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II.3-SWB-NILE  SIMPLE WATER BALANCE MODEL

This document is from 'A Simple Water Balance Model (SWB) for
Estimating Runoff at Different Spatial and Temporal Scales' by J. C.
Schaake, V. I. Koren, and Q. Y. Duan, Journal of Geophysical
Research, Volume 101, March 20, 1996.

Introduction

The Simple Water Balance Model (SWB) is a parametric water balance
model that was developed based on statistical averaging of the main
hydrologic process.

The model has a 2 layer structure with both a physical and
statistical basis for the model parameters.  It was developed to fill
a need for models with a small number of parameters and of
intermediate complexity between a one parameter simple bucket and
more complex hydrologically oriented models with many parameters such
as the Sacramento Soil Moisture Accounting model.  The focus was to
improve the representation of runoff relative to the simple bucket
without introducing the full complexity of the Sacramento model.  The
model was designed to operate over a range of time steps to
facilitate coupling to an atmospheric model.  The model can be used
for catchment scale simulations in hydrological applications and for
simple representation of runoff in coupled atmospheric/hydrological
models.

An important role for the SWB model is to assist in understanding how
much complexity in representing land surface processes is needed and
can be supported with available data to estimate model parameters. 
The model was tested using rainfall, runoff and surface
meteorological data for three catchments from different climate
regimes.  Model performance is compared to performance of a simple
bucket model, the Sacramento model and the OSU land surface model. 
Finally a series of tests were conducted to evaluate the sensitivity
of SWB performance when it is operated at time steps different from
the time step for which it was calibrated.

Background

Complex hydrologic models such as the Sacramento Soil Moisture
Accounting model were developed to represent spatially heterogeneous
runoff processes for river basins at scales ranging from a few
hundred to a few thousand KM2.  They focus on the surface water
budget and ignore aspects of the surface energy budget that are
important for surface forcing in atmospheric models.  These
hydrologic models have parameters that must be calibrated with
precipitation, discharge and surface meteorological data.  To be
useful in an atmospheric model these models must be coupled with a
more complete treatment of the energy budget.  Also a priori methods
for parameter estimation must be developed for these models to apply
to ungaged areas and to be used over the full domain of an
atmospheric model.
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Land surface parameterizations of existing atmospheric models focus
on the surface energy budget and treat the surface water budget
relatively simply (Carson, 1982; Lavel, 1988; Avissar and Verstraete,
1990).  Some atmospheric model land surface parameterizations appear
to be more physically based that most operational hydrologic models
because they attempt to represent the water and energy processes in a
vertical column of soil starting from the basic physical equations
believed to govern those processes.  Implicitly, it is assumed that
there is an equivalent or effective vertical soil column that is
representative of a large area.  New land surface parameterizations
such as BATS (Dickinson et al, 1993) and SiB (Sellers et al, 1986)
are lumped models and represent vegetation as a 'big leaf<.  Available
land surface parameterizations do not account for important spatial
heterogeneity in surface runoff processes and include parameters for
which there is little supporting data (such as rooting depths and
hydraulic properties of the soil).

In view of the limitations of existing hydrologic models and land
surface parameterizations for atmospheric models a need existed for
models with a small number of parameters and intermediate in
complexity between a simple bucket, with only one parameter, and more
complex hydrologically oriented models with many parameters such as
the Sacramento model or some of the newer land surface models such as
BATS and SiB with improved treatments of vegetation.  By limiting the
number of parameters, the potential to develop a priori parameter
estimation techniques should be increased.  A specific reason to
develop the SWB model was to improve the representation of runoff
relative to the simple bucket without introducing the full complexity
of models such as the Sacramento model.  Also the strategy was to
keep the treatment of vegetation as simple as possible with the
intention of adding features of more complex representations such as
in BATS or SiB as seemed necessary based on tests with available
data.

A goal is to use the SWB model together with other models to study
the question of how much complexity is warranted in models of land
surface processes.  Recently, Jakeman and Hornberger (1993) studied
this issue in the context of a simple rainfall-runoff model where the
parameters of the model were identified (i.e. calibrated) using
rainfall and runoff data.  They conclude in reply to comments
(Jakeman and Hornberger, 1994) that:

'...conceptual and physically based models developed and used for
describing rainfall-runoff processes tend to be over
parameterized.  They are no more useful for prediction than are
simpler models whose parameters are identifiable from available
data.  If such overparameterized models are to be used to
understand processes, then this must be achieved with remarkable
care.  On the other hand, the ability to produce identifiable
models with about a half dozen parameters opens up opportunities
to learn about how to generalize catchment response by studying a
large number of catchments.'

Although SWB has only five parameters that can be identified by
calibration from data readily available over parts of the United
States, such data are available only for areas having stream gages
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unaffected by upstream regulation and may apply only to the total
area above these gages.  Clearly, such data are not available for
many potential (and ungaged) forecast points in the United States nor
are they available globally.

SWB is being developed and tested as a contribution to the Global
Water and Energy Cycle Experiment (GEWEX) Continental-scale
International Project (GCIP) (WCRP,1992).  GCIP has specific
objectives to improve land surface models and to make better use of
remotely sensed data.  SWB has been coupled to the energy component
of the OSU model and tested using data from the 1987 FIFE experiment
(Mitchell et al, 1995, this issue). The coupled SWB-OSU model is
being tested as part of the Project for Intercomparison of Land
Surface Process Schemes (PILPS).  SWB also is being applied in a
stand-alone mode to estimate runoff from a number of river basins in
the U.S. and in Africa (Koren, et al, 1995, this issue).

Model Development Strategy

New sources of hydrometeorological data such as radar, satellite and
digital geographical information and a need to improve the land
surface parameterization in atmospheric models has stimulated
research into the spatial variability of hydrological processes
(Russo and Bresler, 1981a,b; Vieira et al., 1981; Greminger et al.,
1985; Thomas and Henderson-Sellers, 1987; Wood et al., 1988).  This
has led to the development of more general hydrological models with
distributed model features (Entekhabi and Eagleson, 1989; Smith et
al., 1992; Famiglietti and Wood, 1994; Chen et al., 1994).

The water and energy fluxes that must be represented in an
atmospheric model may be divided into storm periods and inter-storm
periods.  During storm periods the water branch of the hydrologic
cycle is dominant and the physics governing the partitioning of
precipitation into interception, surface runoff and infiltration is
highly non-linear.  During inter-storm periods, the energy branch of
the hydrologic cycle is dominant and the physics governing the
partitioning of energy into sensible and latent heat fluxes into the
atmosphere, while non-linear, is more nearly linear than water flux
partitioning during storm periods.  SWB must represent both storm and
inter-storm periods, but the main focus on representing the effects
of spatial heterogeneity in SWB is on processes during storm periods.

