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Abstract 

Retrospective forecasts of precipitation, temperature and streamflow were generated with the Hydrologic Ensemble 
Forecast Service (HEFS) of the U.S. National Weather Service (NWS) for selected river basins in the Mid-Atlantic 
River Forecast Center (MARFC) and the North East RFC (NERFC). The meteorological hindcasts were produced 
with the HEFS Meteorological Ensemble Forecast Processor (MEFP). The MEFP was calibrated with raw forcing 
from the National Centers for Environmental Prediction (NCEP) Global Ensemble Forecast System (GEFS) from 1-15 
days and the NCEP Climate Forecast System Version 2.0 (CFSv2) for 16-270 days, together with climatological 
forcing from 271-330 days. The streamflow hindcasts cover a 15 year period between 1985 and 1999. The hindcasts 
were verified conditionally upon forecast lead time, magnitude of the observed and forecast variables, season, and 
aggregation period. Verification results are presented for the temperature, precipitation and streamflow forecasts. In 
order to distinguish between the contributions of the meteorological and hydrologic uncertainties to the quality of the 
streamflow forecasts, verification is performed against simulated streamflow (effectively removing hydrologic biases) 
and against observed streamflow. Interpretation of the verification results leads to guidance on the expected 
performance and limitations of the HEFS for long-range forecasting, together with recommendations on future 
enhancements. 
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1. How to read this document 

This document aims to: 1) provide a comprehensive scientific evaluation 

(verification) of the temperature, precipitation and streamflow forecasts from the 

HEFSv1 with forcing inputs from the Global Ensemble Forecast System (GEFS), the 

Climate Forecast System (CFSv2) and climatology (collectively referred to as GCC); 

and 2) communicate the strengths and weaknesses of the HEFSv1 for operational 

forecasting over the long-range. This section aims to guide readers with limited time or 

experience of ensemble forecasting or verification to the main results and conclusions. 

For these readers, the following sections are particularly important: 

I. Executive summary and recommendations. This describes the structure of the 

report and the strengths and weakness of the forecasts in non-technical terms;  

II. Section 4.1. This provides a brief description of the study basins. Understanding 

the hydrology of the study basins is central to interpreting the quality of the HEFS 

forecasts and to applying the results more broadly (or understanding the risks of 

extrapolation); 

III. Appendix C. This shows a selection of the paired streamflow forecasts and 

observations from which the verification results are derived. The relative scatter 

of the observations within the ensemble forecast distribution provides some 

insight into the quality of the forecasts when using different forcing inputs. In 

general, the streamflow observations should fall “randomly” within the ensemble 

range. They should not fall consistently in one part of the ensemble forecast 

distribution or outside of the ensemble range;   

IV. Section 4.4 and Appendix B. In order to understand the remainder of the report, it 

is necessary to consider the desirable attributes of ensemble forecasts and how 

they can be measured. Tutorials on forecast verification can be found in the 

documentation, presentations, and exercises that accompany recent training 

workshops on the HEFS and in the user’s manual of the Ensemble Verification 

System (EVS). Key attributes of forecast quality are briefly described in Section 
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4.4, while Appendix B summarizes the key measures of forecast quality used 

throughout this report; and  

V. Section 5.2. The verification results are presented separately for the 

meteorological forecasts and the “raw” streamflow forecasts (which do not 

include streamflow post-processing). The raw streamflow forecasts are verified 

against simulated flows, as well as observed flows. By verifying against simulated 

flows, the hydrologic biases and uncertainties are effectively removed.  

Some plots are simpler to understand than others. Skill scores are generally 

simpler to understand and to compare between basins, partly because they are 

dimensionless. A skill score measures the fractional improvement of one forecasting 

system over another (01, although negative values are possible). For example, Figure 

7 shows the fractional improvement of the MEFP precipitation forecasts with GCC 

forcing versus the unconditional observations (raw climatology) and with an enhanced 

or “resampled” climatology. Figure 18 shows the skill of the raw streamflow forecasts 

with GCC forcing when verified against the observed streamflows and the simulated 

streamflows. The baseline comprises the raw streamflow forecasts with climatological 

forcing.  

It is also important to understand the limitations of this study. First, it does not 

provide any guidance on the calibration or configuration of the HEFS. Such guidance 

would require hindcasting and verification for multiple calibration and configuration 

scenarios. Second, the report covers only a small fraction of the locations and scenarios 

under which the HEFS will be used operationally. It focuses on headwater basins and 

downstream basins that are effectively treated as headwaters. All of the downstream 

basins are subject to river regulations, including flow diversions that are applied in real-

time. Estimates of the local streamflows were provided by the New York City 

Department of Environmental Protection (NYCDEP), after accounting for reservoir 

releases and flow diversions. Ideally, the archived diversions and other regulations 

would be incorporated into the streamflow hindcasting, as the operational forecasts 

comprise residual uncertainties and biases from upstream locations, including those 
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from reservoir modeling. However, only the estimated local flows were available from 

NYCDEP and, hence, only the local contributions were verified at downstream 

locations. Thirdly, forecast products will generally comprise the bias-corrected 

streamflow forecasts. However, the Ensemble Postprocessor (EnsPost) was 

undergoing improvements and could not be considered here. In the absence of a formal 

bias-correction, the raw streamflow forecasts were verified against simulated flows, as 

well as observed flows, in order to factor out the hydrologic uncertainties and biases. 

Finally, the report does not explicitly benchmark the HEFSv1 against archived 

operational forecasts, notably from Ensemble Streamflow Prediction (ESP). However, 

the GCC streamflow forecasts are compared to streamflow forecast with climatological 

forcing, which are similar to those from ESP. 
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2. Executive summary and recommendations 

 Ensemble forecasts of precipitation, temperature and streamflow were generated 

with the NWS Hydrologic Ensemble Forecast Service (HEFS) for a 15 year 

period between 1985 and 1999. The hindcasts were produced for eight river 

basins, comprising four basins in each of two RFCs, namely the Middle Atlantic 

River Forecast Center (MARFC) and the North-East River Forecast Center 

(NERFC). The basins include a range of headwater and downstream locations 

within the Delaware and Catskill systems of New York State. They are subject to 

extensive river regulations, including diversions to the New York City (NYC) 

municipal water supply. The four basins in MARFC comprise three locations on 

the Delaware River, namely Walton (WALN6), Callicoon (CCRN6) and Montague 

(MTGN4), and one location on the Neversink River, namely the Neversink 

Reservoir (NVXN6). The four basins in NERFC comprise two locations on the 

Esopus Creek, namely Mount Trempor (MTRN6) and Mount Marion (MRNN6), 

and two locations on the Schoharie Creek, namely Prattsville (PTVN6) and the 

Gilboa Dam (GILN6). The hindcasts were commissioned by the NYC Department 

of Environmental Protection (NYCDEP), in order to support the initial 

implementation of the HEFS at MARFC and NERFC and to improve the 

management of risks to water quantity and quality objectives in the NYC area.  

 The HEFS is being evaluated in several phases. In the initial phase, verification 

was conducted for temperature, precipitation and streamflow hindcasts with 

forcing inputs from the “frozen” version of NCEP’s Global Forecast System 

(GFS). A subsequent phase will evaluate the HEFS with forcing inputs from 

NCEP’s operational Global Ensemble Forecast System (GEFS) and compare to 

those from the frozen GFS. This report focuses on the quality of the long-range 

forecasts from ~15 days to ~1 year. Specifically, it focuses on the temperature, 

precipitation and streamflow forecasts with forcing inputs from the GEFS, the 

Climate Forecast System Version 2.0 (CFSv2) and resampled climatology 

(defined below). While the focus is on the long-range forecasts, the HEFSv1 

aims to provide “seamless” forecasts across multiple temporal scales. Depending 
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on basin characteristics, skillful forcing from the GEFS may persist for several 

weeks in the streamflow forecasts. Thus, the 1-15 day forecasts are also verified 

at an appropriate temporal scale. Collectively, the phased evaluation aims to: 

establish the expected performance and limitations of the HEFS; demonstrate 

that the outputs from the HEFS are reasonably unbiased and skillful; identify the 

key factors responsible for forecast error and skill in different situations; isolate 

the contribution of the meteorological and hydrologic components of the HEFS to 

the overall skill of the streamflow forecasts; establish a baseline for 

enhancements to the HEFS and, where appropriate, to recommend specific 

enhancements or further studies; and to illustrate how hindcasting and 

verification of the HEFS might be conducted in future. 

 Precipitation and temperature hindcasts were produced with the Meteorological 

Ensemble Forecast Processor (MEFP) using “raw” precipitation and temperature 

forecasts from multiple sources. Ensemble forecasts from NCEP’s GEFS were 

used for the period 1-15 days. Single-valued forecasts from the CFSv2 were 

used for the period 16-270 days. For the period 271-330 days, and as a 

reference forecast for the period 1-330 days, climatological ensembles were 

derived from historical observations of mean areal precipitation (MAP) and mean 

areal temperature (MAT). This involved resampling the MAP and MAT in a 

moving window of, respectively, 30 days and 15 days around the forecast valid 

date (“resampled climatology”). The GEFS, CFSv2 and resampled climatology 

are collectively denoted GCC, while resampled climatology is denoted CLIM. The 

streamflow forecasts were produced with the Community Hydrologic Prediction 

System (CHPS) using the operational hydrologic models and configurations 

provided by MARFC and NERFC.  

 The precipitation, temperature and streamflow forecasts were verified with the 

Ensemble Verification System (EVS). The forecasts were verified conditionally 

upon season, forecast lead time, magnitude of the observed and forecast 

variables, and aggregation period. The raw streamflow forecasts were verified 

against simulated streamflows, as well as observed streamflows, in order to 
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separate the meteorological uncertainties from the total (meteorological and 

hydrologic) uncertainties. In practice, however, the simulated streamflows also 

include errors in the meteorological observations, while the hydrologic 

observations include errors from stage measurements, flow ratings and 

accounting for upstream regulations (see below). 

 In general, the MEFP-GCC precipitation forecasts are both reliable and skillful 

during the short-range (1-5 days). This largely originates from the skill in the raw 

GEFS precipitation forecasts. Likewise, the MEFP-GCC temperature forecasts 

are reliable and skillful during the short-range. Beyond the first 1-5 days, the skill 

of the MEFP-GCC precipitation forecasts declines rapidly, while the temperature 

forecasts remain skillful throughout the medium-range. However, neither the 

precipitation nor the temperature forecasts are skillful beyond ~2 weeks. This 

originates from a lack of skill in the raw CFSv2 forecasts and, beyond 270 days, 

from resampled climatology, which is inherently unskillful. Indeed, for the period 

from ~15-330 days, the MEFP-GCC forecasts show similar conditional biases to 

the MEFP-CLIM forecasts. This includes a substantial underestimation of the 

largest precipitation totals and a smaller conditional bias in the temperature 

forecasts, whereby the lowest and highest observed temperatures are over- and 

under-estimated, respectively. While the MEFP precipitation forecasts are 

generally no worse than sample climatology, the forecasts of Probability of 

Precipitation (PoP) are consistently worse than climatology. This originates from 

a lack of reliability in the MEFP forecasts for PoP. Similar biases were observed 

when calibrating the MEFP with the frozen version of NCEP’s GFS. Again, this 

suggests a problem in the modeling, estimation, or implementation of the MEFP 

for PoP and light precipitation amounts.  

 Except for PoP and light precipitation, the MEFP-GCC forecasts are no worse 

than resampled climatology. This is an important attribute of any bias-correction 

technique whose unconditional distribution is climatology. Also, the MEFP 

maintains or improves upon the correlations between the raw forcing from the 

GEFS and CFSv2 and the corresponding observed precipitation amounts. For 
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example, the MEFP-CLIM shows background correlations of ~0.2 during the 

long-range, whereas the raw CFSv2 forecasts show correlations of ~0.0. Without 

skillful predictors, the MEFP cannot improve upon climatology; it can only issue 

forecasts that are unconditionally unbiased. In practice, the ensemble mean of 

the MEFP-CLIM forecasts contain small unconditional biases (<5%), which may 

be related to the modeling of PoP and light precipitation amounts.  

 Seasonal water supply and other long-range applications are known to benefit 

from climatological forecasts (so-called Ensemble Streamflow Prediction, ESP). 

