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ABSTRACT

This paper describes a technique for quantifying and removing biases from ensemble forecasts of hydro-

meteorological and hydrologic variables. The technique makes no a priori assumptions about the distribu-

tional form of the variables, which is often unknown or difficult to model parametrically. The aim is to

estimate the conditional cumulative distribution function (ccdf) of the observed variable given a (possibly

biased) real-time ensemble forecast. This ccdf represents the ‘‘true’’ probability distribution of the forecast

variable, subject to sampling uncertainties. In the absence of a known distributional form, the ccdf should be

estimated nonparametrically. It is noted that the probability of exceeding a threshold of the observed variable,

such as flood stage, is equivalent to the expectation of an indicator variable defined for that threshold. The

ccdf is then modeled through a linear combination of the indicator variables of the forecast ensemble

members. The technique is based on Bayesian optimal linear estimation of indicator variables and is anal-

ogous to indicator cokriging (ICK) in geostatistics. By developing linear estimators for the conditional ex-

pectation of the observed variable at many thresholds, ICK provides a discrete approximation of the full ccdf.

Since ICK minimizes the conditional error variance of the indicator variable at each threshold, it effectively

minimizes the continuous ranked probability score (CRPS) when infinitely many thresholds are employed.

The technique is used to bias-correct precipitation ensemble forecasts from the NCEP Global Ensemble

Forecast System (GEFS) and streamflow ensemble forecasts from the National Weather Service (NWS)

River Forecast Centers (RFCs). Split-sample validation results are presented for several attributes of

ensemble forecast quality, including reliability and discrimination. In general, the forecast biases were sub-

stantially reduced following ICK. Overall, the technique shows significant potential for bias-correcting en-

semble forecasts whose distributional form is unknown or nonparametric.

1. Introduction

Forecasts of hydrometeorological and hydrologic vari-

ables often contain large uncertainties (Beven and Binley

1992; Anderson and Bates 2001; Gupta et al. 2005; NRC

2006; Ajami et al. 2007). Ensemble techniques are widely

used in meteorology and, increasingly, in hydrology to

quantify these uncertainties (Stensrud et al. 1999; Jolliffe

and Stephenson 2003; Brown and Heuvelink 2005; Olsson

and Lindström 2008). For example, the National Weather

Service (NWS) River Forecast Centers (RFCs) produce

ensemble forecasts of streamflow at a variety of lead times

(Seo et al. 2006; Schaake et al. 2007). In one experi-

mental operation, ensemble traces of precipitation and

temperature are generated from single-valued forecasts

using an ensemble preprocessor (Schaake et al. 2007).

These traces are input into the Ensemble Streamflow

Prediction (ESP) subsystem of the NWS River Forecast

System (NWSRFS), from which ensemble traces of

streamflow are output. To meet the varied needs of the

RFCs and their customers for probabilistic water fore-

casts, the Experimental Ensemble Forecast System

(XEFS) is currently being developed. Upon completion,

the XEFS will support the quantification of uncertainty,

its propagation through the forecast system, correction of

forecast biases, verification of probabilistic forecasts,

and the generation of a wide range of graphical and nu-

merical outputs for scientific research and operational use

(Demargne et al. 2009).

Whether they explicitly account for uncertainty or

not, forecasts of environmental variables are subject to

error. These errors may be correlated in space and time

Corresponding author address: James Brown, NOAA/NWS/

OHD, 1325 East-West Highway, Silver Spring, MD 20910.

E-mail: james.d.brown@noaa.gov

642 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 11

DOI: 10.1175/2009JHM1188.1



and may be systematic. The skill of an ensemble fore-

casting system can depend largely on its systematic bi-

ases (Jolliffe and Stephenson 2003; Hashino et al. 2006;

Wilczak et al. 2006). Forecast evaluation or ‘‘verifica-

tion’’ is necessary to identify these biases and to estab-

lish the skill of the forecasting system under a range of

observed and forecast conditions. To this end, verifica-

tion studies are usually diagnostic in nature; they seek to

quantify the biases present under a range of conditions

(e.g., Bradley et al. 2004; Hersbach 2000; Georgakakos

2003; Franz et al. 2003; Murphy and Winkler 1987;

Roulston and Smith 2002). Such studies can lead to im-

provements in forecasting models and methods. In op-

erational forecasting, however, there is a need to estimate

the quality of a specific forecast in real time and, if

necessary, to correct for biases in that forecast. This

is equivalent to estimating the probability distribution

of the observed variable given the real-time ensemble

forecast. The same problem is addressed in postprocess-

ing, whereby a statistical relationship is developed between

common attributes of the past forecasts and observations

(e.g., precipitation amount and storm type) and used to

bias-correct subsequent forecasts, conditional upon those

attributes. For example, a common application of model

output statistics (MOS) involves a linear regression be-

tween a single-valued forecast amount and an observed

amount (Glahn and Lowry 1972). Gneiting et al. (2005)

extend this approach to ensemble forecasts by including

the ensemble spread alongside the ensemble mean in es-

timating the observed amount. Other examples of para-

metric postprocessors include logistic regression (Hamill

et al. 2008; Wilks 2009) and Bayesian model averaging

(Raftery et al. 2005; Sloughter et al. 2007).

Reliable estimation of the joint probability distribu-

tion of forecasts and observations, or attributes thereof,

is central to all types of statistical postprocessing and

verification (Jolliffe and Stephenson 2003; Murphy and

Winkler 1987; Wilks 1995). In many cases, a parametric

joint distribution is assumed. However, many hydro-

meteorological and hydrologic variables do not follow

a parametric distribution. This is not surprising because

the observed outcomes are an aggregate effect of dif-

ferent physical processes operating at different temporal

and spatial scales. To circumvent this problem, the sample

data may be transformed to follow a parametric distri-

bution and a parametric assumption invoked (Gneiting

et al. 2005; Schaake et al. 2007). For example, when

postprocessing hydrometeorological and hydrologic en-

sembles, it is often assumed that the (transformed)

forecasts and observations are joint normally distributed.

However, distributional transforms, such as the normal

quantile transform (NQT; Kelly and Krzysztofowicz

1997; Goovaerts 1997), are complicated by the need to

model in transformed space and then back transform the

estimated probabilities, where the optimality of the

parameter estimates is no longer guaranteed. Further-

more, marginal transforms are not a sufficient condition

to ensure that the joint probabilities follow a parametric

joint distribution (Goovaerts 1997).

This paper describes a new approach for correcting

biases in real-time ensemble forecasts of hydrometeoro-

logical and hydrologic variables. The technique makes no

a priori assumptions about the distributional form of the

variables and is calibrated with a large sample of historical

ensemble forecasts and verifying observations. It attempts

to estimate the probability distribution of the observed

variable given the ensemble members of the real-time

forecast as conditioning information. The technique is

based on Bayesian optimal linear estimation of indicator

variables (Schweppe 1973) and is analogous to simple

cokriging of indicator variables (ICK) in geostatistics

(Journel and Huijbregts 1978; Isaaks and Strivastava 1989;

Deutsch and Journel 1992; Cressie 1993; Seo 1996). The

paper is organized in three parts. The first part outlines the

ICK approach for modeling the conditional distribution.

