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II.4-DWOPER  DYNAMIC WAVE ROUTING

Introduction

DWOPER routing is a dynamic wave flood routing model that routes an
inflow hydrograph to a point downstream.  It can be used on a single
river or system of rivers where storage routing methods are inadequate
due to the effects of backwater, tides and mild channel bottom slopes. 
The model is based on the complete one-dimensional St. Venant equa-
tions.  A weighted four-point nonlinear implicit finite difference
scheme is used to obtain solutions to the St. Venant equations using a
Newton-Raphson iterative technique.

DWOPER has a number of features (Fread, 1978) which make it applicable
to a variety of natural river systems for real-time forecasting.  It
is designed to accommodate various boundary conditions and irregular
cross sections located at unequal distances along a single multiple-
reach river or several such rivers having a dendritic configuration. 
It allows for roughness parameters to vary with location and stage or
discharge.  Temporally varying lateral inflows, wind effects, bridge
effects, off-channel storage and weir-flow channel bifurcations to
simulate levee overtopping are included among its features.  Time
steps are chosen solely on the basis of desired accuracy since the
implicit finite difference technique is not restricted to the very
small time steps of explicit techniques due to numerical stability
considerations.  This enables DWOPER to be very efficient as to
computational time for simulating slowly varying floods of several
days duration.

Mathematical Basis

The basis for DWOPER is a finite difference solution of the
conservation form of the one-dimensional equations of unsteady flow
consisting of the conservation of mass and momentum equations:

oin which Q is discharge, A is cross-sectional area, A  is off-channel
cross-sectional area wherein flow velocity is considered negligible, h
is the water surface elevation, q is lateral inflow or outflow, x is
distance along the channel, t is time, g is the gravity acceleration

x fconstant, v  is the velocity of lateral inflow in the x-direction, W

fis the wind term, B is the channel topwidth and S  is the friction
slope defined as:
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in which n is the Manning's roughness coefficient and R is the

ehydraulic radius.  The term S  is defined as:

ein which K  is the expansion-contraction coefficient.

Equations 1 and 2 are nonlinear partial differential equations which
may be solved by finite difference techniques of explicit or implicit
variety.  Explicit methods, although simpler in application are not
suitable for application of the equations to long-term unsteady flow
phenomena such as flood waves because they are restricted by
mathematical stability considerations to very small computational time
steps (on the order of a few minutes); this causes the explicit
techniques to be very inefficient in the use of computer time. 
Implicit finite difference techniques, however, have no restrictions
on time step size other than accuracy considerations.

The 'weighted four-point' implicit scheme is chosen to be the most
advantageous of the various implicit schemes which have been proposed
from time to time because it can readily be used with unequal distance
steps and its stability-convergence properties can be controlled.  In
the weighted four-point scheme, the continuous x-t region in which
solutions of h and Q are sought is represented by a rectangular net of
discrete points, as shown in Figure 1 at equal or unequal intervals of
)x and )t along the x and t axes, respectively. 
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Each point is identified by a subscript (i) which designates the x
position and a superscript (j) for time position.  The time
derivatives are approximated by:

in which K represents any variable.  The spatial derivatives are
approximated by a finite difference quotient positioned between two
adjacent time lines according to weighting factors 1 and (1-1), i.e.,

and variables other than derivatives are approximated in a similar
manner, i.e.,

When 2 equals 1.0, a fully implicit scheme is formed.  A box scheme
results if 2 is fixed at 0.5.  The influence of the weighting factor
on the stability and convergence properties was examined by Fread
(1974), who concluded that the accuracy decreases as 2 departs from
0.5 and approaches 1.0.  This effect becomes more pronounced as the
time step size increases.  DWOPER allows 2 to be an input parameter. 
A value of 0.55 is often used to minimize loss of accuracy while
avoiding weak or pseudo instability when 2 of 0.5 is used.

Substitution of the finite difference quotients defined by Equations
5, 6 and 7 into Equations 1 and 2 for the derivatives and non-
derivative terms yields the following difference equations:
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in which

rwhere V  is the velocity of the wind relative to the velocity of the
flow in the channel and T is the acute angle the wind makes to the
channel.  The bar(-) above the variables represents the average of

ithat particular variable over the reach length () x ) between the net
                                                     _  _  _  _   _

x fpoints i and i+1.  The subscript (i) associated with q, v , A, B, S ,
_  _  _   _       _

e f r w iQ, S , W , V  and V  represents the number of the reach, ()x ) rather
than the node number.  Node numbers commence with 1 and terminate with
N, while reach numbers commence with 1 and terminate with (N-1).