Enhancements to the MEFP may consider additional predictors that improve 

upon climatology. For example, given the strong autocorrelations in temperature, 

the MEFP may benefit from an autoregression of the future MAT on the most 

recently observed MAT, as well as the raw forecast. While precipitation generally 

shows much weaker autocorrelations, auxiliary variables, such as relative 

humidity, may improve forecast quality over the short- to medium-range. For 

seasonal and long-range prediction, the MEFP may benefit from auxiliary climate 

information, such as climate outlooks from NOAA’s Climate Prediction Center 

(CPC), or indices of teleconnection patterns, such as the El-Niño Southern 

Oscillation (ENSO), the Pacific-North American teleconnection (PNA) and the 

Pacific Diurnal Oscillation (PDO).  

Recommendation 1: In order to enhance the limited skill of the CFSv2 for 

long-range forecasting of precipitation and temperature, additional predictors 

may be included in the MEFP alongside the raw CFSv2 forecasts. In some 

regions and time periods, the MEFP may benefit from additional sources of 

climate information, such as the 90-day climate outlooks from NOAA’s CPC. 

Other useful predictors may include indices of the ENSO, PDO and PNA or 

other regional climate patterns. In order to support the HEFS as a unified 

platform for ensemble forecasting, any local implementations of ESP that 

demonstrably improve upon the HEFS should be integrated into the HEFS and 

ESP should then be retired as a legacy platform. For short- to medium-range 

forecasting, the MEFP may benefit from an autoregression of the future MAT 

on the most recently observed MAT, while the precipitation forecasts may 

benefit from carefully-selected auxiliary variables (although precipitation is 
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inherently difficult to forecast beyond the medium-range).  

 As well as producing reliable forecasts at discrete times and locations, the MEFP 

should maintain realistic patterns in space and time and between variables. 

These statistical dependencies and multi-scale properties are important for 

decision making. In general, decisions about water resources are based on 

products derived from hydrologic forecasts, such as aggregated quantities, or on 

additional modeling studies or rules embedded into decision support systems. As 

with hydrologic modeling, these calculations involve uncertainty propagation, for 

which the space-time and cross variable relationships are important. In this 

context, important attributes of the MEFP include the ability to: 1) preserve 

space-time and cross-variable relationships via the Schaake Shuffle; 2) derive 

skillful predictors at multiple space-time scales using “canonical events” 

(aggregated predictors); and 3) provide seamless predictions across multiple 

forecast horizons, depending on the raw forcing available. In practice, some 

discontinuities were observed in the verification statistics between 270-271 days, 

where the CFSv2 transitions to resampled climatology. This may originate from 

sampling uncertainty, including uncertainty resulting from the parameterization of 

the MEFP with too many canonical events (see below). Anecdotally, the reliability 

and skill of the MEFP forecasts is the same or better at aggregated scales. This 

is consistent with the temporal autocorrelations being modeled adequately. 

Nevertheless, further investigation is warranted into the limitations of the 

Schaake Shuffle, particularly for extreme events, and whether, at the basin-scale, 

other empirical structures, such as high-resolution forecasts or conditional 

climatologies, can better reproduce the space-time covariability.  

Recommendation 2: Further investigation is warranted into the limitations of 

the Schaake Shuffle and the conditions under which other empirical structures 

(empirical copulas) may improve the modeling of space-time and cross-variable 

relationships. In practice, these relationships are conditional upon the state of 

the atmosphere at the forecast valid time, yet the Schaake Shuffle relies on 

unconditional structures only (i.e. conditional upon forecast valid time, but not 

on the state of the atmosphere). Among other things, there is a need to explore 
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the consequences of this assumption during high-impact events, for which 

suitable analogs are unlikely to appear on the same date in historical years. 

More generally, there is a need to evaluate the MEFP for high-impact events 

by deconstructing and evaluating specific forecasts. Here, there is a trade-off 

between the ability of the MEFP to learn from historical experience, in order to 

reduce conditional biases, and the need to preserve any novel information in 

the raw model forecasts (i.e. for which historical experience is limited). 

 In operational forecasting, there is always a trade-off between model complexity, 

or the need to capture salient features of the observations, and practicality, or the 

need for a model whose parameters can be estimated reliably. It is questionable 

whether the current implementation (or parameterization) of the MEFP manages 

this trade-off effectively. The MEFP uses canonical events to sequentially adjust 

the climatological probability distribution. Each canonical event comprises a 

separate model of the joint probability distribution of the forecasts and 

observations. A canonical event defines a window centered on the forecast valid 

date (into which data are pooled from all historical years), together with the 

period of aggregation for which the joint distribution is estimated. The sample 

size used to calibrate the MEFP was not particularly small (15 years) and is 

consistent, or more favorable, than the expected operational practice. However, 

artificial periodicities were clearly visible in some of the verification statistics. 

They were also observed in the raw ensemble traces, particularly for 

temperature, which should otherwise vary smoothly. By experimenting with the 

parameterization of the MEFP, these discontinuities were found to originate from 

the use of canonical events. The addition or removal of particular canonical 

events led to discontinuities in the ensemble traces at corresponding timescales 

during the forecast horizon.  

Recommendation 3: Further investigation is warranted into the use of 

canonical events and, more generally, the need to parameterize the multiscale 

properties of temperature and precipitation in the MEFP. Where explicit 

modeling is justified, it should be parsimonious, smooth and allow for 

reasonably small sampling uncertainty, whether using canonical events or 

other techniques. Outcomes of this investigation may include simplified 
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modeling approaches or further guidance on calibrating the MEFP with 

canonical events (e.g. based on geography and climatology). 

 In regulated rivers, the hydrologic uncertainties reflect a combination of natural 

and engineering influences. Some regulations may be obscured from operational 

forecasters because they are operated with limited warning or specificity (e.g. 

because they involve rapidly changing conditions, multiple actors or agencies or 

commercially sensitive information). When information about diversions and other 

regulations is available in real-time, statistical post-processors, such as the 

Ensemble Post-processor (EnsPost), should ideally model the natural (local) 

flows, as upstream regulations are difficult to model statistically. However, the 

total flows are preferred for hindcasting and verification, as they include the 

residual uncertainties from upstream basins. In practice, only the estimated local 

flows were available from NYCDEP and, hence, only the local contributions were 

verified at downstream locations. In future, river regulations should be archived 

by the RFCs, in order to allow for hindcasting and verification of the total flows at 

downstream locations.  

Recommendation 4: There are a number of challenges for the successful 

application of the HEFS in regulated rivers. These include inadequate archiving 

of real-time adjustments to operational forecasts (runtime modifications), which 

are also required for hindcasting and verification, and difficulties in adjusting 

regulated flows with statistical techniques. Where possible, the EnsPost should 

be calibrated on natural flows and any known regulations incorporated in real-

time. In other cases (e.g. when the regulations are poorly defined), regulations 

may leave signatures in the streamflow observations that can be modeled 

indirectly, whether using deterministic or stochastic techniques. In order to 

guide practical applications of the HEFS in regulated rivers, further evaluation 

is needed, including evaluation of the total flows at downstream locations. In 

this context, collaborations between the NWS and other agencies, such as the 

NYCDEP, should be encouraged. Ultimately, improvements in the modeling of 

upstream regulations will reduce the need for indirect accounting and increase 

the operational readiness of the HEFS. Aside from these collaborations, the 

RFCs should archive all adjustments to their operational forecasts, in order to 

support routine hindcasting and verification in regulated rivers.  
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 In keeping with the MEFP-GCC precipitation forecasts, the GCC streamflow 

forecasts are substantially more skillful than the climatological forecasts during 

the first week. Beyond the short-range, they are as skillful as the climatological 

forecasts. In general, the hydrologic biases are greater under low flow conditions, 

where the streamflow forecasts systematically over-estimate the observed flows, 

particularly in CCRN6 and MTGN4. While the hydrologic models do not target 

specific applications or flow conditions, the high flows receive particular scrutiny 

during model calibration, and the “Continuous API” model used by MARFC (for 

CCRN6 and MTGN4) is less well-suited to dry conditions. For long-range 

forecasting, the meteorological biases are more important than the hydrologic 

biases, as the MEFP-GCC precipitation forecasts resemble climatology after ~5 

days. In particular, they underestimate the heaviest precipitation amounts by up 

to ~80% at longer forecast lead times.  

 Further work is needed to compare the long-range streamflow forecasts from the 

HEFS against the RFC operational forecasts, which include ESP and statistical 

modeling on monthly and seasonal timescales. Given the lack of skill in the 

CFSv2, the opportunities to improve on climatological forcing and, thus, on ESP 

may appear limited. However, this does not imply similar performance in other 

regions or time periods, where long-range prediction is more straightforward (e.g. 

the coastal mountain ranges of California and the Pacific Northwest). Alongside 

the resampling procedure adopted by the MEFP, there are other notable 

differences between the HEFS and ESP. For example, some RFCs incorporate 

runtime modifications into the hydrologic model states from which the ESP 

forecasts are produced operationally. Whether the HEFS can improve on ESP 

will also depend on basin characteristics. For headwater basins with longer 

memory (e.g. due to snow accumulation or soil characteristics), and for 

downstream basins in general, the skill from the GEFS will persist for longer in 

the streamflow forecasts. Also, the EnsPost should eliminate any unconditional 

biases, which may originate from weaknesses in the structure or calibration of the 

hydrologic models, and may reduce conditional biases where the streamflow 

correlations are strong. For example, at MRNN6 and GILN6, the observed 
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streamflows were consistently underestimated during the late spring and early 

summer. At CCRN6 and MTGN4, the observed streamflows were consistently 

overestimated during the summer months.  

 Scientific evaluation of the HEFS is an ongoing activity; it requires a sustained 

effort and a dedicated infrastructure for archiving data and for hindcasting and 

verification, as well as communicating verification concepts and results. This 

study covers only a small fraction of the locations, conditions and scenarios 

under which the HEFS will be used operationally. In order to guide a broader 

range of applications and to establish a baseline for future enhancements, more 

comprehensive hindcasting and verification is needed. This should be conducted 

across all RFCs, for a range of forcing inputs, and for a broader range of river 

basins, including regulated rivers and outlets. Furthermore, there is a need to 

evaluate decision support systems and other applications that rely on the HEFS 

(e.g. water quality models, water regulation/supply decisions). Such applications 

will show varying sensitivities to the HEFS forecasts and may lead to targeted 

improvements in the HEFS, as well as new ensemble products.  

Recommendation 5: In order to evaluate the quality of the HEFS and to 

establish a baseline for future enhancements, more comprehensive 

hindcasting and verification is needed. This should be conducted across all 

RFCs, for a range of forcing inputs, and for a broader range of river basins, 

including regulated rivers and outlets. Further work is needed to compare the 

long-range streamflow forecasts from the HEFS against the RFC operational 

forecasts, which include ESP and statistical modeling on monthly and seasonal 

timescales. While such comparisons are not straightforward (e.g. because the 

raw forcing data used by the HEFS is not used for operational forecasting), 

they are necessary to benchmark the HEFS and to show that, overall, the 

forecasts improve on existing products. In addition, there is a need to evaluate 

decision support systems and other applications that rely on the HEFS, such 

as water quality, ecology, river navigation, water supply, and civil engineering 

design. Such applications will show varying sensitivities to the HEFS forecasts 

and are necessary to demonstrate the wider, societal and economic, benefits 

of the HEFS and ensemble forecasting more generally.  
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3. Introduction 

Uncertainties are manifest in all aspects of environmental modeling (Brown, 

2010a) and they contribute to risks in environmental decision making (Handmer et al., 

2001; Beven, 2000; Ramos et al., 2012; Demeritt et al., 2013). In order to evaluate, 

communicate and manage these risks effectively, operational forecasting agencies, 

such as the U.S. National Weather Service (NWS), must properly account for, and 

quantify, the uncertainties associated with model predictions. Whether using physically-

based models, statistical models or some combination of the two, the inputs, structure, 

and parameters of these models are all uncertain (Matott et al., 2009). Uncertainties 

propagate through the modeling system and lead to uncertainties about the model 

outputs (Brown and Heuvelink, 2005). Broadly, there are two approaches to quantifying 

and propagating uncertainty, namely source-based modeling (“bottom up”), where 

specific sources of uncertainty are combined and integrated numerically (Gneiting and 

Raftery, 2005; Helton et al., 2006; Cloke et al., 2013), and statistical modeling (“top 

down”), where the total uncertainty is modeled empirically (Glahn and Lowery, 1972). A 

hybrid of these approaches involves statistical post-processing of ensemble forecasts 

(Gneiting et al., 2007; Montanari and Grossi, 2008; van Andel et al., 2013). The latter 

uses historical observations to correct for biases in the forecast probabilities.  