In some atmospheric models, basic equations of physics that might
apply to a vertical column of soil are assumed to apply over large
areas.  Implicitly this assumes the relevant processes are nearly
linear and parameters are spatially almost constant. Because the
processes governing the split of water between infiltration and
runoff are highly non-linear, such assumptions usually do not hold at
large scales.

Ideally it might seem desirable to construct an improved land surface
process model beginning with the basic computational element of a
distributed model to represent basic physical processes at a point or
for a hillslope or for a small representative elementary area. 
Parameters of equations used at this scale would appear to have clear



09/15/2003 II.3-SWB-NILE-4 rfs:23swbnile.wpd

physical meaning and may be observable (at least locally) in field
experiments.  The aggregate behavior of the land surface processes at
the scale of an atmospheric model could be obtained from the
aggregate behavior of the distributed model.

However this strategy produces major problems.  First the basic
physics apply only at a point.  There is no agreement in the
scientific community on the aggregate equations governing processes
for hillslopes or small elementary areas.  Second integration of the
fundamental equations of physics starting from point processes,
explicitly in space and time, requires more information about the
3-dimensional heterogeneity of surface characteristics and
2-dimensional characteristics of surface forcing than is possible to
measure.  In principle such measurements would be unique to each
catchment and each hydrologic event.  Until a general theory to
account for the uncertainty and heterogeneity in surface
characteristics and processes is developed, simple approaches such as
used to develop the SWB are needed.

Derived Probability Distributions of Land Surface Processes

The SWB is based on relationships between spatially averaged fluxes
and state variables assuming that surface processes locally behave
according to 'physically based< rules.  This approach considers the
frequency of occurrence of variables of certain ranges over an area
without regard to the location of a particular occurrence within the
area.  Areal variables can be calculated as the statistical
expectation of point values in this case.  The 'physically based<
rules used to develop SWB consider the basic physical processes but
not at the level of systematic derivation from first principles.

The probability-distributed principle in hydrology was first used in
modeling of the snowmelt processes.  Komarov (1959) applied the
distribution functions of snow cover and freezing depth of soil to
snowmelt runoff analysis.  Popov (1963) derived a general
relationship for snowmelt runoff calculation using a distribution
function of the retention storage over a basin. These results are
widely used in long- and short-term runoff predictions.

To account for the effects of spatial variability on runoff, Koren
and Kuchment (1971) developed a simple rainfall-runoff model based on
a theoretic-probabilistic averaging of the point processes.  A lack
of spatial statistics of variables led them to assume most of the
input data and parameters were normally distributed and only soil
moisture capacity had exponential distribution.  The importance of
the spatial variability of soil hydraulic properties was shown by
numerical analyses of rainfall-runoff processes on a hillslope
assuming different hypothetical distributions and autocorrelation of
the basin characteristics and rainfall (Freeze, 1979; Smith and
Hebbert, 1979).  Dagan and Bresler, (1983) analyzed infiltration
processes depending on the spatial variability of hydraulic
conductivity.  Moore (1985) derived a spatially averaged
rainfall-runoff equation using exponential distribution for both
rainfall and infiltration capacity.  Eagleson (1978) also used a
derived probability distribution approach to illustrate how equations
for spatially averaged infiltration and runoff could be developed
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from point process considerations.  The spatial distribution
assumptions first used by Moore (1985) were later used by Schaake
(1990) and Schaake and Liu (1989) in developing a simple monthly
water balance model which is a precursor to some of the work reported
below.  A similar approach to parameterizing sub-grid processes was
taken by Entekhabi and Eagleson (1989) who considered spatial
variability in precipitation and soil moisture storage in a
physically based context.  Eagleson and Entekhabi ignored the effect
of spatial variability in the hydraulic properties of the soil.

Water Storage Components

The land surface in SWB is represented with two layers.  A thin upper
layer consists of the vegetation canopy and the soil surface.  A
lower layer includes both the root zone of the vegetation and the
ground water system.  The root zone and the groundwater system are
combined into a single layer to keep SWB as simple as possible.  The
SWB is being tested to determine if root zone and ground water
components of the lower layer should be represented separately.

The amount of water that can be stored in each layer is limited. 
These limitations are model parameters.  The storage state variable
can be represented in terms of water content or in terms of water
deficit.  In SWB the storage state variable is soil moisture deficit
only because moisture deficit may be useful in diagnosing model
performance.  In the spring in humid climates, moisture deficits are
usually small so model moisture deficits would be small.  Also soil
moisture measurements are not adequate to estimate the water content
of SWB over large areas because they are too scarce.  Available soil
moisture data can be used to test SWB, but because moisture deficit
and moisture content are simply related, the moisture deficit
variable is the state variable used in SWB.

The limits of moisture deficit are called maximum deficits, but these
are equivalent in magnitude to maximum storage contents.  The terms
maximum deficit and water storage capacity are equivalent and can be
used interchangeably.  In humid climates where spring moisture
deficits are low, the total moisture storage capacity can roughly be
estimated from rainfall and runoff data

Water Balance of the Vegetation Canopy and Soil Surface

The upper layer is a short-term retention storage that principally
represents the capacity of the vegetation canopy to hold water on the
surface of the canopy.  It also represents the capacity of the soil
surface to store water in small depressions or in the top few
millimeters of soil surface.  The water balance of the upper layer
is:

where Du is the moisture storage deficit in this layer.  The maximum
value of Du is Du,max which also is the maximum storage capacity of the
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upper layer.  Inflow to the upper layer is from precipitation, P and
all inflow will be retained until  Du,max is filled (i.e., when Du=0). 
Then excess inflow, Px, becomes input into the lower layer.  Water
evaporates from the upper layer at the rate Eu.

Water Balance of Soil Moisture Storage (Lower Layer)

The lower layer is the main soil moisture storage reservoir. The
water balance of this layer is:

The moisture deficit in this layer is Db. The maximum value of Db is
Db,max which also is the maximum water capacity of the lower layer. 
The value of Db,max depends mostly on the rooting depth and soil
porosity.  Runoff from the surface, Qs and subsurface, Qg and
evapotranspiration, Eb, are outflows from the layer.  All variables of
Equations 1 and 2 are mean areal values.

Evapotranspiration

The upper layer is in close proximity to the atmosphere and contains
water intercepted by leaves, stored in surface depressions or stored
in top CM or so of the soil surface.  This water evaporates locally
at rates governed by the ability of the atmosphere to accept water. 
The lower layer includes the root zone of vegetation.  Water is lost
to the atmosphere from the lower layer by direct evaporation from the
soil and by evapotranspiration through vegetation.