The second part focuses on estimating the conditional

distribution, where the aim is to develop a parsimonious

estimate given the information content of the ensemble

members. In the third part, the technique is applied to

ensemble forecasts of precipitation from the National

Centers for Environmental Prediction (NCEP) Global

Ensemble Forecast System (GEFS) and ensemble fore-

casts of streamflow from the NWS RFCs. Split-sample

(independent) validation results are presented for sev-

eral attributes of ensemble forecast quality, including

reliability and discrimination.

2. Problem formulation and proposed solution

Let G denote a numeric variable of interest, such as

temperature, amount of precipitation, or streamflow.

Let X denote an observation of that variable at a single

‘‘point’’ in space and time, and let Y denote a corre-

sponding forecast. Depending on the estimation prob-

lem, the scale or space–time support of X and Y can vary

(e.g., a location or an area), and the support of X may

differ from that of Y. For example, gauged precipitation,

X, might be estimated from an ensemble forecast of

mean areal precipitation, Y. For simplicity, it is assumed

that X is an unbiased estimate of G, because these biases

are either unknown (more commonly) or are known

and, therefore, removable (see Jolliffe and Stephenson

2003; Katz and Murphy 1997; Wilks 1995). For brevity,

the random variables X and Y are denoted by their ex-

perimental values only. Thus, the probability density

functions of X and Y are denoted f(x) and f(y) and their
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cumulative distribution functions (cdfs) are denoted

F(x) and F(y), respectively. The joint cumulative dis-

tribution function of X and Y is denoted F(x, y). For

most practical applications, F(y) is approximated nu-

merically using a vector of m equally likely ensemble

members, denoted Y 5 fZ1, . . . , Zmg. Here, it is assumed

that the ensemble members are ranked by size, that is,

Zi21 # Zi, i 5 2, . . . , m. The problem then is to estimate

the conditional cdf (ccdf) of X given Y for an operational

forecast with ensemble member values, y 5 fz1, . . . , zmg:

F(xjz
1
, . . . , z

m
) 5 Prob[X # xjZ

1
5 z

1
, . . . , Z

m
5 z

m
].

(1)

The probability that X is less than or equal to a

threshold, ca, is equivalent to the expectation of an in-

dicator function

Prob[X # c
a
] 5 E[I(x; c

a
)] where

I(x; c
a
) 5

1, x # c
a
;

0, otherwise,

(
(2)

and E[�] is the expectation operator. The indicator var-

iable I(x; ca) is a Bernoulli random variable with mean or

‘‘probability of success’’ E[I(x; ca)] 5 p and variance

VAR[I(x; ca)] 5 p(1 – p). The joint probability that X is

less than or equal to ca and Y is less than or equal to a

threshold, cb, is

Prob[X # c
a
, Y # c

b
] 5 E[I(x; c

a
) 3 I( y; c

b
)] where

I(x; c
a
) 5

1, x # c
a
;

0, otherwise
and

(

I( y; c
b
) 5

1, y # c
b
;

0, otherwise.

(
(3)

The indicator variable I(y; cb) is a Bernoulli random

variable with mean E[I(y; cb)] 5 q and variance VAR

[I(y; cb)] 5 q(1 – q). In general, X and Y can assume an

infinite number of possible outcomes, requiring an infinite

number of indicator variables to fully define their joint

distribution. While some applications require an estimate

of the conditional probability of the observed variable at

a specific threshold (e.g., ca 5 flood stage), others require

an estimate of the full ccdf. Even for a fixed value of X 5 ca,

the conditional probability in Eq. (1) comprises an in-

finite number of partitions of Y. However, a discrete

approximation of the continuous ccdf is possible.

For an ensemble forecast comprising m members, the

aim is to estimate F(cajz1, . . . , zm) 5 Prob[X # cajZ1 5

z1, . . . , Zm 5 zm] for all possible values of ca. In practice,

an estimate is made at only some values of ca. For a given

value of ca, the conditional probability is obtained from

a finite number, y, of the infinite number of possible in-

dicator transforms of the ensemble members

E[I(x; c
a
)jZ

1
5 z

1
, . . . , Z

m
5 z

m
] ’ E[I(x; c

a
)jI(z

j
; c

b
)

5 i(z
j
; c

b
); j 5 1, . . . , m; b 5 1, . . . , y]

and I(x; c
a
) 5

1, x # c
a
;

0, otherwise;

(

and I(z
j
; c

b
) 5

1, z
j

# c
b
;

0, otherwise,

(
(4)

where i(zj; cb) denotes the experimental value of I(zj; cb).

The conditional expectation in Eq. (4) may be estimated

in several ways. Here, we use the Bayesian optimal linear

estimator (optimal in the sense of minimum error vari-

ance; Schweppe 1973),

E[I(x; c
a
)jI(z

j
; c

b
)5 i(z

j
; c

b
); j51, . . . , m; b51, . . . , y]

’E[I(x; c
a
)]1 �

y

b51
�
m

j51
l

a
(z

j
; c

b
)

3fi(z
j
; c

b
)�E[I(z

j
; c

b
)]g, (5)

where each la(zj; cb) is a weight formed at the ath

threshold of the observed variable, which is used to

weigh the jth ensemble member at the bth threshold of

the forecast variable (see section 3 on estimation). In

Eq. (5), E[I(x, ca)] is the prior or ‘‘climatological’’

probability that X is less than or equal to ca. The addi-

tion to this prior probability represents a conditional

adjustment by the ensemble forecast. When averaging

over an infinite number of conditional adjustments, the

prior distribution is preserved, because the conditional

adjustment has zero expectation, that is, E[i(zj; cb) –

E[I(zj; cb)]; j 5 1, . . . , m; b 5 1, . . . , y] 5 0. In other

words, the unconditional probabilities are necessarily un-

biased. Equation (5) is analogous to simple cokriging of

indicator variables in geostatistics (Journel and Huijbregts

1978; Isaaks and Strivastava 1989; Cressie 1993), where

E[I(x, ca)] is termed the ‘‘simple-kriging mean’’ and the

la(zj; cb) are cokriging weights to estimate.