The NWS Hydrologic Ensemble Forecast Service (HEFS) provides ensemble 

forecasts of temperature, precipitation and streamflow at lead times ranging from one 

hour to one year (Seo et al., 2010; Demargne et al., 2014). The HEFS quantifies the 

total uncertainty in streamflow as a combination of specific sources of uncertainty (Seo 

et al., 2010). The meteorological uncertainties are modeled with the Meteorological 

Ensemble Forecast Processor (MEFP). The MEFP generates ensemble forecasts of 

precipitation and temperature conditionally upon a raw, single-valued, forecast (Wu et 

al., 2011). The raw forcing may comprise operational quantitative precipitation forecasts 

(QPF) and quantitative temperature forecasts (QTF) from the NWS River Forecast 

Centers (RFCs) or the ensemble mean of NCEP’s Global Ensemble Forecast System 

(GEFS), among others. For the period from 16 days to 9 months, the MEFP uses raw 

forcing from the Climate Forecast System Version 2.0 (CFSv2) and, beyond 9 months 
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or as a baseline for evaluating other forecasts, various types of conditional climatology. 

The total uncertainty in the streamflow forecasts is modeled in two stages (see Kelly 

and Krzysztofowicz, 1997 also). First, the meteorological forecasts from the MEFP are 

used to generate “raw” streamflow forecasts, which may contain hydrologic biases, but 

do not explicitly account for any hydrologic uncertainties. Second, the raw streamflow 

forecasts are post-processed with the Ensemble Postprocessor (EnsPost). The EnsPost 

accounts for the hydrologic uncertainties and reduces any systematic biases in the 

streamflow forecasts (Seo et al., 2006).  

The HEFS is being implemented in several phases, with the initial version 

(HEFSv1) scheduled for operational use at all RFCs by the end of 2014. In order to 

establish a baseline for future enhancements, and to guide the operational use of the 

HEFSv1, several phases of hindcasting and verification are also underway. This 

involves retrospective forecasting of temperature, precipitation, and streamflow at 

selected RFCs and for selected sources of meteorological forcing. In an earlier phase of 

evaluation (see Brown, 2013), temperature, precipitation and streamflow hindcasts were 

generated with the HEFSv1 using forcing inputs from the “frozen” version of NCEP’s 

Global Forecast System (GFS; Hamill et al., 2006). In a subsequent phase of 

evaluation, temperature, precipitation, and streamflow hindcasts will be generated with 

the HEFSv1 using forcing hindcasts from NCEP’s Global Ensemble Forecast System 

(GEFS; Hamill et al., 2013). This report focuses on the quality of the long-range 

forecasts from ~15 days to ~1 year. Specifically, it focuses on the temperature, 

precipitation and streamflow forecasts with forcing inputs from the GEFS, CFSv2 and 

climatology. While the focus is on the long-range forecasts, the HEFSv1 aims to provide 

“seamless” forecasts across multiple temporal scales and, depending on basin 

characteristics, skillful forcing from the GEFS may persist for several weeks in the 

streamflow forecasts. 

Approaches to long-range forecasting vary between RFCs, but most use 

statistical modeling, physically-based modeling or a subjective combination of the two. 

Ensemble Streamflow Prediction (ESP) was developed in the late 1970s (Day, 1985) 

and is used operationally by many RFCs. For example, it is used in the western U.S. to 
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forecast seasonal water supply (Wood and Lettenmaier, 2006), while the North Central 

RFC uses ESP to evaluate the probability of flooding from snowmelt in the following 

spring. By initializing the NWS River Forecast System (NWSRFS) and looping through 

historical time-series of observed temperature and precipitation, ESP provides 

ensemble forecasts of streamflow that are consistent with the historical climatology. 

Enhancements to ESP include sampling of the raw climatology with conditioning 

variables, such as the 90-day climate outlooks from NOAA’s Climate Prediction Center 

(Perica, 1998) or large-scale climate indices (Najafi et al., 2012). Statistical models for 

long-range forecasting generally employ multiple linear regression (Garen, 1992). 

Common predictors include snow water equivalent (SWE), precipitation, large-scale 

climate indices, and antecedent streamflow, among others (e.g. Robertson and Wang, 

2013). In order to avoid collinearity, the original covariates may be aggregated or 

translated into fewer principal components (Regonda, 2006; Garen and Pagano, 2007). 

Combinations of ESP and statistical modeling are also common, and may involve post-

processing ESP forecasts (e.g. Wood and Schaake, 2008) or a subjective blending of 

ESP and regression models. For example, until recently, the NWS coordinated with the 

Natural Resources Conservation Service (NRCS) to provide “consensus” forecasts of 

water supply for 700 basins in the western U.S. In negotiating a best estimate and 

spread from the individual forecasts, the consensus was necessarily subjective. 

However, it avoided confusion among end-users and provided a single forecast for 

critical decisions about water supply (Pagano et al., 2013). Currently, the operational 

practice varies between RFCs, with some using unconditional ESP (e.g. NWRFC), and 

others using a subjective combination of ESP and statistical modeling (e.g. CBRFC).     

In parts of the U.S., there are strong climate anomalies or teleconnection patterns 

that significantly impact temperature, precipitation and streamflow on seasonal to 

decadal timescales (Regonda, 2006). These include the El-Niño Southern Oscillation 

(ENSO), the Pacific-North American teleconnection (PNA) and the Pacific Diurnal 

Oscillation (PDO). By capturing the phase and strength of these teleconnections in 

climate indices, statistical models may be augmented with additional predictors (Garen 

and Pagano, 2007, Robertson and Wang, 2012), probability distributions sampled 

conditionally upon the auxiliary information (Perica, 1998) or statistical and dynamical 
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forecasts weighed and combined (e.g. Schepen et al., 2012). For example, Hamlet and 

Lettenmaier (1999) use climate indices of the ENSO and PDO to improve long-range 

streamflow forecasting in the Columbia River Basin. Elsewhere, Grantz et al. (2005) use 

large scale climate indices to improve streamflow forecasting on the Truckee and 

Carson Rivers in Nevada for two seasons ahead. However, the ENSO, PNA and PDO 

are not uniformly strong, and impacts on streamflow are generally weaker and more 

variable in the interior west (Cayan, 1996; Regonda, 2006). Alongside climate indices, 

and in areas where a significant fraction of the annual precipitation falls as snow, 

measures of SWE are also used in ensemble forecasting and statistical models of water 

supply. For example, Clark et al. (2001) use a combination of large-scale climate 

indices and information on SWE to improve long-range streamflow forecasts in the 

Columbia and Colorado River Basins. In alpine regions, snow accumulation and melting 

is driven by air temperature, as well as precipitation, and both are important in long-

range forecasting. For example, in a study of streamflow responses to climate change in 

the Colorado Basin, Nash and Gleick (1991) found that increases in temperature of 2-

4C would reduce the mean annual runoff by 4-20%, while changes in precipitation of 

10-20% would alter the mean annual runoff by 10-20%.  

In practice, both ESP and statistical models are imperfect tools for long-range 

forecasting. For example, regression models use observations of SWE that do not 

include the entire period of snow accumulation. Also, they may rely on teleconnection 

patterns that have limited explanatory power in some regions or invoke assumptions of 

stationarity that are complicated by intra- and inter-annual climate variability. Similarly, 

ESP relies on historical forcing and does not incorporate the latest information from 

global climate models, such as the CFSv2. In this context, Yuan et al. (2013) found that 

seasonal hydroclimate forecasts with the CFSv2 significantly improved upon ESP for 

many locations in the CONUS, but these improvements generally only materialized after 

streamflow post-processing and were strongly dependent on the variables, seasons and 

regions considered. In the absence of streamflow post-processing, ESP relies on 

hydrologic models that are well-calibrated or climatologically unbiased (Shi et al., 2008). 

In practice, ESP forecasts may comprise a range of unconditional and conditional 
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biases that could be addressed through statistical post-processing (Wood and Schaake, 

2008; Shi et al., 2008). Some of these weaknesses are addressed by the HEFSv1, 

while others may be addressed in future. First, the HEFS uses an objective combination 

of ensemble forecasting and statistical modelling. Second, the HEFS uses raw forcing 

information from the GEFS and CFSv2, among others. While the GEFS forecasts are 

limited to 1-15 days, the skill from these forecasts may persist in streamflow for longer 

periods, depending on basin characteristics. Finally, the forcing and streamflow 

forecasts are corrected for biases, including biases in the meteorological forcing 

(MEFP) and in the hydrologic modelling (EnsPost). However, the MEFP does not 

include auxiliary information from the CPC’s climate outlooks or large-scale climate 

indices, which may be useful in some basins.  

Whether using statistical models, physically-based models or some combination 

of the two, hydrometeorological and hydrologic forecasts are subject to error. These 

errors may be correlated in space and time and may be systematic. The skill of an 

ensemble forecasting system can depend largely on its systematic biases (Hashino et 

al., 2006; Wilczac et al., 2006; Brown and Seo, 2013). Forecast verification is necessary 

to identify these biases and to establish the skill of the forecasting system under a range 

of observed and forecast conditions (Jakeman et al., 2006; Demargne et al., 2010). 

Examples of hindcasting and verification for the long-range include Franz et al. (2003), 

Pagano et al. (2004), Bradley et al. (2004), Regonda (2006), Schepen et al. (2012) and 

Robertson and Wang (2013). In ensemble forecasting, biases produce systematic 

differences between the forecast probabilities of particular events and the 

corresponding observed outcomes [0,1] over a large sample of historical data (Wilks, 

2006; Jolliffe and Stephenson, 2011). By conditioning on the observed and forecast 

variables, these residuals can be factored into more detailed attributes of forecast 

quality. For example, a flood forecasting system is “reliable”, on average, if flooding is 

observed twenty percent of the time when it is forecast with probability 0.2 (repeated for 

all probabilities). An ensemble forecasting system is discriminatory with respect to 

flooding if it consistently forecasts the occurrence of flooding with a probability higher 

than chance and consistently forecasts its non-occurrence with a probability lower than 

chance.  
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In this report, hindcasts of temperature, precipitation and streamflow are 

generated with the HEFSv1 for selected river basins in the North East RFC (NERFC) 

and the Middle-Atlantic RFC (RFC). The hindcasts are verified conditionally upon 

forecast lead time, magnitude of the observed and forecast variables, season, and 

aggregation period. Limited combinations of these attributes are also considered. 

Verification results are presented for the temperature and precipitation forecasts from 

the MEFP and for the raw streamflow forecasts, which do not include statistical post-

processing. In order to distinguish between the meteorological and hydrologic 

uncertainties, the raw streamflow forecasts are verified against simulated streamflows, 

as well as observed streamflows. The report is separated into three parts. It begins with 

the Material and Methods section, comprising an overview of the study basins and 

datasets, the HEFS methodology, and the verification strategy (Section 4). The results 

are then presented separately for the meteorological forecasts (Section 5.1) and the raw 

streamflow forecasts (Section 5.2). Finally, the Discussion and Conclusions (Section 6) 

lead to guidance on the expected performance and limitations of the HEFSv1 for long-

range forecasting, together with recommendations on future enhancements.  

4. Materials and methods 

4.1 Study basins  

Eight river basins were considered in this study, of which four are located in 

MARFC and four in NERFC. Figure 1 and Table 1 show the latitude and longitude, 

drainage area and mean elevation of each basin, together with the nearest GEFS and 

CFSv2 grid nodes. Table 1 also shows the annual precipitation, the runoff coefficient 

(runoff/precipitation) and the ratio of precipitation to potential evaporation. The drainage 

areas range from 240 square kilometers (NVXN6) to 9013 square kilometers (MTGN4) 

and the runoff coefficients vary from 0.35 (PTVN6) to 0.88 (MTRN6). Figure 2a and 

Figure 2b show the daily means of temperature, precipitation and runoff for each basin 

in MARFC and NERFC, respectively. The averages are shown for each calendar month 

and were derived from gauged temperature, precipitation, and streamflow over a 15 

year period between 1985 and 1999 (see Section 4.3). Nominally, two seasons are 
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identified for each RFC, namely a “wet” season and a “dry” season (Figure 2a/b). The 

forcing and streamflow hindcasts are verified separately for each of these seasons, as 

well as for the overall period (Section 5).  