Evaporation from the Upper Layer

Water stored in this layer is distributed heterogeneously and
partially over the area.  Accordingly it is be possible for the
average areal rate of evaporation, Eu, from this layer to be less than
the potential rate even though local evaporation rates (e.g. from
leaves) may exceed the areal average potential rate.  It is assumed
the effect of partial area coverage of upper layer moisture varies as
a function of Du and acts to decrease the actual areally averaged
evaporation rate below the potential rate according to the relation:

Evapotranspiration from the Lower Layer

Evapotranspiration from the lower layer, Eb, takes place only if
evaporation from the upper layer is less than the potential rate. 
Accordingly the potential evaporation rate from the lower layer is
reduced by the actual evaporation rate from the upper layer:
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The actual evapotranspiration, Eb, is less than or equal to potential
evapotranspiration, Epb, as a function, f(Db), of the soil moisture
deficit of the lower layer:

The function f(Db) accounts for the effect of moisture stress on
vegetation.  Other forms of vegetation stress are neglected in SWB. 
A simple linear equation is used to estimate f(Db):

Perhaps a more complex functional form for f(Db) may prove to be
justified, but that would increase model complexity and would add at
least one more model parameter.  This should be investigated in
future studies of how much complexity in the role of vegetation is
justified, considering how the additional parameters would be
estimated.

Equations 3 through 6 can be combined to form:

The amount of evapotranspiration from the two layers can be estimated
as:

which is a nonlinear function of the soil moisture content of the
both the upper and lower layers.  A typical relationship of relative
values of evapotranspiration, E/Ep and relative values of soil
moisture deficit, D/Dmax, (D = Du+ Db and Dmax= Du,max+ Db,max) is shown in
Figure 1.

This evaporation scheme has been tested against observed evaporative
flux measurements during the FIFE experiment (Mitchell, et al, this
issue).  SWB over-estimates evapotranspiration during wet periods of
the FIFE experiment.  A canopy resistance term was added to SWB as
part of that study to remedy this problem.  That canopy resistance
term adds several additional parameters to SWB and is not included in
the current study.  Subsequent tests of SWB using rainfall and runoff
data are planned with the canopy term included SWB and with some of
the additional parameters estimated by remotely sensed vegetation
measurements.

Subsurface Runoff

Subsurface runoff is assumed to be a linear function of the lower
layer moisture content in excess of a minimum threshold, Smax:
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where Qmax is the potential subsurface runoff that occurs when the
lower layer is saturated (i.e. when Db=0).  Equation (9) implies that
the ground water system acts like a linear storage reservoir, a
widely used hypothesis in hydrologic modeling.  If there were no
precipitation nor evaporation, the only outflow from storage would be
an exponentially decreasing flow of subsurface runoff.  The rate
constant, Qmax/Smax, in this exponential function can be estimated from
the recession portion of observed hydrographs.  The value depends on
topography, geology and soil hydraulic properties.  When the lower
layer moisture deficit, Db, exceeds the threshold, Smax, subsurface
runoff ceases.  This allows the model to simulate ephemeral streams.
Experience suggests that Smax is usually less than Db,max.

It is important to note that water can leave the lower layer either
as evapotranspiration or as subsurface runoff.  In a sense these
fluxes are in competition in the current version of SWB.  Some
competition between evapotranspiration and subsurface runoff is
reasonable because riparian vegetation is sometimes more abundant
that vegetation far from streams.  On the other hand, much of the
evapotranspiration is from an unsaturated root zone and unsaturated
moisture in the root zone is not available for subsurface runoff. 
Perhaps the lower layer storage should be partitioned into root zone
and groundwater layers.  But this would increase model complexity and
would add at least one parameter to govern the rate of percolation
from the root layer to the ground water layer.

Surface Runoff and Infiltration

The supply of water to the lower zone is Px, the excess of
precipitation or throughfall from the upper layer.  This water flux
is available for surface runoff and infiltration into the lower
layer.  At the surface of the lower layer, some of Px infiltrates into
the lower layer; the excess becomes surface runoff.

The strategy taken in representing infiltration and surface runoff in
SWB is first to consider the spatial variability of infiltration
capacity.  Because actual infiltration depends on precipitation as
well as infiltration capacity, the spatial distribution of
precipitation is considered next.  Then the spatial distributions of
infiltration capacity and precipitation are analyzed to derive
equations for spatially averaged infiltration and runoff.  These
equations relate the spatially averaged runoff and infiltration to
the spatially averaged infiltration capacity and precipitation. 
These equations are most appropriately applied to storm total
accumulations.  Finally a relationship is developed for the temporal
variability of the spatially averaged infiltration capacity as a
function of duration of accumulation.

Point Infiltration Capacity
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Local rates of infiltration vary in space and time.  At any time, the
capacity of the soil to infiltrate water may exceed the actual
infiltration rate if the supply of water to the surface does not keep
the surface saturated. Temporal variability may be classified into
variability during storm events and into changes in initial
infiltration capacity between storm events.

At a point the flow of water into and within a vertical column of
soil can be represented by the Richard's equation in the form:

where is the soil moisture content, is the hydraulic

conductivity and is the soil water diffusivity which depends on

the saturated hydraulic conductivity Ks.  Philip (1969) developed an
approximate solution to the Richards equation for the special case of
infiltration with a uniform initial soil moisture state and saturated
surface conditions.  Philip's equation for the total cumulative
volume of infiltration at a point is:

where K is close to the saturated hydraulic conductivity, Ks and S is
sorptivity, a function of the diffusivity and the initial soil
moisture state.  Variable ic(t) denotes the cumulative volume of
infiltration to time, t, assuming the surface remains saturated. 
This equation assumes an infinitely deep soil column so that water
can percolate downward at a rate determined by the saturated
hydraulic conductivity.  In reality, the thickness of the soil column
is finite.  Therefore, the infiltration capacity is not necessarily
limited by the saturated hydraulic conductivity of the soil, but by
the available space to store water in the soil column and by the rate
of lateral saturated subsurface flow in the hillslope toward the
stream.  Under natural conditions, precipitation does not support
continuous saturated conditions at the soil surface (i.e. ponding),
but a technique known as time compression analysis (TCA) (Sherman,
1943; Sivapalan and Milly, 1989; Salvucci and Entekhabi, 1994) can be
used to adjust the time scale.  TCA assumes that the maximum rate of
infiltration (i.e. instantaneous infiltration capacity) during an
event depends on the initial soil moisture condition and on the
cumulative infiltration since the beginning of the event.  The
assumption that infiltration capacity depends on the current soil
moisture state is used below to account for changes in infiltration
capacity with time.

