I'l.4-STAGEQ LOOP STACE- DI SCHARGE CONVERSI ON USI NG LOOP RATI NG

| nt r oducti on

This Section describes the nethods avail able for converting a given
stage or discharge to the associ ated di scharge or stage using
i nterpol ation or extrapolation of a |loop Rating Curve.

A loop Rating Curve is one that has a different stage-di scharge
relati onship when the river level is rising than when it is falling
as illustrated in Figure 1

The | oop-rating stage-di scharge conversion method was originally
devel oped by Fread (1973, 1975) for sinulating the dynam c
relationship that exists between stage and di scharge when the energy
slope is variable due to the effects of variable water surface sl ope
and fl ow accel erations of unsteady, non-uniformflow These effects
caused by changi ng di scharge can produce a 'loop' in the stage-

di scharge Rating Curve such that two different stages exist for each
di scharge. The lesser stage is associated with the rising linmb of

t he di scharge hydrograph while the greater stage occurs during
recession of the floodwave. Because this loop is due to the changing
or dynam c nature of the floodwave it is termed a 'dynam c | oop'

A uni que dynam c stage-discharge relation for a particular |ocation
al ong a channel can be determ ned via a mathemati cal nodel based on
the conpl ete one-di mensi onal equations of unsteady flow and the
Manni ng equati on whi ch accounts for energy |losses due to the

resi stance of the channel boundary. These equations are derived in
several references (Chow (1959) and Henderson (1966)) and are:

ov oA oh
A — +V — +B — =0
D3t (1)
ov ov dy
— +V — —2+3-S | =0 2
ot * ox +g(8x+ 0) (2)
and
Q = H 5 R2/3 g1/2 (3)
n
where x is the distance along the channel in units of FT
t is the tinme in units of SEC
A is the channel cross-sectional area in units of FT2
h is the water surface el evati on above a datum plane in
units of FT
y is the depth of flowin units of FT
S is the energy slope in units of FT/FT
V is the nean velocity of flow across the section in units
of FT/ SEC
S, is the effective bottom slope of the channel in units of
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FT/ FT

g is the acceleration due to gravity in units of 32.2
FT/ SEC

n is the Manning's coefficient in units of SEC FTY?

Q is the discharge in units of FT3/SEC

R is the hydraulic radius in units of FT

n is 1.49 if English units or 1.0 if Metric units

In the devel opnment that follows the follow ng assunptions are mde
for a short section of channel containing the gaging station or
forecast point:

1. Lateral inflow or outflow is negligible,;

2. The channel width is essentially constant; i.e. 0B/ ox=0;

3. Energy losses fromchannel friction and turbul ence are
descri bed by the Manning equati on

4. The geonetry of the section is essentially permanent; i.e. any
scour or fill is negligible;

5. The bulk of the flood wave is nmoving approximately as a

ki nematic wave which inplies that the energy slope is
approxi mtely equal to the channel bottom slope; and

6. The flow at the section is controlled by the channel geonetry,
friction and bottom slope and by the shape of the flood wave.

An expression for the energy slope is obtained by rearrangi ng
Equation 2 in the following form

dy
S =8 - 22X -
0 ox

vov._10
g ox ot

(4)

Qlr

The four terms on the right side of Equation 4 represent the
conmponent sl opes whi ch produce the variable energy slope S due to
changi ng discharge. Fromleft to right respectively the four slopes
are attributed to: gravity force, pressure force, convective
(spatial) acceleration and | ocal (tenporal) accel eration.

Usi ng assunption (2) Equation 1 nmay be expressed as:

¥ _ v o i
3 A 3x A ot (5)

For river valleys with wide, flat flood plains (with width B), the
flow velocity of water overtopping the channel bank (with width B) is
reduced as the debris and vegetati on encountered in the flood plain
resists flow and greatly increases the conposite roughness
coefficient. As the flow velocity in the overbank area (with wi dth
B,) is nearly negligible near the fl ood plain ground surface, the area
may be consi dered as off-channel storage as shown in Figure 2.