Kriging is closely related to other interpolators, such as

regression splines (Dubrule 1983; Watson 1984) and kernel

methods (Buja et al. 1989; Yandell 1993). Under certain

conditions, these techniques are equivalent (Yandell

1993). For example, Borga and Vizzaccaro (1997) show

that multiquadratic surface fitting with a conic spline is

equivalent to kriging with a linear variogram model.
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Elsewhere, Ali and Lall (1996) adopt a kernel estima-

tor instead of indicator kriging to predict soil conduc-

tivity. Thus, other nonparametric techniques may be

considered alongside ICK. However, in the current

application, ICK employs a different objective function

than the kernel approach. Specifically, ICK minimizes

the Brier score (BS; Brier 1950) at each threshold, ca,

of the ccdf in Eq. (1). The BS is a well-known measure

of probabilistic forecast quality (discussed later). To

achieve such optimality with kernel smoothing, for

example, an optimal bandwidth would be required for

each forecast ensemble member, as well as the obser-

vation, at each threshold. The authors are unaware of

any practical solution to such a high-dimensional esti-

mation problem.

Unlike most parametric techniques, ICK comprises

a separate linear estimator for each threshold of X. This

allows the statistical dependence of X on Y to change

with the forecast amount. Further, it allows for mixed

distributions (such as precipitation) to be treated in the

same way as continuous distributions. Indeed, the dis-

continuity in precipitation is simply another threshold at

which to solve Eq. (5). However, it also implies a dis-

crete approximation of the full ccdf in Eq. (1). This is

formed at u thresholds of X, fc1, . . . , cug. A sufficiently

large number of thresholds must be used to capture the

variability in the observations and in the forecast en-

semble members (see section 5). Because the estimates

from Eq. (5) are probabilities, they must be greater than

or equal to 0, less than or equal to 1, and nondecreasing

as the threshold value increases. In practice, ICK may

fail these conditions because the u optimal linear esti-

mates are obtained separately, and their predictions are

not constrained to be valid probabilities (see section 3).

In some cases, there may be prior knowledge about the

biases in Y, or more knowledge about X than simply its

unconditional, climatological, distribution. If this in-

formation is considered reliable and can be encoded into

a set of auxiliary variables, A 5 fA1, . . . , Akg, then it may

be included in the estimator. For example, precipitation

forecasts are often subject to seasonal biases. Given a bi-

nary variable A15fwarm season, cool seasong, identifi-

cation of F(xjz1, . . . , zm; a1) amounts to a separate

cokriging for each of a1 5 warm season and a1 5 cool

season.

3. Estimation of the conditional probability
distribution

In practice, there is a finite sample of n historical

forecasts and corresponding observations from which to

estimate the statistical parameters in ICK. Together, the

n pairs of forecasts and observations are assumed to

represent independent samples of a stationary random

process. In our application of ICK, this implies time-

invariant marginal probabilities of the observed variable

and the ranked ensemble members, as well as time-

invariant joint probabilities.

There is one estimator for each indicator threshold of

the observed variable, fc1, . . . , cug. Each estimator re-

quires my 1 1 marginal probabilities: one for the prior

probability of X at its ath indicator threshold, E[I(x, ca)],

and one for the probability of Zj at its bth indicator

threshold, E[I(zj, cb)], j 5 1, . . . , m; b 5 1, . . . , y. In the

current application, all of the statistical parameters in

ICK, including the marginal probabilities of each in-

dicator variable, as well as the covariances and cross co-

variances between indicator variables, are estimated from

sample data. This indicator covariance structure is as-

sumed to be stationary, and the estimated structure is then

used to bias-correct a real-time forecast. Unbiased esti-

mates of the marginal probabilities can be obtained from

a plotting position formula, such as the Weibull plotting

position (O’Conner 2002). Sample estimates of the co-

variances and cross covariances are considered later.

Alongside the marginal probabilities, there are my 3 1

regression coefficients to estimate for each indicator

threshold of the observed variable. They are estimated

by minimizing the conditional error variance of the con-

ditional probability at the ath indicator threshold:

J 5 E
i(x; c

a
)� E[I(x; c

a
)jI(z

j
; c

b
) 5 i(z

j
; c

b
); j 5 1, . . . , m; b 5 1, . . . , y]

n o2

jI(z
j
; c

b
)i 5 (z

j
; c

b
); j 5 1, . . . , m; b 5 1, . . . , y

2
64

3
75, (6)

where i(x; ca) is the experimental value of the observed

indicator variable at threshold ca. Equation (6) is anal-

ogous to the BS at threshold ca (Brier 1950). Since ICK

estimates the conditional probability of the observed

variable at each of the u (ranked) thresholds, it effec-

tively minimizes the sum of the Brier scores across the

u thresholds. Extension to infinitely many thresholds is,

therefore, equivalent to minimizing the continuous ranked

probability score (CRPS; Matheson and Winkler 1976;

Hersbach 2000) on a threshold-by-threshold basis.

The optimal linear solution to Eq. (6) at the ath thresh-

old of the observed variable, ba, is given by
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b
a
5 W�1b

a

ua(c
1
)

..

.

ua(c
y
)

2
6664

3
77755

v(c
1
, c

1
) . . . v(c

1
, c

y
)

..

. . .
. ..

.

v(c
y
, c

1
) � � �v(c

y
, c

y
)

2
6664

3
7775
�1 da(c

1
)

..

.

da(c
y
)

2
6664

3
7775,

(7a)

where

ua(c
b
) 5

l
a
(z

1
; c

b
)

..

.

l
a
(z

m
; c

b
)

2
64

3
75, (7b)

v(c
b
, c

h
) 5

Cov[I(z
1
; c

b
), I(z

1
; c

h
)] � � �Cov[I(z

1
; c

b
), I(z

m
; c

h
)]

..

. . .
. ..

.

Cov[I(z
m

; c
b
), I(z

1
; c

h
)] � � �Cov[I(z

m
; c

b
), I(z

m
; c

h
)]

2
664

3
775, and (7c)

da(c
b
) 5

Cov[I(x; c
a
), I(z

1
; c

b
)]

..

.

Cov[I(x; c
a
), I(z

m
; c

b
)]

2
64

3
75 b; h 5 1, . . . , y. (7d)

The matrix W contains the covariances between each

pair of indicator transforms of the m ensemble members at

y thresholds. The vector ba contains the cross covariances

between the indicator transforms of the m ensemble

members at y thresholds and the indicator transform of the

observed variable at threshold ca. In this work, the entries

of W and ba are sample covariances. In the absence of a

plotting position formula for the joint probability, a nor-

malizing constant of n (and not n 2 1) is used to compute

the sample covariances and cross covariances that pop-

ulate W and ba, respectively. This is necessary to produce

valid joint probabilities in the upper tails, because the

marginal and joint probabilities are specified by sample

data, rather than by a theoretical probability distribution.