The eight river basins have similar climate and runoff characteristics (Figure 

2a/b), with slightly higher precipitation and much higher temperatures during the 

summer months. The runoff peaks in April, when snowmelt from the Catskill Mountains 

contributes to higher streamflow in the Catskill and Delaware basins. Runoff is much 

lower between June and October, as flows are diverted for irrigation and water supply. 

Both forecast groups are subject to extensive river regulations and diversions. The 

Catskill and Delaware systems account for ~90% of the municipal water supply to New 

York City (NYC), with approximately 1.75x109 m3 of water stored in six reservoirs 

(Figure 1). The Catskill Basin comprises the Schoharie and Ashoken Reservoirs, which 

drain the eastern portion of the Catskill Mountains. The Delaware Basin comprises the 

Cannonsville, Pepacton (Downsville), Neversink and Rondout Reservoirs, which drain 

the western portion of the Catskill Mountains. Water from the Catskill Basin is stored in 

the Ashoken Reservoir and diverted via the Catskill Aqueduct to NYC. Water from the 

Delaware Basin is stored in the Rondout Reservoir and distributed via the Delaware 

Aqueduct to NYC.  

Figure 3 shows the topology of the eight river basins, together with the 

surrounding basins for which streamflow hindcasting was conducted. The four basins in 

MARFC comprise three locations on the Delaware River, namely Walton (WALN6), 

Callicoon (CCRN6) and Montague (MTGN4), and one location on the Neversink River, 

namely the Neversink Reservoir (NVXN6). The four basins in NERFC comprise two 

locations on the Esopus Creek, namely Mount Trempor (MTRN6) and Mount Marion 

(MRNN6), and two locations on the Schoharie Creek, namely Prattsville (PTVN6) and 

the Gilboa Dam (GILN6). Mount Trempor and Mount Marion are separated by the 

Ashoken Reservoir (ASEN6) and the Schoharie Reservoir lies between Prattsville and 

the Gilboa Dam.  
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In MARFC, flows are diverted from the Cannonsville Reservoir (CNNN6) and the 

Downsville Reservoir (DWNN6) to the NYC municipal water supply. The remaining 

flows, except for conservation releases and spills, are impounded for subsequent 

release in the lower Delaware Basin under dry conditions. Information about these 

diversions and releases is provided to MARFC in near real-time for operational 

forecasting. However, records of the individual diversions and releases were not 

available for hindcasting. As the diversions remove a significant fraction of the total 

flows at downstream locations, the hindcast (total) flows could not be compared with 

USGS gaged flows at basins downstream of CNNN6 and DWNN6 in MARFC. Instead, 

estimated natural flows were provided by NYCDEP, which adjust the gaged flows to 

account for the overall effects of diversions and other regulations. The estimated flows 

generally correspond to the local contributions at downstream locations. For example, at 

CCRN6, the estimated flows provided by NYCDEP correspond to the local contribution 

between HLEN6 and FSHN6 upstream and CCRN6 downstream. However, MTGN4 is 

modeled differently by MARFC than NYCDEP. Specifically, the local areas of MTGN4 

and BRGN6 in MARFC are equivalent to those of Montague, Oakland Valley and 

Woodbourne in NYCDEP. Thus, in order to verify the streamflow forecasts at MTGN4, 

the observed flows from Oakland Valley and Woodbourne were routed to MTGN4 and 

added to the local contribution from Montague. In summary, the (total) hindcast flows 

were verified against USGS gaged flows at WALN6 and NVXN6 (see Section 4.3 for 

data sources), while estimated local flows were used to verify the (local) hindcast flows 

for CCRN6 and MTGN4.  

Figure 4 provides a schematic of the flow pathways and regulations associated 

with the Ashoken Reservoir. Flows are diverted from the Ashokan Reservoir to NYC 

and from several upstream locations for local irrigation and water supply. These 

diversions remove a significant fraction of the total flows at Mount Marion (MRNN6). 

Estimated flows were provided by NYCDEP for the NERFC river basins. At MRNN6, the 

estimated flows comprise the local contribution to MRNN6 only, without any spillage or 

waste channel flows from the Ashoken Reservoir (Figure 4). As indicated in Figure 4, 

flows are routed through the Schandaken Tunnel (STUN6) from the Schoharie 

Reservoir (GILN6) to the Esopus Creek upstream of Mount Trempor (MTRN6) and then 
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to the Ashoken Reservoir. The Ashoken Reservoir comprises two storage basins, 

namely the East Ashoken (ASEN6) and the West Ashoken (ASWN6), which are 

separated by a concrete dividing weir and roadway.  

At MTRN6, the total streamflow comprises the local contribution at MTRN6 plus 

the diverted flows from the Schoharie Reservoir. An archive of these diverted flows was 

provided by the USGS for the entrance to the Schandaken Tunnel. This was subtracted 

from the USGS gaged flow at MTRN6 for comparison with the streamflow hindcasts, 

which only comprise the local contribution at MTRN6.  The diverted flow was not routed 

to MTRN6 before being subtracted from the USGS gaged flow. Thus, a small timing 

error should be expected in the estimated streamflows at MTRN6. In practice, this 

timing error is unlikely to be significant as the verification focuses on aggregated time-

scales of 5 days or more (see Section 4.4). Finally, the hydrologic models were 

calibrated against the observed flows at MTRN6 without accounting for diversions. 

Thus, the model parameters and associated forecasts at MTRN6 may show reduced 

skill.   

At GILN6, the hindcasts comprise inflows to the Schoharie Reservoir, which are 

not impacted by the diversions to MTRN6. The USGS gage at the Schoharie Reservoir 

is located in the reservoir pool, rather than the inflow. Thus, the NYCDEP estimated 

inflows were compared to the corresponding forecast inflows. The inflows were 

estimated by NYCDEP using gauged reservoir levels and outflows. The outflows 

comprise all diversions, spills and releases, but evaporation is not considered. 

In summary, the (total) hindcast flows were verified against the USGS gaged 

flows at PTVN6, whereas the hindcast flows at MTRN6, MRNN6 and GILN6 were 

verified against estimated flows provided by NYCDEP.  

4.2 The Hydrologic Ensemble Forecast Service (HEFS) methodology 

Further details on the HEFS methodology can be found in Appendix A. The 

HEFS models the total uncertainty in streamflow at some future times, fq , conditionally 

upon the observed streamflow up to, and including, the current time, cq . The total 
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uncertainty is factored into two main sources of uncertainty, the “hydrologic 

uncertainties” and the “meteorological uncertainties”. The meteorological uncertainties 

are included in the raw streamflow forecast and the hydrologic uncertainties are 

modeled in an adjusted streamflow forecast. Omitting the random variables for 

simplicity,   

1 2 3( | ) ( | , ) ( | ) , q q q q q q q qf c f c r r c rf f f d

RawTotal Adjusted

                                 (1) 

where qr  denotes the raw streamflow forecast. The raw streamflow forecast is 

estimated with the Hydrologic Ensemble Processor (HEP). The HEP integrates a finite 

number of “equally likely” traces of precipitation and temperature through the hydrologic 

models. These traces include the forcing uncertainty, which is modeled explicitly 

3 4 5( | ) ( | , ) ( ) , q q q q m m mr c r c f f ff f f d

Raw Raw | Forcing Forcing

                                  (2) 

where fm  denotes the future (observed) forcing. The forcing uncertainties are 

quantified by the Meteorological Ensemble Forecast Processor (MEFP). The MEFP 

models the observed forcing conditionally upon a raw forecast, fr ; that is, by estimating 

the joint distribution, 6 ( , )f ff m r , and factoring out fr in real time 

5 6( ) ( , ) .f f f ff f d m m r r                                              (3) 

The raw forcing may comprise the ensemble mean of NCEP’s GEFS or single-valued 

quantitative precipitation forecasts from the RFCs, among others (Wu et al., 2011). The 

HEFS does not currently isolate the contributions from other sources of uncertainty, 

such as the initial conditions or parameters of the hydrologic models (Appendix A). 

Rather, the overall effects of these additional uncertainties are modeled in the adjusted 

streamflow forecast using the Ensemble Post-processor (EnsPost; Seo et al., 2006). In 

all cases, the parameters of future quantities are estimated from subsets of the 

historical data, for which a degree of stationarity is assumed. Here, the parameters of 



26 of 128 
 

the HEFS were estimated from the same historical period (1985-1999) used for the 

streamflow hindcasting and verification. While statistical models generally perform 

better under dependent than independent validation, the HEFS was designed with a 

minimum number of parameters to estimate. Not surprisingly, therefore, experiments 

with the MEFP (e.g. Wu et al., 2011) and with the EnsPost (e.g. Seo et al., 2006) have 

shown negligible differences between dependent and cross-validation when using a 

calibration period of ~20 years. 

4.3 Datasets  

Hindcasts of mean areal temperature (MAT) and mean areal precipitation (MAP) 

were generated with the MEFP for a 15 year period between 1985 and 1999. The 

hindcasts of MAP and MAT were produced at 12Z every 5 days. Each forecast 

comprised ~50 ensemble members, with lead times varying from 6 to 7,920 hours in six-

hourly increments. Inputs to the MEFP comprised “raw” precipitation and temperature 

hindcasts from NCEP’s Global Ensemble Forecast System (GEFS; Hamill et al., 2013) 

and the Climate Forecast System Version 2.0 (CFSv2). For the period 1-15 days, the 

MEFP was calibrated with the ensemble mean of the GEFS hindcasts. For the period 

16-270 days, the MEFP was calibrated with the single-valued forecasts from the CFSv2. 

As the CFSv2 forecasts were initialized only once every 5 days, the HEFS forcing and 

streamflow hindcasts were also produced at this frequency (i.e. 6-hourly forecasts with 

a T0 every 5 days). For the period 271-330 days, a “resampled climatology” was 

derived from the historical observations of MAP and MAT. Specifically, the MAP and 

MAT were resampled in a moving window of, respectively, 30 days and 15 days either 

side of the forecast valid date. A smooth probability distribution was then fitted to the 

resampled observations and ensemble members were derived from the fitted 

distribution. The MEFP forecasts with combined inputs from the GEFS, CFSv2 and 

resampled climatology are denoted MEFP-GCC. Resampled climatology was also 

generated for the period 1-330 days, in order to evaluate the skill of the MEFP-GCC 

forecasts. The resampled climatology forecasts are denoted MEFP-CLIM. 
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Raw streamflow hindcasts were generated with the HEFS using the precipitation 

and temperature forecasts from the MEFP. The hydrologic modeling was conducted 

with the CHPS using the operational models implemented at each RFC. In NERFC the 

Snow Accumulation and Ablation Model (SNOW-17; Anderson, 1973) is used together 

with the Sacramento Soil Moisture Accounting Model (SAC-SMA; Burnash, 1995). In 

MARFC, the SNOW17 model is used together with an empirical hydrologic model, 

based on the Antecedent Precipitation Index (API), but adapted for continuous 

simulations (the so-called “Continuous API” model). Where applicable, routing is 

conducted with Lag/K using constant or variable lag and attenuation (e.g. WALN6 to 

CNNN6 uses a constant lag with no attenuation). In several RFCs, an ADJUST-Q 

operation is used to blend the most recent observed streamflow into the operational 

forecast, although hydrologic persistence is generally limited for long-range forecasting. 

In the HEFS, ADJUST-Q is (largely) replicated by the EnsPost, which corrects for 

biases in the raw streamflow forecasts conditionally upon the prior observed flow, as 

well as the contemporary simulated flow (see Seo et al., 2006). However, following a 

preliminary application of the EnsPost for long-range forecasting, some enhancements 

were deemed necessary. Thus, only the raw streamflow forecasts are considered in this 

study. Nevertheless, in order to separate the meteorological uncertainties and biases 

(addressed by the MEFP) from the hydrologic uncertainties and biases (otherwise 

addressed by the EnsPost), the streamflow forecasts were verified against simulated 

streamflow as well as observed streamflow (see Section 4.4).  

