{01} = C \int_{A}^{p^{*}} f_{1} d\hat{Y} = C - H_{11}$$

$$H_{00} = (1-C) \int_{A}^{p^{*}} f_{0} d\hat{Y} = (1-C) - H_{10}$$
(2)

To control the frequency of positive classifications (the G measure in figure 2), simply solve for the p* that gives the desired frequency result:

$$G = H_{11} + H_{10}$$
(3)

For example, classification control to balance the classification table's margins can be accomplished by finding the p* which yields G = C. Other scores can likewise be maximized by stepping p* through the (A,B) interval, deriving the expected verification table (the  $H_{ij}$  values will change), computing the desired statistical score, and stopping where the desired maximum or minimum score is found. For example, to maximize the threat score find the p* which yields  $T_{max} = H_{11}/(H_{11} + H_{10} + H_{01})$ , or to maximize the Heidke skill score find *p such that

$$S_{MAX} = \frac{H_{11} + H_{00} - CG - (1-C)(1-G)}{1 - CG - (1-C)(1-G)}$$
(4)

A decision-theory application is also available. If a user has a known utility or value-assessment to apply against the expected verification table, one merely varies the p* until an expected maximum gain or minimum loss value results.

### 4. STATISTICS OF THE PROBABILITY VALUE DISTRIBUTIONS

Specifying the analytic form of the underlying distributions is a vital component of a threshold model because the  $H_{i\,j}$  values defined previously require some analytic function to integrate. The properties of the distributions in question are examined:

### Definitions:

- C Relative frequency of the predictand event when Y=1.
- R The correlation between the Y and Y over the dependent sample (also known as the multiple correlation coefficient).
- $f_i$  Shorthand notation for the distributions  $f_i$  (Y/Y=i), i=0,1.
- $\mu_i$  Mean value of the distribution  $f_i$ , i=0,1.
- $\sigma_i^2$  Variance of  $\hat{Y}$  about  $\mu_i$  when Y=i, i=0,1.
- $\sigma^2$  Total predictand variance.
- $\sigma_{\rm tr}^{\rm Z}$  Pooled predictand variance.

Computations and relationships:

2

ЪT

$$C = \frac{1}{N} \sum_{j=1}^{N} Y_{j} \quad (N=\text{sample size})$$

$$R^{2} = (SST-SSR)/SST; SST=\text{sum of squares of total}, \sum_{j=1}^{N} (Y_{j} - C)^{2}$$

$$SSR=\text{sum of squares of residuals}, \sum_{j=1}^{N} (\hat{Y}_{j} - Y_{j})^{2}$$

SST-SSR=SSEX or sum of squares explained.

$$\mu_0 = C \quad (1 - R^2) \text{ (see proof #1)}$$

$$\mu_1 = R^2 + C \quad (1 - R^2) \text{ (see proof #1)} \quad (\text{Notice that: } \mu_1 - \mu_0 = R^2)$$

$$\sigma^2 = C \quad (1 - C) \text{ (see proof #2)}$$

$$\sigma^2_w = C \quad (1 - C) \quad R^2 \quad (1 - R^2) \quad (\text{see proof #3)}$$

We have reason to suspect the distributions  $f_0$  and  $f_1$  to be beta pdf's, but to prove this is quite another matter. We postulate, therefore, that if we could parameterize the constants (also known as shape parameters) of the beta pdf using only the basic statistics described and defined above, we could compute likelihoods and use the Bayes theorem to test whether the input probability value ( $\hat{Y}$ ) is unaltered after being transformed through a beta pdf. We surmise that, if an input value is transformed into a form which accomplishes desired results, then the transformation function is appropriate. In this case the input is the probability  $\hat{Y}$ , and the transformation function is the Bayes theorem using likelihoods ( $\beta_i$ ) generated from the beta pdf's. That is, we want to show that

$$\hat{\mathbf{Y}} = \frac{\begin{array}{c} C & \beta_1 & (\mathbf{Y} | \mathbf{Y}=1) \\ \hline C & \beta_1 (\hat{\mathbf{Y}} | \mathbf{Y}=1) + (1-C) & \beta_0 (\hat{\mathbf{Y}} | \mathbf{Y}=0) \end{array}}{\left( \begin{array}{c} 5 \end{array} \right)},$$
(5)

with

$$\beta_{i} \left( \hat{Y} \middle| Y=i \right) = \frac{\Gamma(\alpha_{i} + \nu_{i})}{\Gamma(\alpha_{i}) \cdot \Gamma(\nu_{i})} \quad \hat{Y}^{\alpha_{i}-1} \left( 1 - \hat{Y} \right)^{\nu_{i}-1}, \quad (i=0,1) \quad (6)$$

Several empirical results substantiated that the beta pdf was the required distribution, but with the relationships given above we can also demonstrate it mathematically. (See proof #4.)