Equations 8 and 9 are nonlinear with respect to the unknowns h and Q
at the net points on the j+1 time line.  All terms associated with the
j  time line are known from either the initial conditions or previousth
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computations.  The initial conditions are values of h and Q at each
computational point (node) along the x-axis for the first time line
(j+1). 
 
They are obtained from a previous unsteady flow solution, a steady
flow backwater solution or they can be estimated since small errors in
the initial conditions dampen out within a few time steps.

Equations 8 and 9 are two nonlinear algebraic equations which cannot
be solved in a direct (explicit) manner since there are four unknowns,
h and Q at points i and (i+1) on the (j+1) time line and only two
equations.  However, if similar equations are formed for each of the
(N-1) )x reaches between the upstream and downstream boundaries, a
total of (2N-2) equations with 2N unknowns results.  (N denotes the
total number of computational points or cross sections.)  Then
prescribed boundary conditions, one at the upstream extremity of the
river and one at the downstream extremity, provide the necessary two
additional equations required for the system to be determinate.  The
resulting system of 2N nonlinear equations with 2N unknowns is solved
by a functional iterative procedure, the Newton-Raphson method (Amein
and Fang, 1970).

In the iterative procedure, trial values using linear or parabolic
extrapolation from solutions of h and Q at previous time steps are
assigned to the 2N unknowns.  Substitution of these into the system of
2N nonlinear equations yields a set of 2N residuals.  The Newton-
Raphson method seeks to reduce the residuals to an acceptable
tolerance level which is usually achieved within one or two
iterations.  

In the Newton-Raphson method, a system of 2N x 2N linear equations are
generated.  The coefficient matrix of the system is composed of
partial derivatives which are functions of the unknowns; however, the
elements in the coefficient matrix can be assigned numerical values by
substituting the trial values for the unknowns.  The coefficient
matrix is related to the set of 2N residuals by a set of 2N
corrections to the original trial values of the unknowns.  It is the
2N corrections that are sought in the solution of the 2N x 2N linear
system.  The coefficient matrix has a banded structure with at most
four elements in any row.  This property allows the use of a special
modified Gaussian elimination algorithm for solving the system (Fread,
1971).  Modification of the elimination algorithm reduces the core
storage from 4N  to 8N and the number of computational operations are2

reduced from the order of (16/3N +8N ) to 38N.  The increase in3 2

computational efficiency is critical to the feasibility of the
implicit solution technique.

Automatic Fixup Procedure

When nonconvergence occurs as the result of the water surface
elevation going below the minimum elevation describing the cross
section or when the maximum number of iterations for the Newton-
Raphson procedure have been exceeded, DWOPER has an automatic fixup
procedure to help correct the problem and continue routing.  The
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following steps are taken when satisfactory answers are not obtained
during routing:

1. Reduce the computational time step by ½ and repeat the solution
procedure.

2. Reduce the time step again by ½ and repeat the solution
procedure.

3. Reduce the time step again by ½ ; increase the 1 weighting
factor by 0.05 and repeat the solution procedure.

4. Keep the time step the same as it was in the previous step;
increase the 1 weighting factor by 0.05; and repeat the solution
procedure.

5. Repeat the previous step until the theta weighting factor
exceeds 1.00.

6. Go back to the original time step and linearly extrapolate.

To help prevent nonconvergence due to low flow conditions, a minimum
value for stage or discharge (depending on the boundary condition) is
read in for each hydrograph at the upstream boundary.  If at any time
during simulation, the upstream boundary goes below this minimum
value, the minimum value is used for the current time step only.  When
the actual value of the upstream hydrograph goes above the minimum
value, the actual value is used.  The minimum value at each upstream
boundary must be calibrated.  If the inflow hydrograph is generated
using a mathematical function, then the minimum value is set equal to
the initial stage or discharge at the upstream boundary.

The program will linearly extrapolate up to a total of eight times. 
If no satisfactory solution has been reached, then the water surface
elevations and discharges for future time steps will be set equal to
the last extrapolated values.

