

Short-term Ensemble Prototype at the CNRFC

John Schaake Mary Mullusky Julie Demargne Rob, Eric, Art, and Scott

 Appropriately integrate the uncertainty introduced from model, data, and human sources.

OBSERVATIONS precipitation

air temperature streamflow

MODEL STATES

snow soil moisture basin routing

MODELLING SYSTEM

simplifications temporal issues scale issues

???

MODEL PARMS

snow soil moisture basin routing

HUMAN INPUT

education training experience mental state

FORECASTS

precipitation air temperature regulation

 Mesh ensemble forcing from short, medium, and long range techniques.

 Maintain spatial and temporal relationships across very large areas.

Irrational outcomes

Include forecaster skill in short-term inputs (QPF, temperature, etc.)

- Forecasters add value to short-term QPF.
 - HPC adds value to models
 - RFC adds value to HPC

Include forecaster guidance of hydrologic model operation

- Hydrologic models require on-going tuning.
- Forecasters commonly adjust or influence raw model output.

Maintain coherence between deterministic and ensemble forecasts

- 5 day Precipitation and temperature ensembles
- Based on operational deterministic precipitation and temperature forecasts
- Uses forecast (skill) and watershed climatology

 Appropriately integrate the uncertainty introduced from model, data, and human sources.

Temperature Ensembles

Have

- Archived (6yrs) MAX/MIN temperature forecasts for MOS locations.
- Archived (6yrs) Observed MAX/MIN temperatures for MOS locations.
- Calibration (~40yrs) MATs for each basin.
- Station and Area characteristics.
- Forecast MAX MIN temperatures for MOS locations (next 7days).

Need

6 hr MAT ensembles for basins for the next 20 periods (120 hrs).

Temperature Ensembles

 Translate archived forecast and observed MX/MN values from MOS locations to basins.

> Archived fcst/obs MX / MX (MOS)

Station and Area Characteristics Archived fcst/obs MX / MN (basins)

 Create calibration period MX/MN "observations" for basins by running MAT preprocessor backwards.

Calibration Period	
MAT	
(basins)	

Reverse MAT Preprocessor Calibration Period MX / MN (basins)

Joint Distribution

Forecast temperature

- Developed for:
 - Max and Min
 - Each lead time
 - Each period
 - Monthly (90 day window)

CDF of observed | forecast

Forecast temperature (x)

Forecast temperature (x)

Observed temperature (y)

Create Max / Min Ensembles

- Sample F(y|x)
 - 1/nth intervals
 - integrate within range
- Place into ensembles
 - Schaake Shuffle

 Create temperature ensembles by running max and min ensembles through the MAT preprocessor.

6 Hour Temperature - Ensembles

5 day temperature ensembles

Calib. Trace Ensemble Latitude: 0.0 Longitude: 0.0 Forecast for the period 2/25/2004 6h - 2/28/2004 24h INTL This is a conditional simulation based on the current conditions as of 2/25/2004

6 Hour Temperatures Expected Values

Precipitation Ensembles (not quite so simple!)

6 Hour Precipitation - Ensembles

Calib. Trace Ensemble Latitude: 0.0 Longitude: 0.0 Forecast for the period 7/2/2003 6h - 7/6/2003 24h INTL This is a conditional simulation based on the current conditions as of 7/2/2003 Trace Number 2.80r 2.52 2.24 1.96 1.68 1.40 1.12 0.84 0.56 0.28 0.00 2.06 4.18 3.12 5.24

6 Hour Precipitation Expected Values

American River – 5 day ESP

Implement in more active (coastal) watersheds.

- Validate outcomes.
 - Are the distributions reasonable (accurate)?
 - More experience.
 - Retrospective analysis needed.

 Update statistics with additional forecasts and observations.

• We're only dealing with the future forcing.

- Need to include (approximate) other sources of uncertainty (model, data, etc.)
- Ensemble mean is always less than QPF when QPF > climatology and skill < 1.0
 - QPF is not biased...
 - Will this create a bias?
 - Too conservative?
 - Lots to learn here!
- Major effort to really systematize this into actual operational context.
 - Lets get started!

Thank You