An important aim of this work is to develop an estimate

of Eq. (5) that is both computationally efficient and ap-

propriately smooth, given the sampling uncertainties of

the indicator statistics. In practice, the my forecast in-

dicator variables in W may be strongly intercorrelated

(e.g., Eckel and Walters 1998). By eliminating these in-

tercorrelations, an orthogonal decomposition of W should

reduce the dimensionality of the estimation problem. This

is analogous to cokriging with the first pp principal com-

ponents of W such that pp , my (see Deutsch and Journel

1992). Here we adopt the singular value decomposition

(SVD) of W, which is numerically stable and is always

defined (Golub and Van Loan 1996) as

W 5 USVT, (8)

where U and V are my 3 my orthogonal matrices,

whose columns form the eigenvectors of WWT and

WTW, respectively. The matrix S is an my 3 my di-

agonal matrix, which contains the singular values of W,

that is, S 5 diag(s1, . . . , smy). By convention, the sin-

gular values are arranged in descending order from s1

to smy. Since U and V are orthogonal matrices and S is

diagonal, they are easily inverted as follows:

W�1 5 (USVT)�1

5 (VT)�1S�1U�1

5 VS�1UT.

(9)

If W is singular or near singular, one or more of the

diagonal entries in S will be zero or near zero, re-

spectively. In practice, only those r column vectors of

U and r row vectors of V corresponding to the nonzero

singular values are calculated. The matrix U is then

my 3 r, the matrix S is r 3 r diagonal, and the matrix

V is r 3 my, where r , my. To obtain a regularized

solution [see Hansen (1987) for a discussion on regu-

larization], the reciprocals of the smallest positive sin-

gular values in S may be substituted with zeros. The

remaining pp positive singular values provide an effi-

cient and well-posed solution to Eq. (5). The regular-

ized form of ICK is analogous to indicator cokriging

with measurement error (Saito and Goovaerts 2002).

It acknowledges that both the observed and forecast
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data may contain noise. As such, not all details of

the statistical model may be used in prediction, even

under stationarity. Clearly, a decision is required

about an ‘‘appropriate’’ degree of smoothing given

the data uncertainties. In practice, this involves se-

lecting a limited number of orthogonal covariates

in ICK that lead to similarly good performance under

dependent and independent validation (section 4).

For a square symmetric matrix, W, the SVD is equiv-

alent to diagonalization, or to solution of the eigen-

value problem, where the singular values of W are

the positive square roots of the eigenvalues (Hansen

1987). The threshold below which singular values are

zeroed (the so-called singularity threshold) can, there-

fore, be expressed as a proportion of the total variance

retained in the solution.

As indicated earlier, the ICK technique is not explicitly

constrained to produce valid probabilities. Furthermore,

the probabilities are estimated at only a limited number

of thresholds of the observed variable, yet the full ccdf is

required for many practical applications, such as uncer-

tainty propagation analysis. To provide a smooth approx-

imation of the full ccdf, the conditional probabilities are

approximated locally with a piecewise quadratic function

of x, subject to the requirement of valid probabilities (He

and Ng 1999). This ‘‘smoothing spline’’ is fitted to mini-

mize the mean absolute errors of the estimates, which is

a robust constrained smoother (He and Ng 1999).

4. Case studies and verification results

a. Experimental design

To evaluate the performance of the ICK technique,

verification was conducted for forecasts of several hydro-

logic and hydrometeorological variables. The verification

samples comprised paired forecasts and observations at

multiple forecast lead times. The statistical parameters of

ICK were estimated from the paired sample data. The

estimated probabilities were then corrected and smoothed

with a quadratic spline. The bias-corrected forecasts were

compared to the ‘‘raw’’ forecasts using several attributes

of forecast quality (discussed later). Two scenarios were

considered, namely, 1) ‘‘dependent validation,’’ whereby

all data were used to estimate the statistical parameters of

ICK; and 2) ‘‘independent validation,’’ whereby a sub-

sample was used for estimation and the remainder used

for validation. For example, a 90/10 split comprised 10

FIG. 1. Log frequency of observed events for the two ICK case studies.
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equal periods, of which 9 were used for estimation and

1 for validation. This was repeated until each of the nine

periods had been used for validation. While dependent

validation is not representative of the actual forecasting

process, it provides an upper bound for the performance

of ICK given the sample data, as well as a reference point

for quantifying sampling uncertainty and for determining

an appropriate degree of regularization of the ICK prob-

lem (see section 3). In contrast, independent validation

mimics the operational forecasting process, but it employs

only a subset of the available data for estimation. Unless

otherwise stated, the results are shown for forecasts issued

under independent validation.

Key attributes of ensemble forecast quality include

the reliability of the forecast probabilities and the abil-

ity of the forecasts to discriminate between different

observed conditions (Jolliffe and Stephenson 2003). Fore-

cast reliability was evaluated with the reliability diagram

(Hsu and Murphy 1986), and discrimination was evalu-

ated with the relative operating characteristic (ROC;

Green and Swets 1966; Mason and Graham 2002) and,

specifically, the area under the ROC curve (AUC;

Fawcett 2006). The mean CRPS was also computed, as

ICK explicitly minimizes the CRPS on a threshold-by-

threshold basis. The CRPS is a popular verification

metric and is ‘‘strictly proper,’’ meaning it cannot be

hedged (Bröcker and Smith 2007). In addition, the av-

erage of the forecast ccdfs (i.e., the average probability

at each value of X 5 x; Gneiting et al. 2007) was checked

for unbiasedness against the observed climatology, as

ICK is explicitly formulated to be unbiased in the un-

conditional sense.

FIG. 2. Singular values by thresholds of X for GEFS precipitation forecasts.
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b. Precipitation forecasts from the NCEP GEFS

Operational forecasts of precipitation were obtained

from the GEFS of the NCEP. The archive contains a

continuous record of 12-hourly forecasts from 1 January

2000 to 15 August 2005, with lead times ranging from 12

to 120 h in 12-hourly increments. Each forecast comprises

10 ensemble members, and each member represents an

equally likely prediction of the total precipitation within

the 12-h period. More recent forecasts were available but

not considered, as the data assimilation scheme used in

the operational GEFS was upgraded on 16 August 2005.

This led to significant changes in the predictive error and

uncertainty of the precipitation forecasts. Other changes

in the GEFS between 2000 and 2005, which included

a mask rescaling on 23 April 2003, were not reflected in

TABLE 1. Observed and forecast PoP for GEFS.

Lead time (h) Observed GEFS

Dependent validation Independent validation

ICK ICK1 ICK ICK1

12 0.31 0.48 0.30 0.33 0.29 0.33

24 0.31 0.49 0.30 0.33 0.30 0.33

36 0.31 0.49 0.30 0.33 0.29 0.33

48 0.31 0.49 0.30 0.33 0.30 0.33

60 0.31 0.49 0.30 0.33 0.29 0.33

72 0.31 0.50 0.30 0.33 0.30 0.33

84 0.31 0.50 0.30 0.33 0.29 0.33

96 0.31 0.53 0.30 0.33 0.30 0.33

108 0.31 0.55 0.30 0.33 0.30 0.33

120 0.31 0.55 0.30 0.32 0.30 0.32

FIG. 3. Climatological cdfs for GEFS precipitation forecasts.
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the forecast error statistics in the 12–120-h lead periods

and were, therefore, deemed unimportant.