Initial Conditions

DWOPER allows initial conditions to be obtained from the following
sources:

1. Estimated stages and discharges at each cross section are read
in;

2. Observed stages at each cross section where a river gage is
located are read in; stages at intermediate cross sections are
linearly interpolated within the model; observed discharges at
the upstream extremity of the main stem river and each tributary
are also read in; all downstream discharges are determined by
the summation of flows from the upstream to downstream
boundaries including tributary inflow to the main stem and
lateral inflow occurring along either the main stem or
tributaries;

3. Computed stages and discharges which have been saved from a
previous unsteady flow simulation; and

4. Assumed steady flow to obtain discharges and followed by a back-
water computation to obtain stages.

In each case, the unsteady flow equations are solved for several time
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steps using the initial conditions together with boundary conditions
which are held constant during the time steps.  This allows the errors
in the initial conditions to dampen out which results in the initial
conditions being more nearly error free when the actual simulation
commences and transient boundary conditions are used.  This warm-up is
not used when forecasting in which previously stored carryover is used
as the initial conditions.

Boundary Conditions 

Boundary conditions must be specified in order to obtain solutions to
the St. Venant equations.  In fact, in most unsteady flow problems,
the unsteady disturbance is introduced into the flow at the boundaries
or extremities of the river system.  DWOPER can readily accommodate
either of the following boundary conditions at the upstream
extremities of the river system:

11. known stage (water surface elevation) hydrograph, h (t); or

12. known discharge hydrograph, Q (t).

Downstream boundary conditions included as options in DWOPER are:

n0. known tide hydrograph h (t)

N1. known stage (water surface elevation) hydrograph, h (t);

N2. known discharge hydrograph, Q (t); or
3 a known relationship between stage and discharge such as a

Rating Curve.

With respect to the Rating Curve boundary condition, the rating may be
single-valued and read in as tabular (piece-wise linear) values of
stage and discharge with linear interpolation provided internally for
intermediate values.  The rating may also be a loop Rating Curve
generated internally from cross section and roughness properties of
the downstream extremity and the instantaneous water surface slope at
the instantaneous water surface slope at the previous time step.

Cross Sections 

Irregular as well as regular geometrical shaped cross sections are
acceptable in DWOPER.  Each cross section is read in as a piece-wise
linear relationship.  Experience has shown that in almost all
instances the cross section may be sufficiently described with eight
or less sets of widths and associated elevations.  A low-flow cross-
sectional area which can be zero is used to describe the cross section
below the minimum elevation read in.  From this input, the cross-
sectional area associated with each of the widths is initially
computed within the model.  During the solution of the unsteady flow
equations, any areas or widths associated with a particular water
surface elevation are linearly interpolated from the piece-wise linear
relationships of width to elevation read in or the area-elevation sets
initially generated within the model.  If the water surface elevation
exceeds the maximum elevation in the table, the model will linearly
extrapolate beyond the last 2 valid points.  If the water surface
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elevation is less than the minimum elevation in the table, the model
will linearly extrapolate beyond the first two valid points in the
table.

Cross sections at gaging station locations are always used as
computational points in the x-t plane.  Cross sections are also
specified at points along the river where significant cross-sectional
changes occur or at points where major tributaries enter.  Typically,
cross sections for large rivers (e.g. Mississippi, Ohio) with slowly
varying transients may be spaced as much as 5-20 miles apart.  The
maximum distance between cross sections is dependent on the channel
properties, duration and rate of rise of the wave and the
computational step sizes of )x and )t.  The relation of each to the
accuracy of the simulation is defined by Fread (1974).  Generally, the
cross section spacing )x should be equal to the wave speed (c)
multiplied by the )t time step, e.g., )x (mi) = c (mi/hr) * )t (hr). 
Usually, 'average' cross sections are placed midway between cross
sections associated with gaging stations or significant geometry
changes.  The average cross section is obtained from a special data
processing program in which cross sections at all sections such as
crossings, bends or other changes in cross section geometry which
violate the assumption of linear variation between adjacent cross
sections are averaged together to obtain a weighted average.  The
distance between each cross section is used as the weighting factor.