Spatial Variability of Infiltration Capacity

The spatial average rate of infiltration over a catchment during a
time interval, )t, is not well approximated by Philip's equation
because of the heterogeneity of: initial moisture conditions,
thickness of unsaturated soil column and soil hydraulic properties
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(even if the soil type is essentially uniform).  Also spatial
variability in the depth of the soil column will lead to spatial
variability of the time when the steady state infiltration rate
becomes limited by lateral flux into the groundwater system. 
Considering the heterogeneity and complexity in space and time of the
infiltration process, it is not clear if there is enough information
available to derive systematically a simple set of equations for the
spatially averaged infiltration rate.  Therefore, an empirical
approach guided by theoretical considerations is used to represent
infiltration capacity in SWB.  In a study of data from 52
infiltrometers placed in the 19.2 KM2 Guereb-Roriche catchment in
northern Tunisia, Berndtsson (1987) approximated the time decay of
infiltration with Horton and Philips infiltration functions. 
Bendtsson found that the parameters of these functions varied
spatially, but the spatial coefficient of variation of all of the
parameters and of the cumulative amounts of infiltration was close to
1.0.  This suggests that an exponential distribution might be used to
account for the effects of spatially distributed point infiltration
capacities for a fixed time interval.  Loague and Gander (1990),
reported infiltration results for a small 0.1 KM2 rangeland
experimental watershed, (R-5), in the Little Washita Experimental
Watershed of the U.S. Agricultural Research Service.  A total of 157
infiltrometer measurements were made on a 25 M grid over a period of
about 2 months.  There is not much of a trend to the average of the
measurements over time.  The coefficient of variation of this full
set of measurements is 0.73.  They concluded a lognormal distribution
gave a better fit to the data than a normal distribution.  They
attempted to create a map showing the spatial distribution of the
infiltration capacity, but they concluded that the spatial
decorrelation distance was shorter than 25 M.  Moreover, the
catchment has a nearly uniform soil so they conclude that the spatial
variability of the infiltration results cannot be explained by soil
texture.  Presumably the variability of the infiltration results was
caused by variability of soil hydraulic properties and by variability
of point soil moisture content.  It is possible that the best spatial
distribution of infiltration capacity is a function of space scale. 
The authors are not aware of infiltration studies at scales larger
that 19.2 KM2.  It seems reasonable to assume the coefficient of
variation of the spatial distribution of infiltration capacity might
increase with area because of more sources of heterogeneity.  In view
of the limited infiltration data available at the scale at which SWB
would be applied, an exponential distribution of infiltration
capacities is assumed:

where ic is the point infiltration capacity during a storm event and
Ic is the spatially averaged infiltration capacity.  If another
distribution were used, a procedure would be needed to account for
the spatial coefficient of variation of the infiltration capacity. 
In view of the information available and the need to keep SWB as
simple as possible additional complexity does not seem justified. 
Future work should be conducted to examine the sensitivity of SWB to
other distribution forms that might be considered.  Note that
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Equation (12) applies to the total capacity of infiltration during a
storm event.  The actual amount of infiltration depends on the
spatial distribution of both the infiltration capacity and the
precipitation excess, Px, during the storm.

Precipitation

The spatial distribution of precipitation is highly variable and
depends on the magnitude of the precipitation event.  Extensive gage
measurements of thunderstorm rainfall in the 20,000 KM2 Muskingum, OH
river basin were made as part of a WPA project in the late 1930's. 
The average gage density over this large area was better than 1 gage
per 50 KM2.  These data showed that the spatial coefficient of
variation of precipitation is smaller for the larger storms
(Hydrometerological Section, 1945).  The spatial coefficient of
variation also tends to increase with area.  Analysis of data for the
maximum 6 hour period of 38 storms gave the following relationship
for the spatial coefficient of variation:

where P is the areal average precipitation [CM] and A is the area
[1000's KM2].  Equation (13) suggests the median coefficient of
variation for a 1 CM (10 MM) event over a 20,000 KM2 area would be
2.96, but for a 2.5 CM event this would be only 0.71.  The
coefficient of variation of individual events in the Muskingum basin
was highly variable and fell in a multiplicative range of .65 to 1.55
times the coefficient of variation given by Equation (13).  The
spatial coefficient of variation of precipitation also decreases with
increasing time duration of the precipitation.  Other investigators
have shown that an exponential distribution function can often be
used to account for spatial variability of rainfall for small areas
(Moore, 1991; Koren, 1993).  As an example, Figure 2 displays
distribution functions of relative values of precipitation, Kp = p/P
obtained by radar measurements for a small experimental basin, about
40 KM2, in the USSR (Koren, 1993).  A theoretical justification of
the exponential distribution of rainfall under some assumptions was
given by Vinogradov (1988).  These relationships apply to the rainy
portion of the area.  The fractional coverage of the area is also a
factor to be considered.  Daily precipitation data for 40 years were
studied in a 90,000 KM2 rectangle centered on Lamont, OK.  The
average coefficient of variation in the rainy area ranged from 1.1 to
1.3, depending on the month.  The average rainy proportion of the
area was between 0.43 and 0.66 with a standard deviation of about
0.25 for individual events.  The fraction of the area with rain was
positively correlated with the average rain over the total area. 
Below a scale of about 10,000 KM2, the effect of partial area
coverage for total storm precipitation should not be very important
for daily or longer time periods and for significant rain events. 
Beyond about 10,000 KM2 partial area coverage of precipitation may
become so important that it should not be neglected by SWB.  Future
work is needed to see how best to include the effect of partial area
of coverage of rain in SWB for areas greater than about 10000 KM2. 
Although it is recognized the spatial coefficient of variation of
rainfall is highly variable from event to event, it is assumed here
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that the spatial distribution of precipitation is given by:

where p is the storm total precipitation at a point and P is the
spatially averaged storm total precipitation.  It is assumed that the
distribution of P also applies to Px because the storage capacity of
the upper layer is small.  It would be desirable in future studies to
investigate a more complex spatial distribution of precipitation to
consider the effect of temporally varying coefficient of variation of
precipitation.  If SWB is applied using observed precipitation
forcing this is not a significant problem because the spatial
distribution of precipitation can be estimated from observations,
especially for large areas.  But if SWB is used within an atmospheric
model, some method to estimate both the spatial coefficient of
variation of rain in rainy areas and the fraction of rainy area is
needed.

Derived Distribution for Actual Infiltration and Storm Total Surface
Runoff

Assume that at a point during a storm that the total amount of water
that would infiltrate would be equal to the precipitation amount at
that point if the precipitation were less than or equal to the
infiltration capacity.  This neglects the possibility that
instantaneous precipitation rates during the storm might exceed the
instantaneous infiltration capacity.  Accordingly the point amount of
surface runoff would be:

Because px and ic are spatially distributed random variables, qs also
is a spatially distributed random variable.  Accordingly the average
surface runoff from the area is:

where f(qs) is the derived distribution function of surface runoff. 
The density function for f(qs) depends on the joint distribution of px

and ic.  Since px and ic apply to an entire storm period, it is
reasonable to assume the spatial distribution of precipitation is
independent of the initial state of the catchment and therefore of ic. 
Thus

The cumulative distribution function for qs is:



09/15/2003 II.3-SWB-NILE-13 rfs:23swbnile.wpd

(19)
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(21)

(22)

(23)

(24)

where is the region of the (p,ic) plane where qs is less or

equal to Qs.  Integration of Equation (18) gives:

The density function for qs has a finite probability that qs = 0:

The density function is:

where is the Dirac delta function.  It follows that the average

value of qs is:

This equation was originally derived by Moore (1985) and it is
essentially the same as the so-called SCS curve number equation (SCS,
1972).  The precipitation input to the lower layer, Px, is divided
into surface runoff and infiltration:

so, the spatially averaged actual infiltration, by combining
Equations 22 and 23 is:

Infiltration and Surface Runoff During a Finite Time Interval

SWB is a continuous model that must operate in time steps, )t.  Model
time steps within an atmospheric model may be only a few minutes. 
Therefore, SWB must estimate how the infiltration and surface runoff
processes operate during finite intervals within a storm event.  To
do this it is assumed that Ic is a function of the duration of the
time step, )t.  Also an assumption similar to the TCA assumption is
made that Ic depends on the current moisture state.  During a storm
event, the initial condition important for infiltration is the soil
moisture in the upper portion of the soil.  During and between
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(28)

(29)

(30)

(31)

(32)

storms, infiltrated water percolates and plant roots extract water
from the wettest portions of the soil profile.  These processes tend
to redistribute water in the soil column so that the initial soil
moisture near the surface tends to be correlated with the average
soil moisture integrated over the entire soil column.  Duan et al
(1995, this issue) found that during the FIFE experiment the
spatially averaged total soil moisture measured in the top ten CM
over the entire FIFE area (15 KM by 15 KM) was well correlated with
the total soil moisture in the top two meters.  This suggests that Db

is correlated with the initial moisture conditions that influence the
infiltration process (i.e. Db is correlated with Ic).  For long time
steps of many days to a month, it may be reasonable to substitute Db

for Ic.  But for time steps, )t, less than a typical storm duration,
Ic is less than Db.  Therefore it is assumed that

The cumulative infiltration capacity, Ic,i()t), during the interval
(i-1))t<t<i)t increases with )t, but the rate of increase diminishes
as )t increases. Because Ic,i is a spatially averaged variable of a
nonlinear and heterogenous process, point infiltration equations do

not apply.  A number of alternative expressions for were

considered, subject to the following condition.  If the actual
infiltration Ii()t) were equal to the infiltration capacity, Ic,i()t),
then

so that

similarly

But consistency for an arbitrary value of )t requires

Since

it follows that

This requires

which is satisfied if
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(35)

Therefore the current value of Ic is:

Model Evaluation and Testing

SWB is tested using historical data from three basins in the United
States, representing different climatological conditions.  The
performance of SWB is compared with that of three other hydrologic
models, including one operational hydrologic forecast model and two
land surface process parameterizations of atmospheric models.  The
results of an investigation into the model's ability to handle
different time steps is presented.  This includes tests to understand
the limitations of SWB to handle time steps different from the time
step for which SWB parameters were calibrated.

Tests of SWB for Selected Basins in the United States

SWB was tested using observations for three different basins in the
United States.  The three basins chosen for this study are Bird Creek
at Sperry in Oklahoma, Leaf River near Collins in Mississippi and the
French Broad at Rosman in North Carolina.  These basins are well
studied and documented basins (see WMO 1975; Brazil 1988).  They have
distinct hydrologic characteristics, representing respectively, dry,
moderate and humid regions.  Hydrologic data ranging from 7 to 18
years were collected from these basins.  Table 1 lists information
about the three basins.  Three measures of performance were used in
the tests: the daily root mean square difference (DRMS) between
simulated and observed daily flows, the monthly volume root mean
square error (MVRMS) and the coefficient of efficiency (E).  The DRMS
statistic was used to test how well the model simulated daily flow
fluctuations.  It is computed as

where qs,i and qo,i denote the simulated and observed daily streamflow
discharge, respectively, I indicates the day and N is the total
number of days in the period.  In computing the objective function
value, a warm-up period of 5 months was used to reduce the
uncertainty caused by unknown initial conditions.  The MVRMS measures
the error between the estimated and observed monthly water volume. 
This statistic is a very useful statistic to test how well the long
term water budget is represented.  The MVRMS is defined as:
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(36)

(37)

where ys,i and yo,i denote the simulated and observed monthly runoff,
respectively, I indicates the month and M is the total number of
months in the period.  The coefficient of efficiency, E, indicates
the degree of association between the observed and simulated flows
(Nash and Sutcliffe, 1970).  E is defined as:

where qo is the mean daily observed streamflow discharge.

Calibration of SWB

SWB was first calibrated to the three basins using historical data
ranging from 5 years to 9 years.  The time scale at which the model
was run was 6 hours, using 6 hourly precipitation data.  A unit
hydrograph was used in combination with SWB to route the runoff
generated from SWB into streamflow discharge values at stream gage. 
The unit hydrograph used here was a synthetic unit hydrograph based
on a two-parameter Gamma function (Nash, 1959).  An automatic
calibration procedure known as the Shuffled Complex Evolution (SCE-
UA) method developed by Duan et al. (Duan et al., 1992 and 1994) was
used to estimate the model parameters.  The objective function used
was the MVRMS statistic.  The MVRMS was chosen for calibration to
assure the model represented the long term water balance and because
calibration tests using the DRMS statistic led to large biases in
monthly runoff simulations.  A major issue in model calibration is to
specify quantitatively what the calibration is to achieve (Brazil,
1988).  Further study is needed to determine the best automatic
calibration procedures for SWB.  Perhaps it would be better to use a
weighted combination of MVRMS and DRMS with most of the weight on
MVRMS to assure unbiased long term results.  This should select
parameters that give the best daily performance from among those that
give good water balances.  After the model parameters were determined
for each basin, SWB was verified using independent historical data
ranging from 2 years to 9 years.  The purpose of the verification
runs is to check whether the calibrated model performs consistently
during and beyond the calibration period.

Table 2 summarizes the calibration as well as the verification
statistics for SWB (see rows for SWB model type).  The results
suggest that the DRMS and MVRMS statistics are generally better for
calibration periods than for the verification periods.  There are two
probable explanations for this difference.  First the model
parameters were tuned to the calibration data.  Thus it is expected
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that model should perform better during the calibration period,
although this difference should not be too big.  The second
explanation for the performance discrepancies is that the hydrologic
conditions were different between the calibration and verification
periods.

Table 3 lists the annual hydrologic variables for the three basins
during the calibration and verification periods.  Note that for all
three basins, the annual streamflow discharges were higher for the
verification periods than for the calibration periods.  Higher DRMS
and MVRMS statistics are expected for periods with higher streamflow
discharge.  Thus the magnitude of the streamflow discharges was
partially responsible for the poorer statistics in the verification
periods.  The E statistics seem to support this argument.  Note that
the E values for the verification periods are comparable to that of
the calibration period except for the Bird Creek.  For the Bird Creek
basin, another factor contributed to the poorer statistics in the
verification period.  Only 5 years of historical data were used to
calibrate the model and the 5 years happened to be relatively dry. 
Thus the parameters obtained from calibration may not be
representative of the basin.  Time series plots of the observed and
simulated monthly runoff (Figures 3-a to 3-c) indicate simulated and
observed monthly average discharges generally agree.  Figures 4-a to
4-c are the x-y plots of the observed and simulated daily streamflow
discharges.  Observed and simulated daily values match each other
very well, except a few cases which fall outside the one standard
deviation range.  Better results may be possible by giving some
weight to the DRMS statistic in the calibration objective function. 
Also including more high flow years in the Leaf river calibration
period may help to improve the underestimation of the largest flows.