### 5. HANDLING THE OUT-OF-RANGE PROBLEM

The beta pdf is defined over the (0,1) interval, but figure 1 illustrates the true situation where some probability values can fall outside these bounds. One could argue, therefore, that any model which produces probabilities outside

of the permissible range of the beta pdf must in fact not be replicating a beta pdf. Wadsworth and Bryan (1960) show, however, that a beta pdf can be "stretched" to other bounds such as (A,B). Stretching is performed by a transformation U =  $(\hat{Y}-A)/(B-A)$  from the  $\hat{Y}$ -scale to a U-scale. The range of (0,1) thereby expands to (A,B). Wadsworth and Bryan also state that the solution of the stretched beta pdf uses the same shape parameters  $\alpha_i$  and  $\nu_i$ . The proper beta pdf for integration to solve the H_{ij} terms becomes:

$$\beta_{i} (\hat{Y} | Y=i) = \frac{\Gamma(\alpha_{i} + \nu_{i})}{\Gamma(\alpha_{i}) \cdot \Gamma(\nu_{i})} \quad U^{\alpha_{i}-1} (1-U)^{\nu_{i}-1}, (i=0,1)$$
(7)

where proof #4 shows that:

$$\alpha_{i} = \mu_{i}(\mu_{i}(1-\mu_{i}) - S_{i}^{2})/S_{i}^{2}, \quad i=0,1$$

$$\nu_{i} = \alpha_{i}(1-\mu_{i})/\mu_{i}, \quad i=0,1$$

$$S_{i}^{2} = \frac{R^{2}}{(1+R^{2})} \mu_{i}(1-\mu_{i}), \quad i=0,1$$
(9)

if

This information allows us to solve the  ${\rm H}_{\mbox{ij}}$  verification values from the standard beta pdf.

An important corollary to the transformation of  $\hat{Y}$  to a standard beta variate U is that any value of  $\hat{Y}$  lying between A and B can be transformed to lie between 0 and 1 through the formula

$$U = \frac{Y - A}{B - A}$$
(10)

Since A and B are not normally precisely known, a set of reasonable values has been found:

$$A = \mu_0 - 2\sigma_w \quad \text{for } \mu_0^{<2\sigma_w}$$

$$A = 0 \quad \text{elsewhere}$$

$$B = \mu_1 + 2\sigma_w \quad \text{for } (1-\mu_1)^{<2\sigma_w}$$

$$B = 1 \quad \text{elsewhere}$$
(11)

also, set

$$U = 0 \text{ when } \hat{Y} < A$$

$$U = 1 \text{ when } \hat{Y} > B$$
(12)

Proof #5 demonstrates some relationships which pertain to estimating the beta distribution parameters from known sample estimates.

### 6. SUMMARY

In problems such as weather forecasting it is often important to make a categorical decision about a future event. Given that we have a probability estimate of the future state of the atmosphere, we are left with the challenge of deciding whether the probability value is sufficiently large to warrant a categorical "yes it will occur" forecast. To do this we need something to compare the probability forecast against, hence the need for a critical value called the threshold probability.

When there are various users of weather-forecast information, the same probability of occurrence can evoke different categorical responses because each will most likely have different "thresholds of pain," so to speak. For example, if a 20-percent chance of a severe thunderstorm is forecast, one customer with a threshold probability of 30 percent will pick a "no it will not happen" category while another with a 15-percent threshold will definitely make plans for its occurrence. The simplicity of this classification procedure is to answer the question: does the probability forecast exceed the threshold probability? If it does, forecast an occurrence; otherwise do not. The beta pdf threshold model allows us to specify the threshold probability value needed by the user through the control of the expected frequency of positive classification (or 'yes" forecasts). Proof #1: Prove that

$$\mu_0 = C(1 - R^2)$$
 (1)

and that

$$\mu_1 = R^2 + C(1-R^2).$$
 (2)