Off-Channel Storage

Dead storage areas wherein the flow velocity in the x-direction is
considered negligible relative to the velocity in the active area of
the cross section is a feature of DWOPER.  Such dead or off-channel
storage areas can be used to effectively account for embayments,
ravines or tributaries which connect to the flow channel but do not
pass flow and serve only to store the flow.  Another effective use of
off-channel storage is to model a heavily wooded flood-plain which
stores a portion of the flood waters passing through the channel.  In
each of these cases, the use of zero velocity for the portion of flood
waters contained in the dead storage areas results in a more realistic
simulation of the actual flow than using an average velocity derived
from the main flow channel and the dead storage area.  The off-channel
storage cross-sectional properties are described in the same way as
the active cross-sectional areas, i.e., for each section, a table of
topwidths and elevations is read in along with the area associated
with the lowest elevation.  A table of area-elevation is created
within DWOPER and intermediate storage topwidths or areas are linearly
interpolated from the two tables as required.

Roughness Coefficients

Manning's n is used to describe the resistance to flow due to channel
roughness caused by bed forms, bank vegetation and obstructions, bend
effects and eddy losses.  Manning's n is defined for each channel
reach bounded by gaging stations and is specified as a function of
either stage or discharge according to a piece-wise linear relation
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(18)

with both n and the independent variable (h or Q) read in to DWOPER in
tabular form.  Linear interpolation is used to obtain n for values of
h or Q intermediate to the tabular values.  If the computed stage or
discharge goes beyond the range of the table values, then the model
uses the extreme values of the table.

The computations are often sensitive to Manning's n.  Although in the
absence of necessary data (observed stages and discharges), n can be
estimated; however, best results are obtained when n is adjusted to
reproduce historical observations of stage and discharge.  The
adjustment process is referred to as calibration. This may be either a
trial-error process or an automatic iterative procedure available
within DWOPER.  The automatic calibration feature is described later.

Lateral Inflows

DWOPER incorporates tributary inflows using the lateral inflow term,
q, in Equations 1 and 2.  The inflows are considered to be independent
of flows occurring in the river to which they are added.  They are
read in as a time series of flows with a constant time interval.  They
may be described for any )x reach along the river.  The flow is
specified in cfs; it is the sum of all lateral inflows occurring
within  a particular )x reach.  Outflows may also be simulated by
assigning a negative sign to the flow value in the time series. 
Linear interpolation is used to provide flow values at times other
than those of the time series which are determined by the time
intervals associated with the flows.

Local Losses

The effects of local head losses incurred at severe contractions
and/or expansions such as bridge openings are accounted for by the

eterm S  as defined by Equation 4.  This necessitates an expansion-
contraction coefficient associated with each )x reach to be read in. 
The local head loss is in addition to the head losses incurred by the
flow resistance due to channel roughness associated with the Manning's
n.

Wind Effects

The effect of wind resistance on the surface of the flow is accounted

f ffor by the term W  in Equation 2.  W  is defined as:

rin which V  is the velocity of the wind relative to the velocity of the
channel flow, T is the angle between the wind direction and 

wchannel flow direction and C  is the non-dimensional wind coefficient. 

wC  may be estimated from empirical studies or it may be assigned a
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value using a trial-error calibration process.

Lock and Dam Condition

A river system may include small dams with gates to pass the river
flow in such a way as to maintain certain water surface elevations on
the upstream side of the dam.  Usually associated with the dam is a
lock for allowing navigation of river craft and barges past the dam. 
DWOPER can accommodate any number of lock and dam installations within
the river system being simulated.  A 'through' computation scheme is
used as opposed to separating the river system into discrete portions
because of the lock and dam and specifying external boundary
conditions applicable to the lock and dam.  The through computation
scheme allows the simultaneous simulation of the entire river system
including portions with lock and dams.  This facilitates data
preparation and allows a correct simulation of backwater effects when
the tailwater elevation below the dam raises to an elevation such that
the pool elevation on the upstream side is no longer controlled by
operation of the gates.