Observations of precipitation and temperature were obtained from each RFC and 

comprised areal averages (MAP, MAT) of the gauged precipitation and temperature in 

each basin. The data comprise six-hourly observations at {0Z,6Z,12Z,18Z} between 

1949 and 1999. Streamflow observations were obtained from the United States 

Geological Survey (USGS) for the period 1985-1999. They comprise daily mean 

streamflows at the outlet of each basin. The averages were determined from 

observations of river stage, beginning at midnight in local time, and converted to 

streamflow using a measured stage-discharge relation (Kennedy, 1983). Subsequently, 

they were converted to runoff values (mm/day) for ease of comparison between basins. 

However, the USGS gaged flows were only used to verify the streamflow forecasts at 
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three headwater locations, namely WALN6 and NVXN6 in MARFC and PTVN6 in 

NERFC. All other locations (including MTRN6, which receives diverted flows from the 

Schoharie Reservoir) were effectively treated as headwaters. Specifically, the forecast 

local flows were verified against estimated local flows provided by NYCDEP.  

In practice, the estimated flows provided by NYCDEP are known to be imperfect. 

For example, reservoir inflows are estimated from gaged reservoir levels and outflows. 

The outflows comprise all diversions, spills and releases, but evaporation is not 

considered. During the dry season, this can lead to approximation errors for low flows, 

which are assigned zero if the inflow estimates are negative. In other cases, the 

contributing areas defined by NYCDEP differ from those used by the RFC and observed 

flows are estimated by routing and summing contributions from multiple sub-basins (e.g. 

MTGN4).  

There are several challenges for applying the HEFS consistently in regulated 

rivers; that is, to maintain consistency between calibration and operational use and 

between hindcasting and operational use. Consistency between hindcasting and 

operational use is necessary to evaluate the HEFS and provide measures of forecast 

quality that can guide operational applications. Consistency between calibration and 

operational use is necessary to train the EnsPost on hydrologic biases and uncertainties 

that represent the operational reality. These issues are currently being explored, and 

recommendations developed, as part of a Concept Of Operations (CONOPS) for the 

HEFS. Elsewhere, Georgakakos et al. (2010) describe a methodology for 

accommodating river regulations in operational ESP.  

4.4 Verification strategy  

Verification was conducted with the Ensemble Verification System (EVS; Brown 

et al., 2010b). The forecasts were verified conditionally upon season, forecast lead time, 

magnitude of the observed and forecast variables, and aggregation period. While limited 

combinations of these attributes were also considered, they were often constrained by 

the sampling uncertainties of the verification metrics. The sampling uncertainties were 

not explicitly quantified here (see Brown and Seo, 2013 for an example). However, the 
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verification results were only computed for samples of 30 or more verification pairs (the 

smaller of the number of occurrences and non-occurrences for discrete metrics).  

In pairing the meteorological forecasts and observations, the observed values 

were chosen from the nearest available time in {0Z, 6Z, 12Z, 18Z}. This introduced a 

timing error into the observations of +1 hour in both MARFC and NERFC (UTC-5). As 

the forecasts were verified at an aggregated support of five days or larger (see below), 

this timing error was considered unimportant. Pairing of the observed and forecast 

streamflows was complicated by the daily frequency of the verifying observations and 

estimates. Specifically, the observations comprise daily mean flows from 5Z-5Z. Thus, 

in pairing the streamflow forecasts and observations, it was assumed that the observed 

streamflows adequately represent the period 6Z-6Z. The first three forecasts, which 

comprise valid times of 18Z, 0Z and 6Z (representing the period 12Z-6Z), were then 

ignored. As such, the first verification pair comprises the observed streamflow from 5Z-

5Z and the average of the 6-hourly forecasts from 12Z, 18Z, 0Z, and 6Z with forecast 

lead times of 24, 30, 36 and 42 hours, respectively (nominally labelled 42 hours). For 

consistency, the first three forecasts were also dropped when pairing against the 

simulated flows.  

While pairing was conducted for daily averages of temperature and runoff, and 

for accumulated precipitation, the verification was conducted for aggregated periods of 

five days or more, as: 1) this study focuses on the long-range forecasts, for which most 

practical applications benefit from aggregated quantities (i.e. daily averages have little 

skill for the long-range); and 2) the hindcasts were initialized only once every five days, 

which introduced an artificial cyclicity into the paired sample when verifying at a daily 

scale. The latter is illustrated in Table 2, where the indices of verifying observations are 

shown for a selection of forecast initialization times (T0) and lead times. As evidenced 

by the shading in Table 2, the composition of the observed sample varies systematically 

with forecast lead time (i.e. every five days) when verifying at a daily timescale.  By 

aggregating the forecasts and observations into periods of five or more days, this 

sampling artifact was avoided.  
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In evaluating the quality of the HEFS forecasts, unconditional bias and skill are 

important, as the HEFS is an operational forecasting system for which many 

applications are anticipated (with varying sensitivities to streamflow amount). However, 

“average conditions” generally imply dryer weather and lower flows, as precipitation and 

streamflow are both skewed variables. Thus, conditional verification is also important. 

The MEFP forecasts were verified against observed temperature and precipitation. The 

streamflow forecasts were verified against observed streamflow at the outlet of each 

basin. In addition, the raw streamflow forecasts were verified against simulated 

streamflow. Verification against simulated streamflow allows the total uncertainty to be 

separated from the meteorological uncertainties, as the hydrologic simulations and 

forecasts both comprise hydrologic uncertainty. In short, any differences between the 

hydrologic forecasts and simulations reflect the contribution of meteorological 

uncertainty to the streamflow forecasts, independently of any hydrologic uncertainties 

and biases (but notwithstanding errors in the meteorological observations).  

When verifying forecasts of continuous random variables, such as precipitation 

and streamflow, verification is often performed both unconditionally and conditionally 

upon particular events (Wilks, 2006; Jolliffe and Stephenson, 2011). In order to compare 

the verification results between basins and seasons, for different forecast lead times 

and valid times, and for different aggregation periods, common events were identified 

for each basin. Specifically, for each verifying dataset (v), aggregation period (a) and 

basin (b), a climatological distribution function, , , ,
ˆ ( )n v a bF x  was computed from the n 

observations collected between 1985 and 1999. Real-valued thresholds were then 

determined for 100k  climatological exceedence probabilities, pc , 1

, , ,
ˆ ( )

n v a b pF c , where 

 0,1pc  and 1, , p k . Verification measures that depend continuously on the data, 

such as the mean error, were derived from the conditional sample in which the 

observed value exceeded the threshold. For consistency, exceedence thresholds are 

used throughout; for continuous measures, this implies greater emphasis on high 

streamflows. Measures defined for discrete events, such as the Brier Score, were 

computed from the observed and forecast probabilities of exceeding the threshold. 
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When verifying the raw streamflow forecasts, , , ,
ˆ ( )n v a bF x  was derived separately for the 

streamflow observations and simulations.  

Key attributes of forecast quality are obtained by examining the joint probability 

distribution of the observed variable, Y, and the forecast variable, X, ( , )XYf x y . The joint 

distribution can be factored into 
|( , ) ( | ) ( )XY Y X Xf x y f y x f x , which is known as the 

“calibration-refinement” (CR) factorization and 
|( , ) ( | ) ( )XY X Y Yf x y f x y f y , which is 

known as the “likelihood-base rate” (LBR) factorization (Murphy and Winkler, 1987). The 

conditional distribution, | ( | )Y Xf y x , reflects the Type-I conditional bias or reliability of 

the forecast probabilities when compared to ( )Xf x and resolution when only its 

sensitivity to X is considered. For a given level of reliability, sharp forecasts (i.e. 

forecasts with smaller spread or a greater deviation from climatology) are sometimes 

preferred over unsharp ones, as they contribute less uncertainty to decision making 

(Gneiting et al., 2007). Put differently, as the sharpness increases, other attributes of 

forecast quality must also increase to maintain a given level of forecast skill. The 

conditional distribution, 
| ( | )X Yf x y , reflects the Type-II conditional bias of the forecasts 

when compared to ( )Yf y  and discrimination when only its sensitivity to Y is 

considered. If Y is assumed certain, i.e. ( ) ( )Yf y y , the forecasts must be perfectly 

sharp (deterministic) and perfectly accurate to have no Type-II conditional bias. In 

practice, no single metric provides a complete description of forecast quality (Hersbach, 

2000; Bradley et al., 2004). Appendix B summarizes the key metrics used in this paper. 

5. Results and analysis 

5.1 Quality of the precipitation and temperature forecasts 

The precipitation and temperature forecasts from the MEFP are verified against 

observed MAP and MAT, respectively. The results are presented by forecast lead time, 

magnitude of the forcing variable, season and aggregation period.  
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5.1.1 Forecast lead time 

Figure 5 shows the correlations of the ensemble mean forecast and observed 

precipitation amounts by forecast lead time. The results are shown for the raw forcing 

from the GEFS and CFSv2 for the period 1-270 days, together with the bias-corrected 

forcing from the MEFP-CLIM and MEFP-GCC for the period 1-330 days. The 

correlations between the ensemble mean of the MEFP-GCC precipitation forecasts and 

the corresponding observed precipitation generally exceeds 0.6 when averaged over 

the first 5-day period, but decline rapidly thereafter. Beyond 5-10 days, the correlations 

approach the background signal of 0.1-0.2 associated with resampled climatology. At 

some locations, such as GILN6 and PTVN6 in NERFC, the MEFP-GCC forecasts show 

lower correlations than the MEFP-CLIM forecasts between 10 and 15 days, but recover 

after 15 days. During the period of CFSv2 forcing (16-270) days, the ensemble mean of 

the MEFP precipitation forecasts is no more correlated with the observed precipitation 

amount than resampled climatology. However, the MEFP maintains or improves upon 

the correlations between the raw forcing from the GEFS and CFSv2 and the 

corresponding observed precipitation amounts.  

Both the MEFP-GCC and MEFP-CLIM forecasts show cyclic variations in the 

correlation coefficient, with a cycle of ~30 days. This originates from the use of so-called 

“canonical events” in the MEFP, whereby predictors are formed from different 

aggregation periods for each forecast valid time (Appendix A). These canonical events 

are grouped into 30-day periods within the forecast horizon (or multiples thereof), with 

separate events applying to days 1-30, 31-60 etc. The observed cyclicity in some 

verification statistics may be an artifact of calibrating the MEFP with limited sample 

data, as the precipitation climatology should otherwise vary smoothly during the forecast 

horizon.  

Figure 6 shows the relative mean error (RME) of the MEFP-CLIM and MEFP-

GCC precipitation forecasts by increasing forecast lead time. On average, the ensemble 

mean of the MEFP underestimates the observed precipitation amount by ~5% for both 

sources of raw forcing, in all basins, and at most forecast lead times. However, in 
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absolute terms, these biases amount to less than 1mm accumulation over 5 days. As 

indicated in Figure 6, the MEFP-GCC precipitation forecasts show a slight discontinuity 

in the RME at 271 days, where the raw forecasts transition from CFSv2 to resampled 

climatology and the underforecasting bias increases slightly. This artifact is not visible in 

the mean error of the ensemble mean forecast (results not shown) and reflects the 

greater sensitivity of the RME to small changes in mean error under typical (i.e. dry) 

conditions.  

Figure 7 shows the mean Continuous Ranked Probability Skill Score (CRPSS) of 

the MEFP-GCC and MEFP-CLIM precipitation forecasts against sample climatology. 

Sample climatology comprises the unconditional probability distribution of precipitation 

between 1985 and 1999. During the first ~5 days of the forecast horizon, the MEFP-

GCC precipitation forecasts are 20-25% more skillful than sample climatology. This 

originates from the skill of the raw GEFS forecasts during the first week. In contrast, the 

forecasts are only marginally more skillful than sample climatology after ~5 days. This 

originates from the (lack of) skill in the raw forcing beyond the first week. As 

climatological forcing is currently used by the RFCs for ESP, it is unlikely that the MEFP 

will improve upon the existing long-range temperature and precipitation forecasts at 

these locations.  