Given that

$$R^2 = \frac{SSEX}{SST} , \qquad (3)$$

where the sum of squares explained can be obtained from

$$SSEX = \sum_{k=1}^{K} d_k \sum_{j=1}^{N} X_{jk} Y_j - NC^2$$
(4)

and (see proof #2)

$$SST = NC(1-C).$$
⁽⁵⁾

In addition, the mean of  $\hat{Y}$  when the event occurs can be obtained from

$$\mu_{1} = \sum_{k=1}^{K} d_{k} \sum_{j=1}^{\Sigma} X_{jk}Y_{j}/NC$$
(6)

Then, using (3), (4), and (5) we get

$$R^{2} = (NC\mu_{1} - NC^{2})/NC(1-C).$$
(7)

Combining (7) with (6) will yield

$$\mu_1 = R^2 + C(1 - R^2).$$
 (8)

Now the mean of  $\hat{Y}$  equals that of Y, because  $\hat{Y}$  is an unbiased estimate of Y. Hence

$$C = C\mu_1 + (1-C)\mu_0 , \qquad (9)$$

and (9) with (8) yields

$$\mu_0 = C(1-R^2)$$
. QED (10)

Proof #2

$$\sigma^2 = C(1-C). \tag{1}$$

Given that Y is a binary variable (0 or 1)

$$\sigma^{2} = \frac{1}{N} \cdot SST$$

$$\sigma^{2} = \frac{1}{N} \sum_{j=1}^{N} (Y_{j} - \overline{Y})^{2}$$

$$\sigma^{2} = \frac{1}{N} \sum_{j=1}^{N} (Y_{j} - 2Y_{j}\overline{Y} + \overline{Y}^{2})$$

$$\sigma^{2} = \frac{1}{N} \sum_{j=1}^{N} Y_{j} - \frac{2Y}{N} \sum_{j=1}^{N} Y_{j} + \overline{Y}^{2}$$
Since  $Y^{2} = Y$  then  $\sum_{j=1}^{N} Y_{j}^{2} = \sum_{j=1}^{N} Y_{j}$  and  $\overline{Y} = C$ .
Thus,
$$\sigma^{2} = C - 2C^{2} + C^{2}$$
(3)

$$\sigma^2 = C(1-C). \qquad QED \qquad (4)$$

<u>Proof #3</u>: Prove that for  $\hat{Y}$  $\sigma_w^2 = C(1-C) R^2 (1-R^2)$ (1)

given that

or

$$\sigma_{\rm W}^2 = \frac{1}{\rm N} \, \rm SSR. \tag{2}$$

Further, from the Analysis of Variance in regression,

$$SSR = SST - SSEX$$
 (3)

However, we know that

$$SST = NC(1-C)R^2$$
(4)

and

SSEX = 
$$n_0 (\mu_0 - C)^2 + n_1 (\mu_1 - C)^2$$
 (5)

where

$$n_0 = N(1-C)$$
(6)  
$$n_1 = NC$$

Thus,

SSR = NC(1-C) R²-N(1-C) (
$$\mu_0$$
-C)²-CN( $\mu_1$ -C)². (7)

But, from proof #1

$$\mu_0 = C(1-R^2)$$
(8)  
$$\mu_1 = R^2 + C(1-R^2).$$

We then get

$$\sigma_{w}^{2} = C(1-C)R^{2} - (1-C)(C-CR^{2}-C)^{2} - C(R^{2}+C-CR^{2}-C)^{2}$$

$$\sigma_{w}^{2} = C(1-C)R^{2} - (1-C)C^{2}R^{4} - C(1-C)^{2}R^{4}$$

$$\sigma_{w}^{2} = C(1-C)[R^{2} - CR^{4} - (1-C)R^{4}]$$

$$\sigma_{w}^{2} = C(1-C)(R^{2} - CR^{4} - R^{4} + CR^{4})$$

$$\sigma_{w}^{2} = C(1-C)(1-R^{2})R^{2}$$

Proof #4: Prove that

$$\hat{\mathbf{Y}} = \frac{\mathbf{C} \cdot \boldsymbol{\beta}_{1}(\hat{\mathbf{Y}} | \mathbf{Y}=1)}{\mathbf{C} \cdot \boldsymbol{\beta}_{1}(\hat{\mathbf{Y}} | \mathbf{Y}=1) + (1-\mathbf{C}) \cdot \boldsymbol{\beta}_{0}(\hat{\mathbf{Y}} | \mathbf{Y}=0)}$$
(1)

where

$$\beta_{i}(\hat{Y}|Y=i) = \frac{\Gamma(\alpha_{i}+\nu_{i})}{\Gamma(\alpha_{i}) \cdot \Gamma(\nu_{i})} \hat{Y}^{\alpha_{i-1}}(1-\hat{Y})^{\nu_{i-1}}, \quad (i=0,1) \quad (2)$$

This is tantamount to showing that event probability forecasts,  $\hat{Y}$ , in the beta distribution produce likelihoods which, when applied to the Bayes theorem, yields itself.