In the through computation scheme a specified critical tailwater
elevation which is read in for a particular lock and dam is used to
determine if the pool elevation is controlled by the gate operation or
by channel flow.  If the simulated tailwater is less than the critical
elevation, the conservation of mass equation, Equation 8, is replaced
by and the conservation of momentum equation, Equation 9, is replaced
by:

and the conservation of momentum equation, Equation 9, is replaced by

twhere h  is the target pool elevation which the dam tender attempts to
maintain using operation of the gate.  The target pool elevation 
may be a constant value or it may be specified as a function of time
and read in as a time series.  It may also be determined from a Rating
Curve as a function of discharge.

When the simulated tailwater elevation exceeds a critical tailwater
elevation, the flow passes through the dam according to the Equations
1 and 2 as in any other )x reach.

Flow Diversions

Special flow diversions through diversion control structures are
accommodated within DWOPER.  The user specifies the percent of flow
upstream of the diversion structure to be diverted at each time step
and that quantity of flow is removed from the channel.
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Dendritic River Systems

Although the implicit formulation of the unsteady flow equations is
well suited for simulating unsteady flows in a system of rivers - in
that the response of the system as a whole is determined during each
time step - particular care must be given to maintain the necessary
solution efficiency as mention previously with regards to the matrix 
solution technique of the Newton-Raphson procedure.  An efficient
solution technique for dendritic (tree-type) river systems is utilized
in DWOPER.  This technique, as described by Fread (1973), solves
during a time step the unsteady flow equations first for the main stem
and then for each tributary of the river system.  The tributary flow
at the confluence of the tributary and main stem river is treated as
lateral flow q which is first estimated when solving the equations for
the main stem.

The tributary flow depends on its upstream boundary condition, lateral
inflows along its reach and the water surface elevation at the
confluence which is obtained during the simulation of the main stem. 
Due to the interdependence of the flows in the main stem and its
tributaries, an iterative or relaxation procedure is necessary. 
Convergence is attained when the estimated tributary flow at the
confluence is sufficiently close to the computed flow for the
tributary at its downstream boundary using the main stem water surface
elevation for the downstream boundary condition.  Usually one or two
iterations is sufficient for convergence to a suitable tolerance.

DWOPER can accommodate any number of tributaries.  Although the
iterative algorithm is designed for first order tributaries, systems
with second order tributaries may sometimes be accommodated by
reordering the system, i.e., selecting another branch of the system as
the main stem.

Weir-Flow Bifurcations

In DWOPER, any number of )x reaches along the channel may bypass flow
to a fictitious channel which connects back into the main channel at
some point downstream from the bifurcation.  The flow in the bypass
channel which may affect the weir flow is accounted for by a
submergence correction to the weir flow.  The crest elevation of the
overbank section which acts as the weir-flow bypass is specified. 
Each section has a discharge coefficient which may be estimated or
obtained through trial-error calibration.  The location along the
channel where the bifurcation(s) occur, the average crest elevation of
each such )x reach and the discharge coefficient are read in as input
data.  Levee overtopping and/or failure can be simulated using the
weir flow bifurcation feature.

There are some limitations to the weir-flow bifurcation option.  Weir
flow can only be passed from the main channel.  Levee overtopping
cannot be simulated on tributaries.  Also, since DWOPER cannot handle
a dry channel, the fictitious tributary receiving flow from the main
channel must have a small base flow.  Because the program knows that
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this is an artificial channel, the small base flow will not be added
back into the main channel.  The actual weir flow will, however, be
passed back into the main channel unless otherwise specified by the
user.

Computer Core and Computational Requirements

DWOPER has been created using the programming feature, 'variable
dimensioning'.  This enables the size of the arrays of subscripted
variables such as observed hydrograph stages, cross section topwidths,
computed stages and discharges, etc., to be changed from one
simulation run to the next.  There is a maximum total size for the sum
of all arrays, but within that bound the allocation of core space
among the variables is flexible.  The individual array space is
allocated based on data input parameters (no. of rivers, maximum no.
of cross sections on any river, no. of topwidths used to describe a
cross section, etc.).  From these parameters, the maximum amount of
space needed for each array can be specified and retained in the
parameter array.  This flexibility allows maximum use of the core set
apart for DWOPER.

The implicit formulation of the basic dynamic wave computational
element allows the time step size to be selected according to accuracy
requirements rather than numerical stability considerations.  This
factor makes DWOPER very efficient in the use of computer time. 
Computational requirements are approximately 0.004 sec/time
step/distance step (IBM 360/195 computer).
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