The conposite roughness coefficient is estimted from
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n =

2 2 1/2
{ n, B +ng Bf]

B

where n,, is the roughness coefficient for channel

n; i s the roughness coefficient for flood plain
B. is B, + B

Thi s overbank storage area nust still be accounted for in the
continuity equation while, because of negligible flow through it, it
may be neglected in the nmonmentum equation. The expression for
topwidth, B, in Equation 5 is thus conposed of two conponents: the
active flow area topwidth, B, and the inactive, off-channel flow area
topwi dth, B,. Equation 5 may now be written as:

ov __ VB:dy _ Boonh _ Byon (5a)
oxX A Ox A ot A ot

Upon substituting Equation 5a and V=QF A in Equation 4 the follow ng
expression for the variable energy slope S is obtained:

S.g 4 Q2B6—1@+ B, + B, Q_@_ia(Q/A) (6)
° gA‘® ox g A? ot g ot

I nformati on concerning the characteristics of either the stage or

di scharge hydrograph generally is available only at the | ocation for
which the Rating Curve is required. Such |ack of spatial resolution
of the hydrograph requires that the derivative terns with respect to
x in Equations 4 and 5 be replaced by equival ent expressi ons which
can be evaluated fromthe available informati on. Henderson (1966)
shows that if the bulk of the flood wave is noving approximtely as a
ki nematic wave then the foll owi ng expression may be used to elimnate
the need for spatial resolution of the specified hydrograph

dy _ 1 on 25,
Y c ot 3 p2 (7)

where ¢ is the kinematic wave velocity
r is the ratio of the channel bottom slope to an average
wave sl ope
The ki nematic wave velocity ¢ may be determned from observati ons of
the time interval between equal rises in stage, h, at gaging stations

al ong the channel. Also, ¢ may be computed froma rel ationship given
by Henderson (1966) and Chow (1959):

= @ (8)

where dQ dh is the slope of the single-value Rating Curve

If the channel is assuned to be prismatic then the ki nematic wave
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vel ocity can be conputed directly by substituting Equation 3 in
Equation 8. After differentiation then the follow ng is obtained:

c = KV = KQA (9)
wher e
5 _2A

and the hydraulic radius R is approxi mated by the hydraulic depth D
as follows:

R=D=AB (11)

This is a good approximation of the hydraulic radius for |arge
channels. If the hydraulic radius is used in lieu of the hydraulic
depth then the term dB,/dh in Equation 10 would be replaced by dP/dh,
where P is the wetted perinmeter of the channel cross-section and the
term B2 woul d be replaced by the product PB,. From an inspection of
Equation 10 it is evident that K has an upper limt of about 1.7 when
dB/dh is negligible and a lower limt of about 1.3 for a triangular-
shaped channel. It has been observed that K can be approxi mated as
1.3 for many natural channels (Corbett, 1943; Linsley, et al., 1949).
Al t hough there are a nunmber of nmethods for deternining the kinematic
wave velocity, Equation 9 is used in this study.

c, =Vt (gn/B)? (12)

It should be noted that the wave velocity is frequently greater than
t hat conputed by Equation 9; however, this may result fromthe fact
that the wave is nore nearly a dynani c wave than a ki nemati c wave.
The dynam c wave velocity as given by Henderson (1966) is:A

conpari son of Equation 9 with Equation 12 indicates that the dynamc
wave vel ocity can be considerably |arger than the kinenmatic wave
velocity, particularly for large A/B ratios. The dynam c wave
predom nates over the kinematic wave when the channel flow is pooled
such as behind a dam or other constriction in the channel. Under
this condition the flowis not controlled by channel geonetry,
friction, bottom slope and the shape of the fl ood wave; therefore,
flow in pool ed areas where dynamc waves are formed is not treated
herein. In sonme instances when pooling occurs only during the | ower
stages the wave velocity changes fromthat of a dynam c wave to nore
nearly that of a kinenmatic wave as the stage increases. The portion
of the Rating Curve, associated with the higher stages when the

ki nemati c wave approximation is nmore applicable, could be determ ned
approxi mtely by the method devel oped herein.