The ICK was performed for several basins in the ser-

vice area of the Middle Atlantic River Forecast Center

(MARFC). Basin-averaged precipitation was used as the

observed variable and was provided by MARFC (Larson

1976). The results were similar for each basin considered

and are shown for a single basin, namely, Huntingdon,

PA (RFC point HUNP1). Figure 1 shows the log fre-

quency of different observed precipitation amounts over

the GEFS forecast period. The ICK was performed

separately for each forecast lead time. Independent val-

idation was conducted with a 95/5 split sample, rotated

20 times. For computational efficiency, only two auxil-

iary thresholds were included alongside the main indi-

cator threshold in each estimation. These corresponded

to 0.8 and 1.4 times the main threshold. In practice, this

was found to capture most of the additional variance

explained by ICK when compared to indicator kriging

with no auxiliary thresholds (Journel and Huijbregts

1978). The main thresholds were fixed at increasing quan-

tiles of the climatological distribution, with more thresh-

olds at light precipitation than heavy precipitation to cover

the high probability densities there, and 150 thresholds in

total. The thresholds were chosen by visually inspecting

the bias-corrected probabilities for noise, and by checking

FIG. 4. Three example cdfs for GEFS precipitation forecasts.

TABLE 2. Mean CRPS and associated skill (%) of the

GEFS precipitation forecasts.

Lead

time (h) GEFS

Dependent

validation

Independent

validation

ICK ICK1 ICK ICK1

12 1.24 0.81 (35) 0.88 (29) 0.84 (32) 0.89 (28)

24 1.27 0.86 (32) 0.93 (27) 0.89 (30) 0.97 (24)

36 1.24 0.89 (28) 0.97 (22) 0.91 (27) 0.99 (20)

48 1.19 0.91 (24) 0.99 (17) 0.94 (21) 1.02 (14)

60 1.17 0.97 (17) 1.04 (11) 0.97 (17) 1.07 (9)

72 1.22 1.02 (16) 1.12 (8) 1.02 (16) 1.14 (7)

84 1.27 1.07 (16) 1.17 (8) 1.09 (14) 1.17 (8)

96 1.35 1.12 (17) 1.19 (12) 1.14 (16) 1.24 (8)

108 1.42 1.17 (18) 1.27 (11) 1.19 (16) 1.27 (11)

120 1.47 1.19 (19) 1.3 (12) 1.22 (17) 1.32 (10)
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for stability of the mean CRPS and other verification sta-

tistics. The linear system was solved through SVD, with

a singularity threshold of 95%. In other words, the smallest

singular values, which together explained 5% or less of the

total indicator variance, were suppressed. Figure 2 plots

the contribution of each singular value to the total in-

dicator variance explained at each threshold. The singular

values are arranged in descending order of contribution.

The results are shown for lead hours 12, 24, 72, and 120. As

indicated in Fig. 2, most of the indicator variance is ex-

plained by only a few orthogonal components, and the

value of adding further components declines exponentially

(or even faster at high thresholds). In general, when

measured by the total indicator variance explained,

more information is captured by fewer orthogonal com-

ponents at higher precipitation thresholds (lighter

shades) and shorter lead times. In other words, the in-

formation content of the ensemble forecasts is spread

across more members at lower precipitation thresholds

and longer lead times. The singularity threshold was cho-

sen by visually inspecting the bias-corrected probabilities

for noise, and by checking for similar values of the mean

CRPS and other verification statistics under dependent

and independent validation. A constrained-quadratic

spline was used to smooth the ICK estimates and to

correct for any order-relation violations (see section 3).

Figure 3 shows the observed probabilities against the

corresponding average probabilities of the raw and bias-

corrected forecasts. For each indicator threshold of the

observed variable, the forecast probabilities were aver-

aged across all forecasts and lead times (see Gneiting

et al. 2007). The resulting ‘‘forecast climatology’’ was

compared to the observed climatology for unbiasedness.

The y intercept in Fig. 3 corresponds to the probability

of precipitation (PoP) and shows the ability of the ICK

forecasts to capture the mixed behavior in precipitation

occurrence versus amount (in an unconditional sense).

Table 1 lists the climatological PoP and mean forecast

PoP for the uncorrected and bias-corrected forecasts at

each lead time. The scenario denoted ICK1 is based on

ICK with correlation inflation, which is explained later.

By design, the unconditional forecast probabilities are

FIG. 5. CRPS residuals (raw-ICK) for precipitation forecasts at all lead times.
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unbiased following ICK [see Eq. (5)], and this is con-

firmed in Fig. 3. However, correlation inflation no longer

guarantees the conditional adjustment to be unbiased

(Fig. 3), which is evidenced by an increase in the un-

conditional biases for ICK1. Nevertheless, the ICK1

climatology remains significantly less biased than the

raw GEFS forecast climatology. This is also apparent in

the PoP forecasts (Table 2), which are strongly biased in

the raw GEFS, but are effectively unbiased following

both ICK and ICK1.

Examples of the ICK estimates and fitted ccdfs are

shown in Fig. 4 for different precipitation amounts, to-

gether with the observed cdfs (Heaviside function) and

the observed climatology. As indicated in Fig. 4, the raw

probabilities from ICK are subject to increased sampling

uncertainty with increasing precipitation amount, which

reflects the smaller sample size at high precipitation

thresholds. Table 2 shows the mean CRPS for the

raw forecasts and ICK forecasts at each lead time, to-

gether with the continuous ranked probability skill score

(CRPSS) of the ICK forecasts. Here, the CRPSS quan-

tifies the percentage gain in mean CRPS (CRPS) following

bias correction, that is, CRPSS 5 100[1.0� (CRPS
ICK

/

CRPS
GEFS

)]. Figure 5 plots the difference in CRPS be-

tween the raw forecasts and ICK forecasts (raw-ICK)

for each forecast produced under dependent validation.

The differences are plotted against observed precipita-

tion amount, which shows the conditional errors in the

ICK forecasts. Actual differences between CRPSGEFS

and CRPSICK were preferred over CRPSS, as many of

FIG. 6. (a) Cross-correlation coefficients by ranked ensemble member for GEFS. (b) Cross-correlation coefficients by

precipitation amount for GEFS.
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the forecasts had zero CRPS, that is, undefined CRPSS.

The results are shown for all lead times, so each ob-

servation is associated with 10 separate forecasts. A

positive value indicates a gain in performance over the

raw forecasts and a negative value indicates a loss of

performance.