Figure 8 shows the mean CRPSS of the MEFP-GCC and MEFP-CLIM 

temperature forecasts against sample climatology. On average, the MEFP-GCC 

temperature forecasts are ~80-90% more skillful than sample climatology at a forecast 

lead time of 1-5 days across all basins and ~65-70% more skillful than sample 

climatology after ~15 days. Unlike the precipitation forecasts, the raw GEFS forecasts 

and hence the MEFP-GEFS forecasts remain skillful after 5 days when compared to the 

MEFP-CLIM forecasts. This stems from the relative predictability and temporal 

autocorrelation of temperature versus precipitation. However, during the period of 

CFSv2 forcing, the MEFP-GCC forecasts are only slightly (<5%) more skillful than the 

MEFP-CLIM forecasts. In practice, the similarity between the MEFP-GCC and MEFP-

CLIM forecasts is more informative than the absolute skill, as the latter depends on the 

inherent predictability of the forecast variable. Sample climatology, as defined here, 
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does not account for seasonal variations in temperature, so the absolute skill of the 

MEFP-GCC and MEFP-CLIM forecasts is high. However, the MEFP-GCC temperature 

forecasts hardly improve on the MEFP-CLIM forecasts.  

5.1.2 Magnitude of the forcing variable  

Figure 9a shows the Brier Skill Score (BSS) for the MEFP-CLIM and MEFP-GCC 

precipitation forecasts in MARFC and NERFC with sample climatology as the baseline. 

The results are shown for a 5-day precipitation total with a forecast lead time of 95-100 

days. The precise lead time is not important, as the precipitation forecasts are similar to 

climatology after ~1 week. The BSS is plotted for multiple precipitation thresholds, which 

are expressed in terms of their climatological probability of exceedence. The threshold 

values are plotted on a non-linear (probit) scale, but are labelled with actual probability. 

For example, 0.1 denotes the 5-day precipitation total that is exceeded, on average, 

only once in every 50 days (i.e. 10 periods of 5 days). The origin of each curve denotes 

the BSS for the Probability of Precipitation (PoP) forecast.  

As indicated in Figure 9a, the MEFP-GCC and MEFP-CLIM forecasts are equally 

unskillful. Indeed, the MEFP forecasts of PoP and light precipitation are generally worse 

than sample climatology, particularly at WALN6 in MARFC. Figure 9b shows the 

“calibration-refinement” factorization of the BSS (see Appendix B), which comprises the 

relative reliability (Type-I conditional bias) and relative resolution of the MEFP forecasts. 

As indicated in Figure 9b, the lack of skill in the MEFP forecasts of PoP and light 

precipitation originates from a conditional bias in the forecast probabilities. The largest 

bias occurs in WALN6 where the forecast PoP systematically underestimates the 

observed PoP. This is consistent with earlier studies of the MEFP that focused on the 

medium-range forecasts, where an underforecasting bias was identified for PoP (Brown, 

2013). For moderate and large precipitation thresholds, the MEFP forecasts are slightly 

more skillful than sample climatology (Figure 9a).  

Figure 10 shows the BSS for the MEFP-CLIM and MEFP-GCC temperature 

forecasts in MARFC and NERFC with sample climatology as the baseline. The results 

are shown for a 5-day mean temperature with a forecast lead time of 95-100 days. As in 
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Figure 8, the BSS is plotted for multiple thresholds, which are expressed in terms of 

their climatological probabilities of exceedence. In keeping with the precipitation 

forecasts, the MEFP temperature forecasts are no more skillful when using GCC forcing 

than resampled climatology. However, unlike the precipitation forecasts, they are 

substantially more skillful than sample climatology. The BSS is highest around the 

median temperature and declines for lower and higher temperatures. Again, this 

originates from the use of resampled climatology (rather than sample climatology) as 

the unconditional distribution in the MEFP. As indicated in Figure 2a/b, there are much 

stronger seasonal variations in temperature than precipitation in MARFC and NERFC. 

This leads to a more pronounced increase in BSS from using a conditional climatology 

for temperature than precipitation. 

Figure 11 shows box plots of errors in the MEFP-GCC precipitation forecasts for 

both MARFC and NERFC. Each box represents one ensemble forecast of the 5-day 

precipitation total at a forecast lead time of 95-100 days. Selected quantiles of the 

forecast error are plotted together with the median error and range (extreme residuals) 

as whiskers. The boxes are arranged by increasing amount of observed precipitation.  

As indicated in Figure 11, the MEFP-GCC forecasts consistently underestimate 

the highest precipitation totals, for which there is a strong conditional bias in the 

ensemble median. The conditional biases are similar at all forecast locations and reflect 

the lack of skill in the CFSv2 forecasts at 95-100 days. Indeed, the MEFP-GCC 

forecasts closely resemble the MEFP-CLIM forecasts during the period of CFSv2 

forcing. By definition, resampled climatology is conditionally biased with respect to 

precipitation amount, as the sampling is conditional upon forecast valid time only, not on 

precipitation amount. In most cases, there is sufficient spread in the MEFP-GCC 

forecasts to predict some probability of the highest precipitation totals that subsequently 

occur. In principle, when issuing a climatological probability forecast, the verifying 

observation should fall on the climatological quantile with the same relative frequency 

as the corresponding probability implies. However, for the most extreme precipitation 

amounts, these climatological quantiles will be sensitive to the period of record and the 

resampling window used by the MEFP-CLIM. Since the MEFP-GCC and MEFP-CLIM 
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forecasts are based on dependent validation, the ensemble spread should be treated as 

optimistic for the most extreme observed precipitation amounts. In practice, the 

ensemble spread may not capture novel conditions in operational forecasting, as this 

novelty is, by definition, absent from the historical record from which the MEFP is 

calibrated. 

Figure 12 shows box plots of errors in the MEFP-GCC temperature forecasts for 

each basin in MARFC and NERFC. Each box represents one ensemble forecast of the 

5-day average temperature at a forecast lead time of 95-100 days. The boxes are 

arranged by increasing observed temperature.  

According to Figure 12, the median of the MEFP-GCC forecasts is unbiased for 

most observed temperatures, but the lowest and highest observed temperatures are 

generally over- and under-forecast, respectively. Again, this is understandable because 

the MEFP-GCC forecasts are no more skillful than the MEFP-CLIM forecasts and the 

MEFP-CLIM forecasts are conditionally biased, by definition. However, in keeping with 

the relative predictability of temperature, the conditional biases are much smaller for 

temperature than precipitation and the ensemble spread is generally sufficient to 

capture the highest and lowest observed temperatures that subsequently occur (except 

for the most extreme events). In general, the MEFP-GCC forecasts show the greatest 

conditional biases for the coldest observed temperatures, where the ensemble median 

is frequently 50% higher than the observed temperature. For hydrologic forecasting, the 

transition between freezing and above-freezing temperatures is important in determining 

the fraction of precipitation that falls as snow versus rain and for predicting snowmelt. 

Reliability diagrams (not shown) indicate that the MEFP-GCC temperature forecasts are 

highly reliable at predicting the probability of exceeding 0oC.   

5.1.3 Season 

Figure 13 shows the monthly climatologies of the observed and forecast 

precipitation amounts at a 5-day accumulation volume. The ensemble mean was 

computed for each forecast whose valid time occurred within a given calendar month. 

Figure 13 shows the overall mean of those values. The conditional mean was then 
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determined separately for each forecast lead time. The range of these conditional mean 

values is also plotted in Figure 13; it shows the variability of the average forecast 

amount within a given month across all forecast lead times. The average observed 

precipitation is also shown for paired forecasts whose valid time occurred within a 

particular month. As indicated in Figure 13, the observed values are generally captured 

by the range of forecast values.  

Figure 14a and Figure 14b show the mean CRPSS of the MEFP-GCC and 

MEFP-CLIM precipitation forecasts against sample climatology for MARFC and 

NERFC, respectively. The results are shown for a 5-day precipitation total with a 

forecast lead time of 95-100 days and comprise the overall results, together with the 

“wet” and “dry” seasons separately (see Figure 2a/b for definitions of the seasons). 

During the first week, the MEFP forecasts are slightly more skillful in the wet season 

than the dry season, both in MARFC and NERFC. However, the precipitation 

climatology is relatively constant in all basins (Figure 2a/b) and the absolute skill is low 

in both seasons. As indicated in Figure 14a/b, the cyclic variations in CRPSS are 

slightly more pronounced during the wet season than the dry season. This may reflect 

the reduced scope for parameter variability in dry conditions. 

5.1.4 Aggregation period 

Figure 15a and Figure 15b show the RME, correlation coefficient and CRPSS 

(versus sample climatology) of the MEFP-GCC precipitation forecasts for basins in 

MARFC and NERFC, respectively. The results are plotted by forecast lead time for 

three aggregation periods, namely 5-, 10- and 30- days.  

In general, the relative bias of the ensemble mean forecast is insensitive to 

aggregation period, with a slight underestimation of the observed precipitation amount 

at all aggregation periods. The transition in forcing between the CFSv2 (15-270 days) 

and resampled climatology (271-330 days) is also apparent in the RME at all 

aggregation periods.  
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Unlike the RME, the correlation coefficient and the CRPSS are somewhat 

sensitive to aggregation period, although the differences are small in absolute terms 

(note the range axis dimensions). In general, the correlation coefficient increases within 

increasing aggregation period. This is understandable, as random errors are effectively 

smoothed by averaging. However, the precise sensitivities of the correlation coefficient 

to aggregation period vary with forecast location. The greatest sensitivities are observed 

in WALN6, PTVN6 and GILN6 and the smallest sensitivities are found in MTRN6 and 

MTGN4. These variations are not easily explained by basin size or elevation. In general, 

the CRPSS shows smaller sensitivities to aggregation period than the correlation, 

although the greatest sensitivities are found in WALN6, PTVN6 and GILN6 where the 

correlations are also more sensitive to aggregation period. This is understandable, as 

the CRPSS reflects a combination of first-order bias and correlation, as well as higher-

order effects that contribute to the integral error measured by the CRPS. 

The MEFP-CLIM forecasts show similar sensitivities to aggregation period as 

the MEFP-GCC forecasts (not shown). Indeed, the MEFP-GCC precipitation forecasts 

are no more skillful than the MEFP-CLIM forecasts at any of the aggregated scales 

considered here.  

5.2 Quality of the raw streamflow forecasts 

The raw streamflow forecasts were verified against observed streamflow and 

simulated streamflow. The results are presented by forecast lead time, season and 

magnitude of streamflow.   

5.2.1 Forecast lead time 

Figure 16 shows the RME of the streamflow forecasts with forcing inputs from the 

MEFP. The results are shown by forecast lead time for each basin in both RFCs and for 

both sources of forcing (MEFP-CLIM and MEFP-GCC). The streamflow forecasts are 

verified against simulated flows (S) as well as observed flows (O).  

When verified against simulated flows, errors in the streamflow forecasts 

originate from errors in the MEFP forcing and in the observed forcing from which the 
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simulations are produced (these are assumed to be negligible). When verified against 

observed streamflow, the verification results also include errors from the hydrologic 

modeling. Clearly, however, errors in the hydrologic modeling may offset, as well as 

accentuate, those in the meteorological forcing. Differences between the observed and 

simulated flows originate from errors in the hydrologic modeling or from the observed 

flows, which include biases in the stage-discharge relation or in the assumptions 

surrounding inflow estimates. At most forecast locations, the streamflows were 

estimated rather than observed. Estimated flows involve assumptions about unknown 

quantities, such as reservoir inflows, conditionally upon gaged quantities, such as 

reservoir outflows and storage levels. For example, evaporation is not considered in the 

mass balance relation from which inflows to the NYCDEP reservoirs are derived. While 

these errors may be small relative to the forecasting errors, some caution is needed in 

attributing errors and biases to any one source.  

As indicated in Figure 16, the biases in the streamflow forecasts vary with basin, 

forecast lead time, forcing source, and with the source of verifying observations. For 

example, when verifying against observed streamflows, the relative biases are 

consistently small in WALN6, but are relatively large in GILN6. In general the relative 

biases are smaller and more variable in the MARFC basins. In the NERFC basins, the 

forecasts consistently underestimate the verifying observations and simulations, except 

at the earliest forecast lead times.  