Comparison of SWB with SAC-SMA, the OSU Model and the Manabe Bucket
Model

Three other hydrologic models are selected for intercomparison with
SWB.  These are the Sacramento Soil Moisture Accounting (SAC-SMA)
model, a soil hydrology model developed at Oregon State University
(OSU) and the Manabe Bucket model.  SAC-SMA was originally developed
by Burnash et al in 1973 (Burnash et al., 1973).  SAC-SMA represents
spatially averaged hydrologic processes and there are strong physical
arguments to support the model.  It has 6 state variables and 16
parameters, not counting the 12 parameters used for adjusting
potential evaporation values.  Of the 16 parameters, 13 need to be
determined by calibration.  For a detailed description of SAC-SMA,
see Burnash et al. (1973), Peck (1976) and Brazil (1988).  The SAC-
SMA model was calibrated to the three basins in the same way as SWB
as described in the previous section.  After the calibration was
completed, verification runs were conducted using historical data not
included in the calibration period.  The results for SAC-SMA (Table
2) gave the same tendency as SWB.  That is, the calibration
statistics were better than the verification statistics.  The same
explanations given for SWB can also be used for SAC-SMA results.  The
second model compared is the soil hydrology model developed by Mahrt
and Pan (1984), which was used as the land surface hydrologic
parameterization in the Oregon State University One-Dimensional
Planetary Boundary Layer (OSU 1-D PBL) model (Ek and Mahrt, 1991). 
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This soil hydrology model is refer to as the OSU model.  For a
detailed discussion of the OSU model, see Mahrt and Pan (1984) and
Pan and Mahrt (1987).  The OSU model is based on the finite
difference solution to the one-dimensional Richards Equation (Hillel,
1980).  It contains two soil layers: a thin upper layer of 5
centimeters and a thick lower layer of 95 centimeters.  The OSU model
explicitly accounts for the effect of vegetation on
evapotranspiration by inclusion of the canopy layer.  However it does
not account for the spatial variability in hydrologic variables.  To
account for the effect of spatial heterogeneity, the infiltration
formulation in the OSU model was replaced by the infiltration
formulation in SWB.  A unit hydrograph was also used to route the
runoff generated from the OSU model into streamflow discharge values
at stream gage.

Most of the parameters in the OSU model were derived using the soil
and vegetation information.  Four of the OSU model parameters are
considered important in the rainfall/runoff calculation.  These
parameters are the hydraulic conductivity, hydraulic diffusivity, the
root depth and the parameter controlling the infiltration.  The four
parameters were calibrated to three basins using the same procedures
described previously.  Because the OSU model was designed for small
time step simulations, an hourly time step was used in this case.  An
assumption was made that rainfall was evenly distributed over every
six hour period.  The calibration and verification results are also
presented in Table 2.  Runoff simulation from the OSU model without
calibration of these four parameters was not very good.  Tests of the
original OSU model without the SWB infiltration parameterization were
not made.  Overall, the error statistics for the OSU model are
comparable to the error statistics for SWB and SAC-SMA for the Bird
Creek and the Leaf River basins.  Poorer results were obtained for
the French Broad River basin.  The main reason for the poorer results
in this basin may be that the sub-surface runoff component is the
major contributor of the total runoff.  The OSU model does not have a
subsurface runoff component.  Calibration results also point out that
the root depth is a very important parameter in controlling runoff
generation and this parameter was not calibrated in the OSU model
tests.  The variation of its value from basin to basin agrees with
the variation of the Dmax parameter in the SWB model.

The Manabe Bucket model (Manabe, 1969) - was also tested.  The Manabe
Bucket model has been widely used as the land surface
parameterization in many GCM-type models and operational mesoscale
atmospheric models like the Eta model in the NMC (WCRP, 1993;
Mitchell, 1994).  This model is extremely simple with just one
adjustable parameter, i.e., the depth of the bucket.  A fixed depth
is normally assumed everywhere the model is used.  In this study a
fixed depth of 150 millimeters was assumed for all three basins.  The
Manabe Bucket was used on the three basins and the statistics were
computed for the calibration and verification periods.  The results
are recorded in Table 2.  Additional tests were made to optimize the
bucket depth.  However the improvements in the statistics were
marginal.  Statistics in Table 2 indicate that Manabe Bucket model
performed substantially worse than the other three models.  Judging
from the statistics, the Manabe Bucket model is not useful at all
from a hydrologic forecast point-of-view.  The negative values in E
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statistic imply that the Manabe Bucket runoff estimates were not even
as good as the long term average of runoff value.

The OSU model gave somewhat poorer runoff simulation compared to SWB
and SAC-SMA.  The strength of the OSU model is in the calculation of
evapotranspiration.  However there were no observed data available to
compare evapotranspiration simulation results in this study. 
Detailed tests of the OSU model and the SWB model using data from the
First International Satellite Land Surface Climatology Project
(ISLSCP) Field Experiment (FIFE) have been made by Mitchell et al
(this issue).

A comparison of the performance of SWB with SAC-SMA shows that SAC-
SMA generally performs better than SWB.  This is not surprising
considering that the SAC-SMA model is more complicated than the SWB
model.  The difference between the two models is smaller in the
verification periods.  Comparing the time series plots of the
observed and simulated monthly runoff for SAC-SMA (Figures 5-a to 5-
c) with that for SWB (Figures 3-a to 3-c) suggests that both models
produced similar results.

Tests of SWB Sensitivity to )t

SWB explicitly accounts for the effect of time scaling on the
relationships among hydrologic variables.  It is designed to operate
for a range of values of )t from a few minutes to a few days. 
Results of runoff simulations for Bird Creek (Oklahoma, USA) were
used to test the sensitivity of model performance to the choice of
)t.  One approach, is to test if the model performs the same for
different values of )t when model parameters are held constant. 
Another approach is to test if model calibration with different
values of )t leads to the same model parameters.  Calibrations of SWB
for bird Creek yielded almost constant parameters over substantial
ranges of )t as shown in Table 4.  Parameter values are most
consistent for )t up to one day.  Parameters for )t = 4 days are
quite different from parameters for shorter time steps. 
Corresponding values of the performance statistics are given in Table
5.  The performance of daily statistics degrades substantially beyond
one day.  The monthly performance begins to degrade substantially
after 2 days.  Table 5 shows that SWB performed slightly better when
calibrated and operated at a 1 day time step than at a 6 hour time
step.  This could be because of limitations of the parameterizations
in SWB or because of interaction between the non-linear functions in
SWB and sampling noise in the 6 hour data.