The CRPS provides a critical check on the perfor-

mance of ICK, as the solution to ICK effectively mini-

mizes the CRPS on a per quantile basis (see earlier). As

shown in Table 1, the bias-corrected GEFS forecasts

were significantly more skillful than the raw GEFS fore-

casts in terms of mean CRPS, with an overall improvement

of 17%–32% following ICK. However, this improve-

ment declined markedly with increasing observed pre-

cipitation due to a conditional bias in the ICK forecasts

(Fig. 5). This bias stems from an ‘‘attenuation effect,’’

which is well known in least squares estimation (e.g.,

Fuller 1987; Draper and Smith 1998). In single-valued

forecasting, it is manifest as a trade-off between the con-

ditional bias and the mean square error of the estimate

[see Ciach et al. (2000) for a precipitation example]. As

noted by Fuller (1987), the attenuation effect is caused

by predictors that are measured with substantial error

(i.e., errors in variables). This results in an underesti-

mation of the cross correlations between the predictors

and response, and it is exaggerated by the least squares

solution. However, this problem is not confined to least

squares estimation; for example, similar behavior is ob-

served in quantile regression (Koenker 2005). To manage

this trade-off explicitly, the cross correlations can be

FIG. 6. (Continued)
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optimized explicitly. However, this is difficult in prac-

tice, because ICK comprises several (u) estimators for

which the indicator cross correlations must be opti-

mized. Here, we propose a simpler approach, whereby

the cross correlations are increased uniformly. This in-

volves transforming the vector of cross covariances in

Eq. (9) to cross correlations, inflating each correlation

coefficient by a positive constant r1 while capping the

inflated correlation at 1, and back-transforming to co-

variances. The r1 is chosen by trial and error. In this

example, it was chosen through a visual inspection of the

ccdfs and associated verification statistics, with particular

attention to the CRPSS and bias in the conditional mean

as r1 increased. The ICK forecasts were regenerated

with uniform correlation inflation, r1, of 0.2 (denoted

as ICK1).

Figure 5 illustrates the importance of correlation in-

flation when bias-correcting large precipitation amounts.

For example, only 8 of 40 forecasts whose paired ob-

servations exceeded 60 mm of precipitation in 12 h

gained in skill following ICK, compared to 24 of 40

following ICK1. However, these 40 forecasts com-

prised only 4 unique events, with forecasts of each

event at 10 different lead times (i.e., 12–120 h). In

practice, many more samples would be required to

properly evaluate ICK for extreme precipitation. In-

creasing the sample size was not possible for the op-

erational GEFS, and it is difficult in general without

FIG. 7. (a) Reliability diagrams for raw GEFS and ICK1 forecasts (PoP/light). (b) Reliability diagrams for

raw GEFS and ICK forecasts (medium precipitation). (c) Spread-bias diagrams for raw GEFS and ICK

forecasts.
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long-term hindcasting for each model upgrade. In

keeping with the trade-off between minimum CRPS

and small conditional bias, the overall CRPSS fell by

4%–7% following correlation inflation (Table 2).

Figure 6a shows the cross correlations between the

observed indicator variables and the indicator variables

of the forecast ensemble members under dependent

validation. The y axis shows the cross-correlation co-

efficient, and the x axis shows the ranked ensemble

member at the main indicator threshold. The cross-

correlation coefficients are shown for lead hours 12, 24,

72, and 120. Each line represents one of the u thresholds

of X at which an estimator is formed. They are shaded

from black to light gray, with increasing threshold value.

Figure 6b shows the same information, only presented

by threshold value for each ensemble member, fZ1, . . . ,

Zmg, where Zi21 # Zi, i 52, . . . , m. Thus, both figures

show the predictive performance of the GEFS forecasts

in terms of cross correlations; however, Fig. 6a shows

this predictive performance by ranked ensemble member

across thresholds, whereas Fig. 6b shows the performance

as a function of increasing threshold across ensemble

members.

The convexity of the curves in Fig. 6b stems from the

quadratic dependence of the indicator variance on the

indicator mean, as well as the convergence of the mar-

ginal and joint probabilities to 1 as the indicator threshold

increases. Clearly, the choice of plotting position will also

impact the limiting behavior of the cross correlations (see

section 3). As shown in both Figs. 6a and 6b, the indicator

FIG. 7. (Continued)
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cross correlations are subject to increased sampling un-

certainty at the highest thresholds of the observed var-

iable. While the predictive performance of the GEFS

forecasts is reasonably consistent between the ranked

ensemble members at short lead times, the intermember

variability increases at long lead times, particularly at

low and high threshold values (Fig. 6b). These patterns

are consistent with the SVD spectra shown in Fig. 2. As

shown in Fig. 6a, the indicator cross correlations are

greatest for the small ensemble members and lowest

thresholds at lead hours 12 and 24. This alludes to a con-

centration of skill in the PoP and light-precipitation

forecasts at short lead times.

Figure 7a plots the conditional reliability of the raw

forecasts and ICK1 forecasts for precipitation amounts

exceeding 0.0 (PoP) and 2.5 mm at lead hours 12, 24,

48, 72, 96, and 120. Figure 7b shows the corresponding

results for precipitation amounts exceeding 5 and

12.5 mm. The sampling uncertainties were too large to

evaluate conditional reliability at thresholds exceeding

12.5 mm. Figure 7c shows another measure of statisti-

cal reliability, namely, the ‘‘spread-bias plot.’’ It is

similar to the cumulative rank histogram (Anderson

1996; Hamill 1997; Talagrand 1997) or the probability

integral transform histogram (Gneiting et al. 2005) and

shows the fraction of observations that fall within an

interval of fixed probability around the forecast me-

dian. Results are shown for observed precipitation

amounts exceeding 0 and 12.5 mm at lead hours 12, 24,

48, 72, 96, and 120. Table 3 shows the area under the

FIG. 7. (Continued)
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ROC curve (AUC) for precipitation amounts exceed-

ing 0.0, 2.5, 5.0, 12.5, 20, and 25 mm. In general, the

ICK forecasts were both more reliable and more dis-

criminatory than the raw GEFS forecasts. As indicated

in Fig. 7c, the lack of spread in the GEFS forecasts was

largely corrected by ICK1 for positive precipitation

amounts. It was also substantially improved for pre-

cipitation amounts exceeding 12.5 mm at lead hours 12

and 24. For example, only 40% and 60% of the raw

GEFS forecasts captured their verifying observation at

lead hours 12 and 24, respectively (i.e., the y axis in-

tercept at x 5 0.5), while ;90% of the observations

were captured following ICK1. However, there was

a loss of conditional reliability following ICK1 at lead

hours 96 and 120 for precipitation amounts exceeding

12.5 mm, where the probabilities within the extreme

prediction intervals were insufficiently spread (the

total fraction of captured observations was slightly

improved). This reflects the difficulties associated

with statistical postprocessing when the forecasts have

limited skill, as evidenced by the reduced indicator

cross correlations at longer lead times (Fig. 6). Over-

all, the gains from ICK declined systematically with

increasing precipitation amount. This reflects a com-

bination of sampling uncertainty and the inability of

correlation inflation to fully remove the conditional

biases in ICK. Future work will consider refinements

to the simple correlation inflation adopted here (such

as nonuniform correlation inflation), and the sampling

uncertainties will be examined for larger datasets,

such as the GFS reforecast dataset (Hamill et al.