In Figure 6, the precipitation forecasts show a small underforecasting bias, which 

generally increases with increasing forecast lead time. The streamflow forecasts show a 

similar dependence on forecast lead time (Figure 16), with smaller biases at earlier lead 

times (for those basins with an underforecasting bias). Also, as indicated above, the 

precipitation forecasts, particularly the MEFP-CLIM forecasts, show a cyclicity in the 

RME and other verification statistics. This originates from the parameterization of the 

MEFP with canonical events, which attempt to capture the skill in the raw forcing 

forecasts at multiple temporal scales. In Figure 16, the MEFP-CLIM streamflow 

forecasts also show a cyclicity in the RME (Figure 16). While these variations in RME 

are small in absolute terms, they do not reflect any fundamental cyclicity in precipitation. 
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Rather, they originate from the parameterization of the MEFP and the estimation of 

those parameters with limited sample data. 

In general, the RME is similar whether verifying against observed or simulated 

flows, indicating that the hydrologic biases are relatively small. However, there are 

larger differences in some basins. For example, there is an over-forecasting bias of 

~10% at CCRN6, which originates from the hydrologic modeling rather than the forcing 

(Figure 16). In contrast, there is an underforecasting bias of ~20% at GILN6, which 

originates from a combination of the MEFP forcing and the hydrologic modeling; 

specifically, during the late spring and summer, where the streamflow forecasts 

consistently underestimate the observations (see Section 5.2.3). 

Figure 17 shows the correlations between the streamflow forecasts with MEFP-

CLIM and MEFP-GCC forcing against the corresponding observed and simulated 

streamflows. For the streamflow forecasts with MEFP-GCC forcing, the correlations are 

greatest during the first five days, particularly when verifying against simulated flows. 

This originates from the skill of the raw GEFS forecasts during the first week. The 

correlations then decline gradually over the long-range in most basins, as the initial 

conditions are progressively diluted and the forecasts approach the baseline skill of the 

long-range forcing (i.e. climatology). When using a common source of verifying 

observations, the forecasts with MEFP-GCC forcing generally show higher correlations 

than those with MEFP-CLIM forcing. Some persistence of skill from the GEFS should be 

expected beyond the medium-range, depending on basin characteristics, but these 

differences are small and are also impacted by sampling uncertainties. 

Notwithstanding errors in the streamflow observations and simulations, the 

impacts of the hydrologic uncertainties are greatest in MTRN6, MRNN6, GILN6 and, at 

early forecast lead times, in MTGN4. This is evidenced by lower correlations when 

verifying against observed streamflows than simulated streamflows (noting that 

correlation is insensitive to bias). In MRNN6 and GILN6, these differences are 

substantial and originate from a climatological bias during the late spring and early 
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summer, where the spring snowmelt is forecast to decline much more rapidly than 

observed (see Section 5.2.3). 

Figure 18 shows the mean CRPSS of the streamflow forecasts with MEFP-GCC 

forcing relative to those with MEFP-CLIM forcing. When verifying against simulated 

streamflows, the CRPSS reflects the contribution of the MEFP-GCC forcing without any 

hydrologic uncertainties and biases. The streamflow forecasts show the greatest skill 

during the first week, where the MEFP benefits from the GEFS forcing. The skill then 

declines progressively with increasing forecast lead time as the quality of the raw 

forcing from the GEFS and the CFSv2 declines. In keeping with the slightly higher 

correlations of the GCC streamflow forecasts (Figure 17), the CRPSS is generally 

positive between ~10-100 days. However, given the sampling uncertainties and the 

small magnitude of the CRPSS, this should not be over-emphasized. Moreover, it does 

not originate from the CFSv2 component of the MEFP, as the precipitation forecasts 

were shown to be unskillful beyond ~1 week (Figure 14a/b). Rather, it stems from 

hydrologic persistence; that is, persistence of the skill from the GEFS forecasts beyond 

one week, depending on basin characteristics.  

In principle, the hydrologic uncertainties and biases are independent of the 

meteorological uncertainties and biases and do not, therefore, depend on forecast lead 

time (assuming a stationary streamflow climatology). However, the relative contributions 

of the meteorological and hydrologic uncertainties do vary with forecast lead time 

(Figure 18). At early forecast lead times (but depending on basin conditions), much of 

the skill in the HEFS originates from the initial conditions in the hydrologic models. As 

the meteorological forecasts propagate through the hydrologic models, and the initial 

states are updated, the meteorological uncertainties become important. Thus, the 

potential for streamflow post-processing varies with forecast lead time. During the first 5 

days, the CRPSS is substantially higher when verifying the GCC streamflow forecasts 

against the simulated flows than the observed flows. As such, the EnsPost may 

contribute valuable skill in the first ~5 days (see Brown, 2013 also). During the long-

range, the scope for streamflow post-processing is reduced. Here, the background skill 

is inherently low and hydrologic persistence is also diminished. Under these conditions, 
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the benefits of post-processing will depend largely on the climatological biases in the 

streamflow forecasts. Since the hydrologic models are reasonably well-calibrated, at 

least for moderate and high flows, there is less scope for post-processing. However, the 

EnsPost may contribute valuable skill at low flows, where hydrologic persistence is 

generally stronger and the hydrologic biases are greater (see Section 5.2.3). In this 

context, the CRPS is a measure of integral error and, therefore, dominated by moderate 

and high flows. Also, Figure 18 does not show the marginal skill from streamflow post-

processing or approximate the specific contribution from the EnsPost (which also 

benefits from prior observed flows); it shows the expected contribution from the MEFP-

GCC in the absence of any hydrologic uncertainties and biases. Thus, further work is 

needed to establish the benefits of the EnsPost for long-range forecasting under varied 

conditions. 

The impacts of the hydrologic uncertainties and biases are greatest in MTGN4, 

where the CRPSS is much stronger at early forecast lead times when verifying against 

simulated flows. As indicated above, the local flows at Montague are modeled differently 

by MARFC than NYCDEP. Comparable flows were derived by routing the observed 

flows from Woodbourne and Oakland Valley to Montague and adding this upstream 

contribution to the local flows at Montague. Alongside the routing of observed flows, the 

hydrologic models were not explicitly calibrated with the streamflows from Oakland 

Valley or Woodbourne, so some residual hydrologic uncertainties and biases may be 

expected. 

5.2.2 Magnitude of streamflow 

Figure 19 shows the RME of the streamflow forecasts with forcing inputs from the 

MEFP-GCC and MEFP-CLIM when verified against the observed (O) and simulated (S) 

streamflows. The results are shown for a 5-day streamflow rate with a forecast lead time 

of 95-100 days. The precise lead time is not important, as the streamflow forecasts are 

similar to climatology beyond the medium-range. The RME is plotted for multiple 

streamflow thresholds and each threshold is expressed in terms of its climatological 

probability of exceedence. The threshold values are plotted on a non-linear (probit) 
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scale, but are labelled with actual probability. For example, 0.1 denotes the 5-day 

streamflow rate that is exceeded, on average, only once in every 50 days (i.e. 10 

periods of 5 days). The origin of each curve denotes the unconditional bias in the 

streamflow forecasts; that is, the RME of all verification pairs where the observed 

streamflow exceeds the lowest historical observation.  

In MARFC, the streamflow forecasts contain relatively small unconditional biases 

during the period 95-100 days, with a slight underforecasting bias at NVXN6 and a 

slight overforecasting bias at WALN6, CCRN6 and MTGN4 (versus the observed 

streamflow). In contrast, the streamflow forecasts in NERFC consistently underestimate 

the observed streamflow, both unconditionally and conditionally; that is, with increasing 

streamflow amount. While the unconditional biases are larger in NERFC than MARFC, 

the conditional biases are large in both RFCs. Indeed, the highest streamflow amounts 

are underestimated by up to 80%, on average. These conditional biases are further 

illustrated in Figure 20, which shows box plots of errors in the MEFP-GCC streamflow 

forecasts. Each box represents one ensemble forecast from the period 95-100 days. 

Selected quantiles of the forecasting errors are plotted together with the median error 

and range (extreme residuals) as whiskers. The boxes are arranged by increasing 

amounts of observed streamflow. As indicated in Figure 20, the MEFP-GCC streamflow 

forecasts consistently underestimate the moderate and high observed flows. This 

originates from a large conditional bias in the MEFP precipitation forecasts, particularly 

during the long-range (see Figure 11). Indeed, the MEFP-GCC precipitation forecasts 

are no more skillful than the MEFP-CLIM forecasts at 95-100 days and climatological 

forecasts are, by definition, conditionally biased.  

As indicated above, any separation between the RME for the observed and 

simulated flows implies that the streamflow forecasts are impacted by hydrologic biases 

(i.e. the separation denotes the difference between the simulated and observed flows). 

For those basins with a strong separation (WALN6, CCRN6, MTGN4, PTVN6 and 

GILN6), the difference is greater at low flows than high flows. While the hydrologic 

models do not target specific applications or flow conditions, the high flows receive 

particular scrutiny during model calibration, and the “Continuous API” model used by 
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MARFC (for CCRN6 and MTGN4) is less well-suited to dry conditions (Michael 

Thiemann, pers. comm.). At high flows, the conditional biases largely originate from the 

MEFP precipitation forecasts (Figure 11), and the separation between the RME for the 

observed and simulated flows is much smaller, i.e. the impacts of the hydrologic biases 

are smaller.  

Figure 21 shows the correlations between the ensemble mean of the streamflow 

forecasts with MEFP-GCC and MEFP-CLIM forcing against the corresponding observed 

and simulated streamflows. The correlations are shown by increasing streamflow 

threshold. As above, the thresholds are labelled by their climatological probabilities of 

exceedence. In general, the correlations decline with increasing observed streamflow. 

The greatest correlations occur under dry conditions, when the HEFS forecasts benefit 

from hydrologic persistence. At moderate to high streamflow rates, the GCC forecasts 

are slightly more correlated with the observed and simulated flows than the CLIM 

forecasts. However, as indicated above, this originates from the persistence of the 

GEFS forecasts, rather than any meaningful skill from the CFSv2. Moreover, the 

differences between the GCC and CLIM forecasts are probably not beyond the range of 

sampling uncertainty.  

The correlations between the streamflow forecasts and observations generally 

decline with increasing streamflow rate, but increase at moderately high flows in several 

basins when verified against simulated flow. While the correlations are insensitive to 

hydrologic bias (in the mean sense), they are sensitive to hydrologic uncertainties and 

higher-order biases. As indicated in Figure 21, the hydrologic uncertainties have a 

significant impact at high flows, with substantial differences between the correlations for 

the observed and simulated flows in WALN6, CCRN6, MTGN4, MTRN6, MRNN6 and 

GILN6.   

Figure 22 shows the mean CRPSS of the MEFP-GCC streamflow forecasts 

against those with MEFP-CLIM forcing. The streamflow forecasts are verified against 

both observed and simulated flows. Verification against simulated flows shows the 

expected skill of the streamflow forecasts in the absence of hydrologic uncertainties and 
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biases. As indicated in Figure 22, the streamflow forecasts with MEFP-GCC forcing 

show little or no skill when compared to those with MEFP-CLIM forcing for the period 

95-100 days. At high streamflow rates, any benefits accrued from the calibration of the 

hydrologic models are offset by the large conditional biases in the MEFP precipitation 

forecasts. Indeed, the higher correlations between the streamflow forecasts and 

simulations (Figure 21) do not translate into higher CRPSS, as the forcing biases 

dominate at high streamflow thresholds.     

While the streamflow forecasts with MEFP-GCC forcing are no more skillful at 

95-100 days than those with MEFP-CLIM forcing, both are substantially more skillful 

than streamflow climatology. Figure 23 shows the Relative Operating Characteristic 

(ROC) of the streamflow forecasts with MEFP-GCC forcing. The results are shown for a 

headwater and an outlet in each RFC and for several streamflow thresholds (denoted 

by their climatological probabilities). The ROC curves were fitted under an assumption 

of bivariate normality between the Probability of Detection (PoD) and the Probability of 

False Detection (PoFD) (Appendix B). An unskillful forecast has an equal chance of 

correctly detecting an occurrence as incorrectly detecting a non-occurrence. Thus, a 

forecasting system is more discriminatory than climatology if the POD exceeds the 

PoFD. As indicated in Figure 23, the streamflow forecasts with MEFP-GCC forcing 

clearly improve upon climatology. However, the streamflow forecasts with MEFP-CLIM 

forcing are equally discriminatory (not shown). Thus, while the streamflow forecasts with 

MEFP-GCC forcing do not improve upon those with MEFP-CLIM forcing, they do 

improve upon sample climatology. This is understandable, as the MEFP-CLIM samples 

historical observations of temperature and precipitation conditionally upon forecast valid 

date. Also, at early forecast lead times, the initial conditions of the hydrologic models 

account for a substantial fraction of the overall skill in the streamflow forecasts.  