Because SWB was designed to operate over a range of time steps and
because there is some variability in the parameters with )t in Table
4; simulations of SWB using different values of )t and different sets
of parameters were made.

The first set of tests was to use parameters calibrated for one time
step in simulations over a range of time steps.  Table 6 gives
performance statistics for simulations operated over a range of time
steps using parameters calibrated at a one-day time step.  Table 7
gives results for the same simulations as Table 6, but using
parameters calibrated at 6 hour )t using actual 6 hour precipitation. 
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Clearly, SWB performance decreases if it is operated at a different
)t than used in calibration, but performance is reasonably robust in
that simulations at 12 hour )t can be done relatively well with
parameters calibrated at either 6 hours or 1 day.  The results in
Tables 6 and 7 have important implications for coupled
atmosphere/land surface model applications.  It is not surprising
that the performance results in Tables 6 and 7 show that SWB works
best at the time step for which it is calibrated.  But it is
surprising, that the performance is so sensitive between 6 hour and
24 hour intervals when the same parameters are used.  This is
surprising because the 6 hour and 24 hour parameter sets in Table 4
are not very different.  Since many atmospheric models operate at
time steps less than 1 hour, additional tests should be made using 1
hour precipitation data.  This also means that 1 hour precipitation
data are important for hydrologic model development and testing.  It
is even more important however that very similar values of model
parameters give different performance when the model is operated at
the same time step.  This is important because parameters used in
atmospheric models must be estimated a priori, without calibration;
although calibrated parameters might be used to develop a priori
parameter estimation techniques.  This means that the sensitivity of
model performance to uncertainty in a priori parameter estimation
procedures should be thoroughly investigated.  A second set of tests
was made to study the effect of temporal averaging of precipitation
on model performance.  SWB was operated at different time steps, up
to 1 day with uniform daily rainfall applied for each time step. 
Test results using parameters calibrated with actual precipitation at
daily and 6 hour time steps are given in Tables 8 and 9,
respectively.  The 6 hour parameter set used for Table 9 is the same
as for Table 7 and is based on 6 hour precipitation forcing.  A
notable result in these Tables is that the 6 hour performance when
daily parameters are used is much better when the actual 6 hour
rainfall is used as input (Table 7) than if daily average rain is
used (Table 9).  A similar result applies to the 12 hour time step. 
In each case, it is better to use 6 hour rather than daily parameters
for simulations up to 12 hours.  It is interesting to note also that
the best performance was for 12 hour )t when 6 hour parameters were
used.  In general the best performance shifted toward simulations
with )t closer to the 1 day period over which the precipitation was
averaged.  A third set of tests was made using uniform daily
precipitation.  For these, parameters were calibrated for a 6 hour )t
and uniform daily precipitation.  These parameters were then used for
simulations over a range of )t and the results are given in Table 10. 
This improved the 6 hour uniform rain simulations over those obtained
in Table 9.  Together the results in Tables 9 and 10 show that model
performance is highly sensitive both to )t used for simulation and
calibration when the model is forced with uniform daily
precipitation.

The combined results of the time step tests in Tables 6-10 suggest
the obvious conclusion that SWB should be calibrated at a value of )t
as close as possible to the value of )t to be used in the
application.  It is also better to use actual precipitation for the
same )t used in simulation, even if the parameters were calibrated
for a different )t.  Finally if the only precipitation data available
is daily, then model performance cannot be improved by operating at a
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time step less than 1 day.  But if the model is to be operated at a
smaller time step as part of another model, then the performance can
be improved by calibrating the parameters at the time step the model
is to be operated.

Summary

A simple water balance (SWB) model was developed that takes into
account spatial variability of inputs and soil moisture capacity. 
The probability distributions of spatial processes were used to
upscale local processes to large scale.  Exponential distributions of
precipitation and infiltration capacity led to nonlinear equations
for surface runoff and infiltration.

The SWB model can be regarded as a bucket model with conceptually
defined physics of surface processes.  The model does not account
explicitly for vegetation dynamics, but options to do this are being
developed and tested.  It is assumed that subgrid variation is more
important for water budget than for energy budget calculations and
that potential evaporation can be used as a surrogate for energy
forcing.

The SWB model gave results comparable with other models that have
more complex representations of surface runoff processes and the
effects of vegetation on evapotranspiration.  This may partly have
occurred because all of the models were applied using the same
calibration criteria.  If other information had been used (such as
vegetation information from remote sensing), the more complex models
may have performed much better than SWB.  On the other hand such
additional information could be used to support SWB parameters as
well.  There is a temptation to add more complexity to SWB to
compensate for its obvious limitations but the purpose of SWB is to
remain as simple as possible.  It is easier to err on the side of
having too much complexity (given the data available) than too
little.

For the coupling of atmospheric and hydrological models it is very
important to consider the temporal scaling.  Hydrological models
usually deal with the larger time steps than atmospheric models.  The
SWB model was formulated to operate at any time step up to about 24
hours.

SWB Model Summary

The land surface in SWB is represented with two layers.  A thin upper
layer consists of the vegetation canopy and the soil surface.  A
lower layer includes both the root zone of the vegetation and the
ground water system.  The root  zone and the groundwater system are
combined into a single layer to keep SWB as simple as possible.  The
upper layer is a short-term retention storage that principally
represents the capacity of the vegetation canopy to hold water on the
surface of the canopy.  It also represents the capacity of the soil
surface to store water in small depressions or in the top few
millimeters of soil surface.  The moisture storage deficit in this
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layer is Du.  The maximum value of Du is Du,max which also is the
maximum storage capacity of the upper layer.  Inflow to this upper
layer is from precipitation, P and all inflow will be retained until
Du,max is filled (Du=0).  Then excess inflow, Px, becomes input into the
lower layer.  Water evaporates from the upper layer at the rate Eu

which is the rate of potential evaporation.  The resulting balance
is:

The upper layer is a short-term retention storage that principally
represents the capacity of the vegetation canopy to hold water on the
surface of the canopy.  The moisture storage deficit in this layer is
Du.  The maximum value of Du is Du,max which also is the maximum storage
capacity of the upper layer.  Inflow to this upper layer is from
precipitation, P and all inflow will be retained until Du,max is filled
(Du=0).  Then excess inflow, Px, becomes input into the lower layer. 
Water evaporates from the upper layer at the rate Eu which is the rate
of potential evaporation.  The resulting balance is:

The average areal rate of evaporation, Eu, from this layer is
estimated as:

The actual evapotranspiration, Eb, from the lower layer is computed
as:

which is a nonlinear function of the soil moisture content of the
both the upper and lower layers.  A typical relationship of relative
values of evapotranspiration, E/Ep and relative values of soil
moisture deficit, D/Dmax, (D = Du+ Db and Dmax= Du,max+ Db,max) is shown in
Figure 1.