2006). Given a larger sample size, a seasonal or re-

gime-dependent prior distribution might also be con-

sidered. For example, the observed climatology may

be conditioned on the ensemble mean of the un-

corrected forecasts. Indeed, it is not surprising that the

ICK forecasts are significantly more reliable for light

precipitation when using the unconditional climatol-

ogy as the prior distribution.

c. Streamflow forecasts from the NWS ESP system

Mean daily inflows were hindcast for a 23-yr period

from 1 January 1979 to 31 December 2002 at the North

Fork Dam, California (NWS basin NFDC1, U.S. Geo-

logical Survey (USGS) station 11427000). The hindcasts

were produced with the NWS ESP system, which imple-

ments the NWSRFS in an ensemble framework (Schaake

et al. 2007). The NWSRFS was forced with ensemble

hindcasts of temperature and precipitation from the fro-

zen GEFS (Toth et al. 1997; Hamill et al. 2006; Schaake

et al. 2007; Wei et al. 2008). Each streamflow hindcast

comprised 54 ensemble members. The hindcasts were

aggregated from a 6-hourly time step to daily averages

for comparison with the observed flows, which were

only available as daily averages. The observed flows

are based on stage observations, which were converted

to flows using a measured stage-discharge relation

(Kennedy 1983). Figure 1 shows the climatological flow

regime at NFDC1.

Bias-corrected ESP forecasts were generated for lead

times of 24–120 h in 24-hourly increments, using a sep-

arate ICK model for each lead time, and independent

validation was conducted with a 90/10 split sample. Two

auxiliary thresholds were included alongside the main

indicator threshold in each estimator. These corre-

sponded to 0.8 and 1.4 times the main threshold. The

main thresholds were fixed at increasing quantiles of

the climatological distribution, with more thresholds at

low flows than high flows, and 200 thresholds in total.

The thresholds were chosen by visually inspecting the

bias-corrected probabilities for noise, and by checking

for stability of the mean CRPS and other verification

statistics. The ICK was solved through SVD with a

singularity threshold of 95%. Figure 8 shows the

TABLE 3. ROC areas for GEFS and (ICK) under independent validation (r1 5 0.2).

Lead time (h)

Event (exceedance of precipitation amount in mm)

0.0 2.5 5 12.5 25

12 0.87 (0.89) 0.88 (0.91) 0.87 (0.93) 0.84 (0.94) 0.78 (0.91)

24 0.86 (0.88) 0.89 (0.91) 0.87 (0.92) 0.87 (0.94) 0.81 (0.92)

36 0.86 (0.87) 0.89 (0.90) 0.88 (0.92) 0.83 (0.93) 0.79 (0.86)

48 0.84 (0.85) 0.88 (0.89) 0.85 (0.91) 0.86 (0.93) 0.82 (0.89)

60 0.83 (0.84) 0.87 (0.88) 0.85 (0.89) 0.83 (0.92) 0.77 (0.92)

72 0.81 (0.83) 0.85 (0.87) 0.84 (0.88) 0.80 (0.89) 0.74 (0.90)

84 0.80 (0.81) 0.82 (0.84) 0.82 (0.86) 0.81 (0.86) 0.77 (0.86)

96 0.77 (0.78) 0.79 (0.81) 0.79 (0.83) 0.75 (0.84) 0.72 (0.75)

108 0.75 (0.76) 0.77 (0.79) 0.77 (0.82) 0.71 (0.82) 0.61 (0.75)

120 0.73 (0.74) 0.75 (0.76) 0.73 (0.78) 0.72 (0.80) 0.64 (0.73)
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proportion of the total indicator variance explained by

each singular value. The singular values are arranged in

descending order of contribution and by increasing in-

dicator threshold (darker shades). The results are shown

for lead hours 24, 48, 96, and 120. As before, most of the

total indicator variance is captured by a small number of

orthogonal components. More orthogonal variables are

required to explain a given proportion of the total in-

dicator variance at longer lead times and at ‘‘medium

flows.’’ This probably reflects the divergence of ensemble

members with increasing lead time as they undergo more

variable dynamics from the hydrologic model, particu-

larly in the predominantly occurring low to medium

flows. Again, the singularity threshold was chosen by

comparing the performance of ICK under dependent and

independent validation, and the discrete ICK estimates

were corrected and smoothed with a constrained qua-

dratic spline. However, no correlation inflation was re-

quired, as the conditional biases were much smaller in the

ESP forecasts than the GEFS forecasts.

Examples of the ICK estimates and fitted ccdfs are

shown in Fig. 9 for different streamflow amounts, together

with the observed cdfs (Heaviside function) and the cli-

matological prior. As with the GEFS precipitation fore-

casts, the raw probabilities from ICK become increasingly

noisy at high flows. Figure 10 shows the average cdfs of

the raw and bias-corrected forecasts against the clima-

tological cdf. Again, the ICK estimates are unbiased in

a climatological sense, because the observed climatol-

ogy forms the prior distribution in ICK. Table 4 shows

the mean CRPS of the raw and bias-corrected forecasts

at each lead time under dependent and independent

FIG. 8. Singular values by thresholds of X for ESP streamflow forecasts.
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validation. Figure 11 shows the difference in CRPS be-

tween the raw and bias-corrected forecasts as a function

of observed streamflow. The ICK forecasts were signif-

icantly more skillful than the raw ESP forecasts in terms

of CRPS, although the margin for improvement was

lessened by their initial high quality. For example, the

ICK forecasts were 9%–21% more skillful than the raw

ESP forecasts under dependent validation and 5%–16%

more skillful under independent validation (Table 4). The

conditional biases that affected the ICK precipitation

forecasts were not apparent in the ICK streamflow fore-

casts, as the raw forecast means were both relatively

(conditionally) unbiased and strongly correlated with

the observations. Indeed, the ICK forecasts were con-

sistently more skillful than the ESP forecasts at the

highest observed flows. For example, 20 of the 25 fore-

casts whose paired observations exceeded 800 m3 s21,

which corresponds to a climatological exceedance

probability of 0.001, gained in CRPSS following ICK

(Fig. 10).