The value of r in Equation 7 nay be taken as a constant for a
particul ar channel. Typical values of r range from 10 to 100. It is
used in Equation 7 as part of a small correction which accounts for
the fact that a typical flood wave is not exactly a kinematic wave

To arrive at a value for r the wave slope is approxi mated fromthe
characteristics of a typical flood event for a particular channe

| ocation. The wave slope is deternm ned by dividing the height of the
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wave by its half-length, the latter obtained by assumi ng that the
wave travels as a kinematic wave during the interval of time fromthe
initiation of the wave to the occurrence of the wave peak at the

| ocation of concern. The half-length is determnmined fromthe product
of the average kinematic wave velocity and the tinme to peak stage.
Equation 9 is used to deternine the average kinematic velocity, wth
Q and A taken as the average values during the flood event and K
assuned equal to 1.3. Therefore the following expression is obtained
for evaluating r:

56200 (Q,+0 ) T S,
2L o

where Q is the discharge at beginning of typical flood in units
of CFS

is the peak discharge for typical flood in units of CFS

is the stage at beginning of typical flood in units of FT

is the peak stage of typical flood in units of FT

is the cross-sectional area associated with the average
stage, (h, + h))/2 in units of FT2

is the interval of tine from beginning of rise in stage
until the occurrence of the peak stage in units of
days

=4 »FF0

Since ¢ and r are defined by Equations 9 and 13, Equation 7 can be
substituted in Equation 6, with the partial derivatives in the latter
replaced by finite difference notation. After sonme rearrangenent the
foll owi ng equation i s obtained:

S =5, + KAQ +([1—%)BC + BO) Q2 6hs
A
J (14)
_ S, B 0?2
L Q/a-o/a 20| BO
gAt 3r? ga?
wher e at is the data tinme interval in units of SEC
Q@ is the discharge at tinme t-at in units of CMS
A is the cross-sectional area at tinme t-at in units of M

dhy is the change in water surface elevation during the tine
interval At in units of FT/S

p - hh'
s At
where h' is the stage at tine t-at

Equation 14 is the expression for the variable energy slope S which
is caused by varying discharge. All the terns on the right side of
the equation except S, account for the effect of the dynamc
characteristic of the flow If the flowis steady (unchanging with
tine) the energy slope is constant and equivalent to the bottom
slope, S,. This is evident from Equation 14 since all ternms on the
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ri ght side of the equation except the first term vani sh when the fl ow
is steady; i.e. Q = Q &dhy =0and r is infinitely large since the
wave sl ope vani shes for steady uniformfl ow

An expression may be derived for the dynamic relati on between stage
and di scharge when the energy slope is variable due to changing

di scharge. This can be obtained by substituting the hydraulic depth
for the hydraulic radius in Equation 3 and using Equation 14 for the
vari abl e energy sl ope:

A Jl1-Lls +8 |2
KQ K (o] o gAz

1/2

AD2/3
n

oh

S

Q-1.0 S +

o

(15)

v v 23 B Q2
L Q'/A' o/n 25, | BO
gA*®

gAt 3r?

This equation differs fromothers given in the literature (e.g.,

Linsley, et al. (1949), Corbett (1943)) which include only terns
equivalent to the first two terns of the variable energy sl ope of
Equati on 4.