Subsurface runoff is assumed to be a linear function of the lower
layer moisture content in excess of a minimum threshold, Smax:

where Qmax is the potential subsurface runoff that occurs when the
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lower layer is saturated (i.e. when Db=0).  Surface runoff is computed
as:

where Ic is:

Summary of SWB Model Parameters

SWB has five parameters:

Db,max = Lower layer maximum soil moisture deficit (also maximum
moisture content) (units of MM)

Du,max = Upper layer maximum moisture deficit (also maximum moisture
content) (units of MM)

Smax = Threshold lower layer moisture deficit; ground water runoff
ceases when the lower layer deficit exceeds this value (units
of MM)

Qmax = Maximum potential ground water runoff rate (units of MM/day)

Kdt = Infiltration capacity scale parameter (units of day-1)

SWB has two state variables:

Du = Moisture deficit in the upper layer (units of MM)

Db = Moisture deficit in the lower layer (units of MM)
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Table 1. Descriptions of the three test basins

French Broad 
Bird Creek  Leaf River River     

Location Sperry, OK Collins, MS Rosman, NC

Latitude 36 16'42" 31 42'25" 35 17'56"

Longitude -95 57'14" -89 24'25" -82 37'26"

Area (KM2) 2344 1924 176

Annual rainfall, P (MM) 963 1313 1916

Annual runoff, Q (MM) 220 428 1113

Annual evaporation, E (MM) 743 885 803

Annual potential 1312 1310 1113
evaporation, Ep (MM)

Q/P 0.23 0.33 0.58

E/Ep 0.57 0.68 0.72

P/Ep 0.73 1.00 1.72

Data periods 10/01/55- 10/01/52- 10/01/53-
09/30/62 09/30/69 09/30/64
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Table 2. Summary of calibration and verification results

Bird Creek Leaf River French Broad
Calib  Verif Calib  Verif Calib  Verif

Error Model  period period  period period  period period 
criterion type    55-60  61-62  52-60  61-69  54-59 60-64 
DRMS (CMS) SWB  21.17  31.64  18.79  27.66   1.40  1.65

SAC-SMA  18.61  31.45  16.04  21.05   1.31  1.34
OSU  24.71  34.25  23.07  24.44   2.25  2.59
Manabe 124.51  96.04 120.23 154.37  70.11 88.70

MVRMS (MM) SWB   8.38  12.75  12.10  17.93  10.65  11.98
SAC-SMA   6.07  11.13  10.12  14.09   9.54   9.86
OSU  10.76  14.66  17.03  18.25  22.49  22.98
Manabe  16.11  18.90  25.33  31.96  53.04  58.37

E SWB   0.93   0.76   0.81   0.84   0.91   0.92
SAC-SMA   0.94   0.75   0.88   0.88   0.92   0.94
OSU   0.90   0.71   0.72   0.88   0.82   0.79
Manabe  -1.57  -1.28  -6.68  -3.89 -12.81 -14.57

The OSU model was run at a time step of 1 hour by assuming the
rainfall was evenly distributed over every 6 hours.

   Table 3. Summary of hydrologic statistics for calibration and
verification periods

Basin       Data Period Rainfall Potential EP Discharge
Bird Creek Calib 55-60  968 1395  220

Verif 61-62 1079 1244  262
Leaf River Calib 52-60 1279 1222  378

Verif 61-69 1410 1223  558
French Broad Calib 54-59 1834 1175 1054

Verif 60-64 2006 1051 1186

  Table 4. Bird Creek SWB parameters calibrated with different time
steps

Time step Db,max Qmax     Smax/Db,max Du,max/Db,max Kdt
,   

(days)   (MM) (MM/day)                  (day-1)
0.25 262 4.52 0.598 0.014 3.08
0.50 247 4.36 0.590 0.016 3.53
1.00 265 4.02 0.538 0.012 3.63
2.00 245 4.80 0.650 0.037 3.55
4.00 276 20.0 0.769 0.084 2.61
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  Table 5. Bird Creek SWB performance statistics when calibrated with
different time steps

Time step DRMS E   MVRMS
(days)   (CMS) (MM) (MM) 

0.25 28.0 0.847 8.37
0.50 27.5 0.852 8.27
1.00 27.1 0.857 8.05
2.00 36.7 0.838 8.28
4.00 57.1 0.363 9.71

  Table 6. Bird Creek SWB performance statistics when operated at
different time steps using parameters calibrated at 1 day
time step

Time step DRMS E   MVRMS
(days)   (CMS) (MM) (MM) 

0.25 39.8 0.691 8.54
0.50 33.7 0.778 8.31
1.00 27.1 0.857 8.05
2.00 57.8 0.350 11.0
4.00 66.0 0.167 19.1

  Table 7. Bird Creek SWB performance statistics when operated at
different time steps using parameters calibrated at 6 hour
time step 

Time step DRMS E   MVRMS
(days)   (CMS) (MM) (MM) 

0.25 28.0 0.847 8.37
0.50 29.4 0.831 8.32
1.00 37.9 0.720 8.17
2.00 61.7 0.260 11.0
4.00 65.2 0.188 18.9
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  Table 8. Bird Creek SWB performance statistics when operated at
different time steps with uniform daily precipitation
using parameters calibrated at 1 day time step

Time step DRMS E   MVRMS
(days)   (CMS) (MM) (MM) 

0.25 47.1 0.568 13.0
0.50 39.8 0.690 9.81
1.00 27.1 0.857 8.05

  Table 9. Bird Creek SWB performance statistics when operated at
different time steps with uniform daily precipitation
using parameters calibrated at 6 hour time step with
actual 6 hour precipitation

Time step DRMS E   MVRMS
(days)   (CMS) (MM) (MM) 

0.25 36.8 0.737 11.5
0.50 31.7 0.804 9.10
1.00 37.9 0.720 8.17

  Table 10. Bird Creek SWB performance statistics when operated at
different time steps with uniform daily precipitation
using parameters calibrated at 6 hour time step with
uniform daily precipitation

Time step DRMS E   MVRMS
(days)   (CMS) (MM) (MM) 

0.25 27.6 0.852 7.76
0.50 33.3 0.789 12.0
1.00 49.4 0.527 10.8
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  Figure 1. Typical relationship of soil moisture deficit and
evapotranspiration
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  Figure 2. Distribution of hourly rainfall for the Medvenka River,
USSR
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  Figure 3. Comparison of simulated monthly runoff time series by SWB
with observed monthly runoff
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  Figure 4. Comparison of simulated daily streamflow discharge by SWB
with observed daily discharge
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  Figure 5. Comparison of simulated monthly runoff time series by
SAC-SMA with observed monthly runoff