Figure 12a shows the reliability of the forecasts at lead

days 1–5. The results are shown for climatological ex-

ceedance probabilities of 0.5 (10 m3 s21) and 0.75

(33 m3 s21). Figure 12b shows the corresponding results

for exceedance probabilities of 0.9 (63 m3 s21) and 0.99

(210 m3 s21). The forecast reliabilities were significantly

improved for streamflows with a climatological exceed-

ance probability of 0.9 and smaller. For streamflows with

an exceedance probability of 0.99, the ESP forecasts are

already very reliable. This is because the hydrologic

models are well calibrated for moderately high flows,

and the associated forcing ensembles are generally re-

liable. The noisiness of the reliability curve for stream-

flows exceeding a climatological probability of 0.99

reflects the small number of events in the flow archive

that exceed 210 m3 s21 (Fig. 1) and the correspondingly

high sampling uncertainties for these events (Fig. 9). For

most flow thresholds, the raw ESP forecasts are under-

spread or ‘‘overconfident,’’ particularly at short lead

times (Figs. 12a and 12b). This is understandable be-

cause the current generation of ESP ignores uncertainty

in the initial states, parameters, and structure of the

hydrologic model (Seo et al. 2006). The lack of un-

certainty in the initial states is also reflected in the rel-

ative sharpness of the forecast probabilities at the 24-h

lead time (Figs. 12a and 12b). Table 5 shows the areas

FIG. 9. Three example cdfs for ESP streamflow forecasts.
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under the ROC curve for the raw and bias-corrected

forecasts. Overall, the reliability of the ESP forecasts

was significantly improved following ICK, and the dis-

crimination was improved slightly. However, large im-

provements in discrimination should not be expected,

as statistical postprocessing is concerned with the

calibration-refinement factorization of F(x, y), not the

likelihood–base-rate factorization (Murphy and Winkler

1987). The largest gains in reliability occurred at ‘‘small

sized’’ and ‘‘medium sized’’ flows (Figs. 12a and 12b),

with sampling uncertainty preventing analysis at very

high flows.

5. Conclusions

Ensemble forecasts of hydrometeorological and hy-

drologic variables typically contain biases in the mean,

spread, and higher moments. These biases can be re-

moved if the conditional cumulative distribution func-

tion (ccdf) of the observed variable, given the ensemble

forecast, can be modeled reliably. When the shape of this

probability distribution is unknown, a nonparametric

estimate is desired. In this paper, the ccdf is modeled with

a nonparametric technique that is analogous to indicator

cokriging (ICK) in geostatistics (Journel and Huijbregts

1978; Isaaks and Strivastava 1989; Cressie 1993). Spe-

cifically, the probability of exceeding a discrete threshold

of the observed variable, such as flood stage, is modeled

as a linear function of the indicator variables of the fore-

cast ensemble members. In terms of minimum error var-

iance, the ICK estimator is the Bayesian optimal linear

FIG. 10. Climatological cdfs for NFDC1 streamflow.

TABLE 4. Mean CRPS and associated skill (%) of the ESP

streamflow forecasts.

Lead

time (h) ESP

Dependent validation Independent validation

ICK Skill (%) ICK Skill (%)

24 6.77 5.32 21 5.66 16

48 6.9 6.03 13 6.37 8

72 6.96 6.35 9 6.58 6

96 7.41 6.71 10 7.04 5

120 7.83 7.11 9 7.42 5
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estimator of the conditional observed probability at the

chosen threshold. In the examples presented, ICK was

solved through an orthogonal decomposition of the co-

variances between the indicator variables of the forecast

ensemble members. Because of the strength of these

covariances, an orthogonal decomposition was found to

significantly reduce the dimensionality of the estimation

problem. This regularized form of ICK is analogous

to cokriging with the first few principal components of

the ensemble forecast (see Deutsch and Journel 1992).

By developing an estimator for several thresholds,

ICK provides a discrete approximation of the full ccdf.

A smooth function is then interpolated through the

estimated probabilities to provide a full ccdf, and a

quadratic smoothing spline was adopted here (He and

Ng 1999).

The ICK technique was used to bias-correct precipi-

tation ensembles from the NCEP Global Ensemble

Forecast System (GEFS) and streamflow ensembles

from the NWS River Forecast Centers (RFCs). In gen-

eral, the forecast biases were substantially reduced fol-

lowing ICK. By design, the unconditional probabilities

are unbiased, as the observed climatology forms the

prior distribution in ICK. The reliability of the forecast

FIG. 11. CRPS residuals (raw-ICK) for streamflow forecasts at all lead times.

TABLE 5. ROC areas for ESP and (ICK) under independent validation.

Lead time (h)

Event (climatological exceedance probability)

0.5 0.75 0.9 0.975 0.99

24 0.97 (0.98) 0.94 (0.97) 0.95 (0.98) 0.91 (0.96) 0.95 (0.98)

48 0.97 (0.98) 0.96 (0.97) 0.97 (0.98) 0.96 (0.98) 0.96 (0.98)

72 0.97 (0.98) 0.96 (0.97) 0.96 (0.97) 0.96 (0.97) 0.95 (0.96)

96 0.97 (0.98) 0.96 (0.97) 0.96 (0.97) 0.96 (0.96) 0.96 (0.97)

120 0.97 (0.98) 0.96 (0.96) 0.96 (0.96) 0.94 (0.95) 0.96 (0.96)
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probabilities and the mean continuous ranked proba-

bility score (CRPS) were also improved by ICK. The

CRPS provides a critical check on the performance of

ICK, as the objective function minimizes the CRPS on

a per quantile basis. The CRPS skill of the ICK pre-

cipitation forecasts was 17%–32% (i.e., the mean CRPS

of ICK was 17%–32% better than the raw GEFS), and

the CRPS skill of the ICK streamflow forecasts was 5%–

16%. In both cases, the improvements from ICK declined

systematically with forecast lead time, due to the reduced

indicator cross correlations at longer lead times. De-

spite the overall gains in mean CRPS, the ICK forecasts

consistently underestimated large precipitation amounts.

This was attributed to an attenuation effect or errors in

variables, which is well known in least squares estimation.

A simple adaptation of ICK was proposed, whereby the

indicator cross correlations were uniformly inflated to

compensate for their attenuation by sampling error.

This substantially reduced the conditional biases at the

expense of a small increase in unconditional bias and

mean CRPS. In both case studies, the improvements

in mean CRPS and other verification statistics were

obtained from relatively small sample sizes and unin-

formative prior distributions, that is, an unconditional

climatology with no stratification by season or other

environmental conditions. Given a larger sample size,

a seasonal or regime-dependent climatology might be

considered.

Future work will focus on incorporating additional

(prior) knowledge into the ICK estimators via auxiliary

FIG. 12. (a) Reliability diagrams for raw ESP and ICK forecasts (low/all flows). (b) Reliability diagrams for raw ESP

and ICK forecasts (medium flows).
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variables; comparing its performance to other statistical

postprocessors, such as spline smoothing and kernel

density estimation; and testing the technique in an op-

erational setting. Currently, ICK does not model the

joint distribution of X across several forecast lead times.

This is necessary for dynamic modeling with bias-corrected

forcing, such as hydrologic routing of precipitation. One

extension of ICK involves integrating forcing ensembles

from several meteorological models into the ESP pro-

cess, including precipitation ensembles from the NCEP

GEFS and NCEP short-range ensemble forecast (SREF)

models. Such multimodel ensembles are naturally han-

dled in ICK. The additional members simply contrib-

ute additional covariates on which to condition the

ICK estimate, and any information shared between models

is eliminated through an orthogonal decomposition of

the indicator covariances. Another study involves struc-

ture identification and bias-correction using hindcasts

from the frozen GEFS, which will help to quantify the

sampling uncertainties of ICK, particularly for extreme

events.
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