Or, that

$$\hat{Y} = \frac{Cf_1}{Cf_1 + (1 - C)f_0}$$
(3)

Basic relationships and definitions:

$$f_{1} = \frac{\Gamma(\alpha_{1} + \nu_{1})}{\Gamma(\alpha_{1}) \Gamma(\nu_{1})} \hat{Y}^{\alpha_{1} - 1} (1 - \hat{Y})^{\nu_{1} - 1}$$
(4)

$$f_{0} = \frac{\Gamma(\alpha_{0} + \nu_{0})}{\Gamma(\alpha_{0})\Gamma(\nu_{0})} \quad \hat{y}^{\alpha_{0} - 1} (1 - \hat{y})^{\nu_{0} - 1}$$
(5)

$$\alpha_{i} = \mu_{i} \left( \mu_{i} (1 - \mu_{i}) - S_{i}^{2} \right) / S_{i}^{2} \qquad i = 0, 1$$
(6)

$$v_{i} = \left(\frac{1-\mu_{i}}{\mu_{i}}\right)^{\alpha_{i}}$$
 i=0,1 (7)

where

$$\mu_{1} = \text{mean of } Y \text{ when } Y=1$$

$$\mu_{0} = \text{mean of } \hat{Y} \text{ when } Y=0$$

$$S_{1}^{2} = \text{variance of } \hat{Y} \text{ about } \mu_{1} \text{ when } Y=1$$

$$S_{0}^{2} = \text{variance of } \hat{Y} \text{ about } \mu_{0} \text{ when } Y=0$$

~

with

$$\mu_1 = R^2 + C(1-R^2) = R^2 + \mu_0 \qquad (Proof \#1) \qquad (8)$$

$$\mu_0 = C(1-R^2)$$
 (Proof #1) (9)

$$S_{i}^{2} = \frac{R^{2}}{1+R^{2}} \mu_{i}(1-\mu_{i}),$$
 (10)

and

R² = Reduction of variance of the forecast equation, or the square of the correlation between the forecast probabilities and the dependent variable over the dependent sample.

Before we solve (3) simplify some of the above parameters:

Putting (10) into (6) reduces 
$$\alpha_{i} = \frac{\mu_{i}}{R^{2}}$$
, i=0,1 (11)

Putting (8) or (9) into (7) reduces 
$$v_i = \frac{1-\mu_i}{R^2}$$
, i=0,1 (12)

Now, 
$$\alpha_{i} + \nu_{i} = \frac{1}{R^{2}}$$
 i=0,1 (13)

Rewriting (3) as 
$$\frac{1}{1 + \frac{(1-C)}{C}} = \frac{1}{1+D}$$

and reducing the term D: Returning to (4) and (5), D becomes:

$$D = \frac{1-C}{C} \cdot \frac{\Gamma(\alpha_0 + \nu_0)}{\Gamma(\alpha_1 + \nu_1)} \cdot \frac{\Gamma(\alpha_1)}{\Gamma(\alpha_0)} \cdot \frac{\Gamma(\nu_1)}{\Gamma(\nu_0)} \cdot \hat{Y}^{\alpha_0 - \alpha_1} (1-\hat{Y})^{\nu_0 - \nu_1}$$
(14)

From (11) 
$$\alpha_0 - \alpha_1 = \frac{\mu_0^{-\mu_1}}{R^2}$$
 (15)

and from (12) 
$$v_0 - v_1 = \frac{\mu_1 - \mu_0}{R^2}$$
 (16)

But we also see from (8) that 
$$\mu_1 - \mu_0 = R^2$$
 (17)

Therefore, (15) and (16) become  $\alpha_0 - \alpha_1 = -1$  (18)  $\nu_0 - \nu_1 = -1$ 

From (13) we see that 
$$\Gamma(\alpha_0 + \nu_0) = \Gamma(\alpha_1 + \nu_1) = \Gamma(\frac{1}{R^2})$$
 (19)