Equation 15 forns the basis of a mpbdel that can be used to deternine
ei ther discharge when the rate of change of stage is known (as in
stream gagi ng) or stage when the rate of change of discharge is known
(as in stream forecasting). These alternative conditions are denoted
respectively as Case A and Case B. A brief description of each

foll ows:

Case A: The discharge hydrograph is determ ned froma specified
(observed) stage hydrograph. |In this case, Qis unknown
in Equation 15; the known quantities consist of constants
(S,, r, g, at), known functions (A B, n, K) of the
specified stage h and known quantities (Q, A, h')
associated with tine t-at.

Case B: The stage hydrograph is determ ned froma specified
(predicted) discharge hydrograph. In this situation, his
the unknown in Equation 15 and the terms (A, B, n, K) are
functions of h. The known quantities consist of constants
(S,, r, g, at), the specified discharge Q and the
quantities (Q, A, h'") associated with tinme t-at.

The unknowns Q and h in Case A and Case B respectively are not
expressed in an explicit manner and require an iterative solution.
An efficient nmethod for obtaining a solution is by using Newton
Iteration (lssacson and Keller, 1966).

Sol ution by Newton lteration

A nonlinear equation may be solved by a functional iterative
techni que such as Newton iteration. Consider the follow ng equation
expressed in functional form
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f(x) =0 (NR- 1)

The solution of Equation NR-1 is obtained in an iterative nmanner,
proceeding froma first solution estimte x* towards succeedi ng

i nproved estinmates x**', which tend to converge toward an acceptable
solution. The orderly procedure by which the inproved solution
estimate xk*! is obtained so that it converges to an acceptable
solution is known as Newton iteration and is described as

fol |l ows.

A nonlinear equation such as Equation NR-1 may be linearized by using
only the first two terms of its Taylor series expansion at xk:

N df (x ¥)

f(x) = £(x¥)
dx k

(x—x ) (NR- 2)

The right side of Equation NR2 is the linear function of x¥ that best
approxi mates the nonlinear function f(x) which is evaluated at x*. An

iterative procedure, which will cause f(x¥) to approach zero as the
guantity (x-x*) approaches zero, can be obtained from Equati on NR-2 by
setting f(x) equal to zero and replacing x with x*! which will be an

i mproved solution estimate for x if the iterative procedure is
convergent. Therefore Equation NR-2 takes the form

. f(x¥)
gkl = k NR- 3
df (x *) /dx ¥ ( )

where k is the iteration nunber

Equati on NR3, the general iteration algorithmof Newton, is repeated
until the difference (x¥* - x¥) is less than ¢« which is a suitable
error tolerance for the solution of Equation NR-1. When this occurs
the iteration process has converged; i.e. x*! has approached x to
within the prescribed error tol erance e.

The convergence of the iteration process depends on a good first
solution estimate xk=t. If the estimate is sufficiently close to x,
convergence is attained and it is at a quadratic rate, i.e. second
order, since the iterative procedure involves the first derivative
The nonlinear equation which is solved by the Newton iterative
algorithmin this report is a tine dependent finite-difference
equation. A first estinate of the solution is obtained by using the
sol ution associated with the time t-at. In this study the iteration
process al ways converged. The convergence process can be hastened
when the first solution estimte x**! is made closer to the acceptable
solution. A sinple linear extrapolation is used to provide better
first solution estimtes. Thus:

x5 = x o+ (%, -x. /2 (NR- 4)

where j is the solution at tine t
j-1 is the solution at time t-at, etc.
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In the follow ng equation the Newon iteration algorithmis applied
to Equation 15, which is presented here for convenient reference:

A D2/3
n

Q'/A - Q/A

-1.0
© GAt

S +

o

dh_ +
KQ KC gA2 S

2
.\ ZSO 1_BCQ
3r? gAa3

First the Case A condition is treated where the discharge Qis the
unknown in Equation NR5 and then the Case B condition is presented
in which the stage h is the unknown.

