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Requirements:
- an ensemble daily sequences of weather
- preserve inter-site correlations, temporal persistence, and

correlations between variables
- minimize abrupt changes when a new model is introduced



PRECIPITATION BIASES

Precipitation biases are in excess
of 100% of the mean



TEMPERATURE BIASES

Temperature biases are in excess
of 3oC



Jeff Whittaker and Tom Hamill at the NOAA-CIRES Climate Diagnostics 
Center have used the 1998 NCEP MRF to generate medium-range forecasts 
for the period 1979 to the present.

CDC are continuing to run the 1998 NCEP MRF in real time.

The NWP hindcast (1979-2001) is used to develop regression models 
between MRF output and precipitation and temperature at individual 
stations, and apply the regression coefficients to the CDC experimental 
forecasts in real-time.

The resultant local-scale precipitation and temperature forecasts are 
used as input to the CBRFC hydrologic modeling system to provide real-
time forecasts of streamflow.

The CDC Re-forecast experiment



Downscaling approach
• For hydrologic applications we need to:

– Obtain reliable local-scale forecasts of precipitation and temperature
– Preserve the spatial variability and temporal persistence in the

predicted temperature and precipitation fields
– Preserve consistency between variables

• Multiple linear Regression with forward selection
Y = a0 + a1X1 + a2X2 + a3X3 . . . + anXn + e

• A separate equation is developed for each station, each forecast lead 
time, and each month.

• Use cross-validation procedures for variable selection – typically less 
than 8 variables are selected for a given equation

• Stochastic modeling of the residuals in the regression equation to provide 
ensemble time series

• Shuffling of the ensemble output to preserve the observed spatial 
variability, temporal persistence, and consistency between variables. 
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January Precipitation Amounts—Day 0
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Hydrologic ModelHydrologic Model
PPrecipitation 

RRunoff MModeling 
SSystem  (PRMSPRMS)
[distributed –parameter, physically-

based watershed model]

Implemented in:

The MModular 
MModeling SSystem 

(MMSMMS)
[A set of modeling tools to enable a 
user to selectively couple the most 

appropriate algorithms]
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Alapaha River Basin (Southern Georgia)



Animas River Basin (Southwest Colorado)



Cle Elum River Basin (Central Washington)



Carson River Basin (CA/NV Border)



Seasonal predictions… the weather generator model

(1) Identify a subset of years from the historical record, such 
that the CDF from the selected years matches the CDF 
from the probabilistic forecast

(2) Re-sample data from the subset of years nens times
(3) Re-order the ensembles to preserve observed inter-site 

correlations, observed temporal persistence, and 
observed correlations between variables
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Schaake Shuffle

A method for reconstructing space-time 
variability in forecasted precipitation and 

temperature fields
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SELECT VECTORS OF ENSEMBLES FROM THESE MATRICES



19.6, 21.2, 23.4, 24.1, …, N

ENSEMBLE OUTPUT (RANKED)

(ACTUAL VALUES)

97, 24, 38, 65, …, N

HISTORICAL DATA (RANKED)

(ENSEMBLE MEMBER)

xss(q) = x(r),     r=1,…,N (e.g., ens 97 is taken as the lowest value)

Y =

q =

23.4, 25.7, 26.3, 27.2, …, N

1, 2, 3, 4, …, N

X =

r =

(ACTUAL VALUES)

(RANKING)

The Schaake Shuffle



El Nino

La Nina

Conditioning on CPC forecasts



Historical Simulation
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Downscaled Ensemble Inputs

Ensemble Streamflow Forecasts

NWSRFS

(NWSRFS)

Time

Model-based streamflow forecasting method…

(only account for uncertainty in forecast inputs)



Uncertainty in basin initial conditions…

(1) Stochastic input forcings
- regression techniques used to estimate spatial fields of model forcings 

(precipitation, temperature)
- topographic characteristics (lat, lon, elev) used as predictiors; a 

different regression equation is developed for each day
- residuals in the regression equations are modeled stochastically to 

produce ensemble time series
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State Updating…

(1) Screened ensembles
- restrict attention to ensemble members that are closest to (the model 

equivalent of observations) at the start of the forecast period
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State Updating…

(1) Screened ensembles
- restrict attention to ensemble members that are closest to (the model 

equivalent of observations) at the start of the forecast period
(2) State updating

- Use of data assimilation methods (e.g., the ensemble Kalman filter) to 
update model estimates of snow water equivalent
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Model issues…

(1) Perturbed parameters
- development of methods to estimate parameter uncertainty, and use 

perturbed parameters to estimate uncertainty in basin initial conditions 
and model simulations of streamflow

(2) Model Structure / Complexity – (the Regional Reanalysis Conundrum)
- desire to match the complexity of the model to available data
- often do not have forcing data to use physically-based methods to 

simulate the land-surface energy balance
- Regional Reanalysis to the rescue—but model likely contains biases
- do not have data to evaluate model biases

- research is needed to determine the model complexity that can be
supported in light of the availability and quality of forcing data

(3) Diagnosis of model errors
- evaluate model errors to understand which processes dominate in 

different river basins and which methods can be used effectively to 
improve streamflow forecasts.