Now (14) becomes, with (15), (16), and (17):

$$D = \frac{1-C}{C} \cdot \frac{\Gamma(\alpha_1)}{\Gamma(\alpha_0)} \cdot \frac{\Gamma(\nu_1)}{\Gamma(\nu_0)} \cdot \frac{(1-\hat{Y})}{\hat{Y}}$$
(20)

Next we look at the ratio

$$\frac{\Gamma(\alpha_1)}{\Gamma(\alpha_0)} :$$
 (21)

from (11) and (8)

$$\Gamma(\alpha_1) = \Gamma(\frac{\mu_1}{R^2}) = \Gamma(1 + \frac{\mu_0}{R^2})$$
(21)

From (11) 
$$\Gamma(\alpha_0) = \Gamma(\frac{\mu_0}{R^2})$$
 (22)

Using the feature of the Gamma function that  $\Gamma(1+Z) = Z \Gamma(Z)$ , Z>0 we change (21) to

$$\Gamma(1+\frac{\mu_0}{R^2}) = \frac{\mu_0}{R^2} \Gamma(\frac{\mu_0}{R^2})$$
(23)

Now from (22), (23), and (9)

$$\frac{\Gamma(\alpha_1)}{\Gamma(\alpha_0)} = \frac{\mu_0}{R^2} = \frac{C(1-R^2)}{R^2}$$
(24)

Next look at the ratio  $\frac{\Gamma(v_1)}{\Gamma(v_0)}$ :

From (12) and (8)

$$\Gamma(v_1) = \Gamma(\frac{1-\mu_1}{R^2}) = \Gamma(\frac{1-\mu_0-R^2}{R^2}) = \Gamma(-[1-\frac{1-\mu_0}{R^2}]). \quad (25)$$

From (12)

$$\Gamma(v_0) = \Gamma(\frac{1-\mu_0}{R^2})$$
 (26)

Using the feature of the Gamma function that

$$\Gamma(-Z) = -\frac{\Gamma(1-Z)}{Z}, Z > 0$$
  
 $\Gamma(\frac{1-\mu_0}{R^2})$ 

Change 25 to

$$\Gamma(-[1-\frac{1-\mu_0}{R^2}]) = \frac{\Gamma(\frac{1}{R^2})}{\frac{1-\mu_0}{R^2}-1}$$
(27)

and using (26) and (27)

$$\frac{\Gamma(\nu_{1})}{\Gamma(\nu_{0})} = \frac{1}{\frac{1-\mu_{0}}{R^{2}} - 1}$$
(28)

Before returning to solve D, (28) can be simplified further:

From (9) 
$$\frac{\Gamma(v_1)}{\Gamma(v_0)} = \frac{1}{\frac{1-C(1-R^2)}{R^2} - 1} = \frac{R^2}{1-C+CR^2 - R^2}$$
 (29)  
$$= \frac{R^2}{(1-C)-(1-C)R^2}$$
$$= \frac{R^2}{(1-C)(1-R^2)}$$

Returning (24) and (29) to (20) yields:

$$D = \frac{1 - \hat{Y}}{\hat{Y}}$$
(30)

Now reordered the form of (4) using (30), we finally prove

$$\hat{Y} = \frac{1}{\frac{1+1-\hat{Y}}{\hat{Y}}} = \frac{\hat{Y}}{\hat{Y}+1-\hat{Y}} = \hat{Y}$$
 QED

A-12

Proof #5: Show that

$$\hat{\alpha}_{i} = \hat{\mu}_{i} (\hat{\mu}_{i} (1 - \hat{\mu}_{i}) - \sigma_{1}^{2}) / \sigma_{1}^{2} \qquad i=0,1$$
(1)

$$\hat{v}_{i} = \hat{\alpha}_{i}(1-\hat{\mu}_{i})/\hat{\mu}_{i}$$
 i=0,1 (2)

Given, from the Beta distribution (see Feller 1966, p. 49) that

$$\mu_{i} = \frac{\alpha_{i}}{\alpha_{i} + \nu_{i}} \qquad i=0,1 \qquad (3)$$

and

$$\sigma_{i}^{2} = \frac{\alpha_{i} \nu_{i}}{(\alpha_{i} + \nu_{i})^{2} (\alpha_{i} + \nu_{i} + 1)} \qquad i=0,1$$

$$(4)$$

From (3) and the estimates  $\hat{\mu}_i$  and  $\hat{\sigma}_i^2$  of  $\mu_i$  and  $\sigma_i^2$ , respectively, we satisfy (2) by

$$\hat{\nu}_{i} = \frac{\hat{\alpha}_{i}(1-\hat{\mu}_{i})}{\hat{\mu}_{i}}$$
 i=0,1 (5)