A, (B;Bo—i) 0

(NR- 5)
1/2

Case A

Equation NR-5 can be solved for Qat tinme t as foll ows:

k
Qk*l = gk - £(QF) (NR- 6)
df (Q*)/dQ*
where k is the iteration nunber
f(Q) is Equation NR-5 evaluated with the unknown Q

repl aced by the approxi mtion
df (¥)/dQ is the derivative of f(Q) with respect to ¢

Thus:
f(Q) = Q@ - LL,? (NR-7)
wher e
— L4 k ky 2
LO—L3+E+L5Q + L, (QF) (NR- 8)
AD2/3

L,=1.0 - (NR-9)
Lo=sg & 2% , 0O (NR-
* ° 3r? gA'At' 10)
- A Ah, ( NR-
4 K 11)

L. =|B +B -2 ah, 1 ( NR-
5 °©° ge) ga? G A At 12)
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2SB 3
L, = - c (NR
3r?gns 13)
i n which
D=2 ( NR-
B, 14)
(h —h'") ( NR-
dh_ =
s At 15)
5 2 A dBC /dh ( NR-
K= — - — -
3 3 B? 16)
B -B ') ( NR-
dB /dh = (cic
o/ — 17)
n = Manning' s n at h« (NR-18)
Al so:
M=1—0.5 Loy ( NR-
do L2 19)
wher e
dL L
L, = ° = - 1 +L,+2L,QFk (NR-
do*k (Q*)? 20)

In the above equations, A and B are known functions of the stage and
are evaluated at h; B, A, h' are known fromthe time period
previous; i.e. t' or t-at; S,, r are constants.

Case B

Equation (NR-5) can be solved for h at tinme t as follows:

hk+1=hk_ f(hk) (NR‘
df (h¥)/dh* 21)
where k is the nunber of iteration
f (h¥) is Equation NR-5 evaluated with the unknown h,
which is also inplicitly contained in the terms
D, A B, n, Kand sh,, replaced by the
appr oxi mation hk
df (h*) / dh* is the derivative of f(h¥) with respect to h
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Thus:

f(h*) =g -1.0?3—2°
n
wher e
B +B -B /K . J. B
J =J, +|lga+J|° ¢ h*h') + =2 +J <
o 2 3 4 A2 A 6A3
in which
2 S v
J =g + o . Q
2 ° 3 p2 gA'At!
J, = 1
K Q At"
J = Q
4 g At
J. = Q
5 g At
_ 2
5 - 28,0
6 32g
r
In the above:
5 2 a k k
K== -2=- — dB /dh (evaluated at h*)
3 3 gz ¢
(BX-B ')
dBC/dhk = _ ¢ ¢ °
(h*-h")
and
df(hk) _ 10 J1/2§d(D2/3) . D2/3 B ~ A D2/3 dn/dh *®
dh k ° Iln  dnk n n?2

0.5A D?3 J,
=+
1/2

o

nd
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dJ, (B, + B, - B,/K)
J, = =JA +J,
dh* AZ?
J, dB,
+ (h*-h') |JB_+— [dB +dB_ - )
c A2 c o
2B, ( NR-
- (B, +B_ - B_/K) 32)
Be ax]_RJ dx
k2 dh K dh
_ JB. i( dB, _ 3BC)
A2 a3\ dh D
n = Manning' s n at h« (NR-33)
dn/ dh* = Change in Manning's n at h*?', hk (NR- 34)
d(D2/3) 2 2/3 ( Bc dBC/dhk)
—— - ==Z0D - — .
an 3 n B, (NR- 35)

In the above equations A and B are specified functions of the stage
and are evaluated at h+x; B', A, h' are known fromthe previous tine
t-at and g, at, S,, r are constants.

For either Case A or Case B the solution of Equation NR5 using
Newton Iteration requires only about two iterations when the
foll owi ng convergence criteria are used:

Q-0 ¥ < €/ (NR-
and
|h**1-h*| < g, (NR-
wher e

€o= 0.1 CMS (NR- 38)
and

e, = 0.001 M (NR-39)
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