Now from (4) with  $\mu_i$  and  $\sigma_i^2$  replaced by their estimates  $\hat{\mu}_i$  and  $\hat{\sigma}_i^2$ , respectively,

$$\hat{\sigma}_{i}^{2} = \frac{\hat{\mu}_{i}^{2} - \hat{\mu}_{i}^{3}}{\hat{\alpha}_{i} + \hat{\mu}_{i}} \qquad i=0,1$$
(6)

Therefore (1) is satisfied by using (4) and (6) or

$$\hat{\alpha}_{i} = \hat{\mu}_{i} (\hat{\mu}_{i} (1 - \hat{\mu}_{i}) - \hat{\sigma}_{i}^{2}) / \hat{\sigma}_{i}^{2} \qquad i=0,1$$
(7)

It is practical to employ  $\sigma_w^2$  in place of  $\sigma_1^2$  and  $\sigma_0^2$ , since the latter two require reference to the raw data and  $\sigma_w^2$  does not. In fact,

$$\sigma_{\rm W}^2 = R^2 (1-R^2) \ C(1-C), \qquad (8)$$

QED

from proof #3

Experimental evidence has shown that using  $\sigma^2$  for the individual group beta distributions or using  $\sigma^2$  for the total beta distribution, with  $\hat{Y}$  providing the likelihood ratios, performs equally well on the integration needed to determine P*.

Feller, William, <u>An Introduction to Probability Theory and Its Applications</u>, Volume II., John Wiley & Sons, New York, 1966, p. 49.

Wadsworth, G. P., and Joseph G. Bryan, <u>Introduction to Probability and Random</u> <u>Variables</u>, McGraw-Hill Book Co., 1960, pp. 101-104.

· · ·

.

. .

.

#### (Continued from Inside front cover)

- NWS 16 Storm Tide Frequencies on the South Carolina Coast. Vance A. Myers, June 1975, 79 p. (COM-75-11335)
- NWS 17 Estimation of Hurricane Storm Surge in Apalachicola Bay, Florida. James E. Overland, June 1975. 66 p. (COM-75-11332)
- NWS 18 Joint Probability Method of Tide Frequency Analysis Applied to Apalachicola Bay and St. George Sound, Florida. Francis P. Ho and Vance A. Myers, November 1975, 43 p. (PB-251123)
- NWS 19 A Point Energy and Mass Balance Model of a Snow Cover. Eric A. Anderson, February 1976, 150 p. (PB-254653)
- NWS 20 Precipitable Water Over the United States, Volume 1: Monthly Means. George A. Lott, November 1976, 173 p. (PB-264219)
- NWS 20 Precipitable Water Over the United States, Volume II: Semimonthly Maxima. Francis P. Ho and John T. Riedel, July 1979, 359 p. (PB-300870)
- NWS 21 Interduration Precipitation Relations for Storms Southeast States. Ralph H. Frederick, March 1979, 66 p. (PB-297192)
- NWS 22 The Nested Grid Model. Norman A. Phillips, April 1979, 89 p. (PB-299046)
- NWS 23 Meteorological Criteria for Standard Project Hurricane and Probable Maximum Hurricane and Probable Maximum Hurricane Windfields, Gulf and East Coasts of the United States. Richard W. Schwerdt, Francis P. Ho, and Roger R. Watkins, September 1979, 348 p. (PB-80 117997)
- NWS 24 A Methodology for Point-to-Area Rainfall Frequency Ratios. Vance A. Myers and Raymond M. Zehr, February 1980, 180 p. (PB80 180102)
- NWS 25 Comparison of Generalized Estimates of Probable Maximum Precipitation With Greatest Observed Rainfalls. John T. Riedel and Louis C. Schreiner, March 1980, 75 p. (PB80 191463)

1.6684

- NWS 26 Frequency and Motion of Atlantic Tropical Cyclones. Charles J. Neumann and Michael J. Pryslak, March 1981, 64 p.
- NWS 27 Interduration Precipitation Relations for Storms--Western United States. Ralph H. Frederick, John F. Miller, Francis P. Richards, and Richard W. Schwerdt, September 1981, 158 p.