5.2.3 Season 

Figure 24 shows the monthly climatologies of the observed and forecast 

streamflow rates at a 5-day accumulation volume. The ensemble mean was computed 

for each forecast whose valid time occurred within a given calendar month. Figure 24 
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shows the overall mean of those values. The conditional mean was then determined 

separately for each forecast lead time and the range of those values is also plotted in 

Figure 24; it shows the variability of the average across all forecast lead times. The 

average observed streamflow is also shown for paired forecasts whose valid time 

occurred within a particular month. As indicated in Figure 24, the average forecast 

streamflows are generally too high in the summer and, to a lesser extent, too low 

around the spring peak in April. These patterns are likely to originate from a conditional 

bias that depends on streamflow rate, rather than season directly, as the hydrologic 

models are calibrated to provide reliable forecasts of high flows (spring) but may 

overestimate low flows (summer). However, in MRNN6 and GILN6, the spring snowmelt 

is forecast to decline much more rapidly than observed and the simulated flows also fail 

to capture the observed flows (Figure 24). The latter points to weaknesses in the 

calibration of the hydrologic models at MRNN6 and GILN6.  

Figure 25a and Figure 25b show the mean CRPSS of the streamflow forecasts 

with MEFP-GCC forcing against those with MEFP-CLIM forcing for MARFC and 

NERFC, respectively. The CRPSS is shown for the overall period, together with the 

“wet” and “dry” seasons separately (see Figure 2a/b for definitions of the seasons). 

During the first week, the streamflow forecasts are generally more skillful in the wet 

season than the dry season, both in MARFC and NERFC. However, in keeping with the 

MEFP precipitation forecasts (Figure 14a/b), the streamflow forecasts show no 

appreciable skill in either season beyond one week. In all cases, the streamflow 

forecasts show significantly higher CRPSS during the first week when verified against 

simulated streamflow than observed streamflow. This is indicative of the hydrologic bias 

and uncertainty impacting the skill from the MEFP forcing (see above also).  

5.2.4 Aggregation period 

Figure 26a and Figure 26b show the RME, correlation and CRPSS of the 

streamflow forecasts with MEFP-GCC forcing in MARFC and NERFC, respectively. The 

results are shown for three aggregation periods, namely 5-, 10- and 30- days. In 

keeping with the MEFP precipitation forecasts (Figure 15a/b), the relative bias of the 



47 of 128 
 

streamflow forecasts is constant with increasing aggregation period. In the NERFC 

basins, there is an underforecasting bias of 5-15% at all aggregation periods, whereas 

the relative bias is smaller and more variable in the MARFC basins.  

Unlike the RME, the correlations are highly sensitive to aggregation period, as 

random errors are effectively canceled out by averaging. Crucially, an increase in 

correlation will not translate into greater skill if the baseline forecast shows a similar 

increase in correlation (other factors being equal). Indeed, there is no appreciable skill 

in the aggregated forecasts at longer timescales, either when averaging over 10- or 30-

day periods (Figure 26 a/b). The higher skill during the first 30-day period should not be 

confused as a gain in skill from the aggregation itself. Rather, it is a plotting artifact that 

stems from the averaging of skill from the GEFS period across the first 30 days. The 

results were similar when verifying against simulated streamflows (not shown).  

6. Discussion and conclusions 

Ensemble forecasts of precipitation, temperature and streamflow were generated 

with the NWS HEFS for a 15 year period between 1985 and 1999. The hindcasts were 

produced for 22 locations and verification was conducted at eight locations, comprising 

four basins in MARFC and four in NERFC. The basins include a range of headwater 

and downstream locations within the Delaware and Catskill systems. They are subject 

to extensive river regulations, including diversions to the NYC municipal water supply. 

The four basins in MARFC comprise three locations on the Delaware River, namely 

Walton (WALN6), Callicoon (CCRN6) and Montague (MTGN4), and one location on the 

Neversink River, namely the Neversink Reservoir (NVXN6). The four basins in NERFC 

comprise two locations on the Esopus Creek, namely Mount Trempor (MTRN6) and 

Mount Marion (MRNN6), and two locations on the Schoharie Creek, namely Prattsville 

(PTVN6) and the Gilboa Dam (GILN6). Mount Trempor and Mount Marion are 

separated by the Ashoken Reservoir (ASEN6), while the Schoharie Reservoir lies 

between Prattsville and the Gilboa Dam. The HEFS hindcasts were commissioned by 

the NYCDEP, in order to support the initial implementation of the HEFS at MARFC and 
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NERFC and to improve the management of risks to water quantity and quality 

objectives in the NYC area.  

Precipitation and temperature hindcasts were produced with the MEFP using 

“raw” precipitation and temperature forecasts from multiple sources. Ensemble 

forecasts from NCEP’s Global Ensemble Forecast System (GEFS) were used for the 

period 1-15 days. Single-valued forecasts from the Climate Forecast System Version 

2.0 (CFSv2) were used for the period 16-270 days. For the period 271-330 days, and as 

a reference forecast for the period 1-330 days, climatological ensembles were derived 

by resampling the historical MAT and MAP. Specifically, the MAP and MAT were 

resampled in a moving window of, respectively, 30 days and 15 days either side of the 

forecast valid date. A smooth probability distribution was then fitted to the resampled 

observations and ensemble members were derived from the fitted distribution. The 

GEFS, CFSv2 and resampled climatology are collectively denoted GCC, while 

resampled climatology is denoted CLIM. 

The streamflow forecasts were produced with the Community Hydrologic 

Prediction System (CHPS). In NERFC, the hydrologic models comprise the Sacramento 

Soil Moisture Accounting model (SAC-SMA) and the Snow Accumulation and Ablation 

Model (SNOW-17). In MARFC, the SNOW17 model is used together with an empirical 

hydrologic model, based on the Antecedent Precipitation Index (API), but adapted for 

continuous simulations (the so-called “Continuous API” model). The precipitation, 

temperature and streamflow forecasts were verified with the Ensemble Verification 

System (Brown et al., 2010b). The forecasts were verified conditionally upon season, 

forecast lead time, magnitude of the observed and forecast variables, and aggregation 

period. The raw streamflow forecasts were verified against simulated streamflows, as 

well as observed streamflows, in order to separate the meteorological uncertainties from 

the total (meteorological and hydrologic) uncertainties. 

In general, the MEFP-GCC precipitation forecasts are both reliable and skillful 

during the short-range (1-5 days). This largely originates from the skill in the raw GEFS 

precipitation forecasts. However, the reliability of the MEFP-GCC forecasts implies that 
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the MEFP is pre-processing (downscaling and bias-correcting) the raw inputs 

adequately. Indeed, the MEFP maintains or improves upon the correlations between the 

raw forcing from the GEFS and CFSv2 and the corresponding observed precipitation 

amounts. Likewise, the MEFP-GCC temperature forecasts are reliable and skillful 

during the short-range. Beyond the first 1-5 days, the skill of the MEFP-GCC 

precipitation forecasts declines rapidly, while the temperature forecasts remain skillful 

throughout the medium-range. However, neither the precipitation nor the temperature 

forecasts are skillful beyond ~2 weeks. This originates from a lack of skill in the raw 

CFSv2 forecasts and, beyond 270 days, from resampled climatology, which is 

inherently unskillful. Indeed, for the period from ~15-330 days, the MEFP-GCC 

precipitation and temperature forecasts closely resemble the MEFP-CLIM forecasts. For 

example, the MEFP-GCC forecasts show similar conditional biases to the MEFP-CLIM 

forecasts. This includes a substantial underestimation of the largest precipitation totals 

and a smaller conditional bias in the temperature forecasts, whereby the lowest and 

highest observed temperatures are over- and under-estimated, respectively. While the 

MEFP precipitation forecasts are generally no worse than sample climatology, the 

forecasts of Probability of Precipitation (PoP) are consistently worse than climatology. 

This originates from a lack of reliability in the MEFP forecasts of PoP. Similar biases 

were observed when calibrating the MEFP with NCEP’s Global Forecast System 

(Brown, 2013). Again, this suggests a problem in the modeling, estimation, or 

implementation of the MEFP for PoP and light precipitation amounts.  

The lack of skill in the MEFP-GCC precipitation and temperature forecasts 

suggests that the MEFP may not improve upon the existing operational practice for 

long-range forecasting, which relies on climatological forcing (ESP). Nevertheless, 

except for PoP and light precipitation, the MEFP-GCC forecasts are no worse than 

climatology. This is an important attribute of any bias-correction technique whose 

unconditional distribution is climatology. Without skillful predictors, the MEFP cannot 

improve upon climatology; it can only issue forecasts that are unconditionally unbiased. 

Enhancements to the MEFP may consider additional predictors. For example, given the 

strong autocorrelations in temperature, the MEFP may benefit from an autoregression 

of the future MAT on the most recently observed MAT, as well as the raw forecast. 
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While precipitation generally shows much weaker autocorrelations, auxiliary variables, 

such as relative humidity, may improve forecast quality over the short- to medium-range 

(Applequist et al., 2002; Hamill and Whitaker, 2006). For seasonal and long-range 

prediction, the MEFP may benefit from auxiliary climate information, such as the CPC’s 

climate outlooks used in “conditional ESP” (Perica, 1998), or indices of teleconnection 

patterns, such as the El-Niño Southern Oscillation (ENSO), the Pacific-North American 

teleconnection (PNA) or the Pacific Diurnal Oscillation (PDO). Again, in the absence of 

skillful predictors, the ability to provide unbiased forecasts is an important attribute of 

the MEFP. Indeed, seasonal water supply and other long-range applications are known 

to benefit from climatological ensemble forecasts (Wood et al., 2005; Georgakakos et 

al., 2010; Schepen et al., 2012; Robertson and Wang, 2013). Ultimately, the HEFS will 

replace ESP for operational streamflow forecasting beyond the medium-range. Thus, 

the HEFS and ESP should be compared through hindcasting and verification (see 

below). Finally, the lack of skill in these basins does not imply similar performance in 

other regions or time periods, where the CFSv2 may contribute valuable skill (e.g. Yuan 

et al., 2013), or in slow-responding basins more generally, where the skill from the 

GEFS may persist for longer periods in the streamflow forecasts. 

As well as producing reliable forecasts of temperature and precipitation at 

discrete times and locations, the MEFP should maintain realistic patterns in space and 

time and between variables. These statistical dependencies and multi-scale properties 

are important for decision making. In general, decisions about water resources are 

based on products derived from hydrologic forecasts, such as aggregated quantities, or 

on additional modeling studies or rules embedded in decision support systems. As with 

hydrologic modeling, these applications involve uncertainty propagation, for which 

space-time covariability is important (e.g. Clark et al., 2004). In this context, important 

attributes of the MEFP include the ability to: 1) preserve space-time and cross-variable 

relationships via the Schaake Shuffle; 2) derive skillful predictors at multiple space-time 

scales using canonical events; and 3) provide seamless predictions across multiple 

forecast horizons, depending on the raw forcing available (see Appendix A). Currently, 

the MEFP does not smooth the transition between raw forcing sources, although the 

underlying climatological distribution should be preserved, both marginally and in terms 
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of the joint relationships (via the Schaake Shuffle). In practice, some discontinuities 

were observed in the verification statistics between 270-272 days, where the CFSv2 

transitions to resampled climatology. This may originate from sampling and parameter 

uncertainty, including uncertainties introduced by canonical events (see below). Indeed, 

the calibration requirements of the MEFP warrant further investigation. In terms of 

accounting for space-time covariability, the strengths and weaknesses of the Schaake 

Shuffle are described elsewhere (e.g. Clark et al., 2004). Anecdotally, the reliability and 

skill of the MEFP forecasts is the same or better at aggregated scales. This is 

consistent with the temporal autocorrelations being modeled adequately. Nevertheless, 

further investigation is warranted into the limitations of the Schaake Shuffle, particularly 

for extreme events, and whether, at the basin-scale, other empirical structures, such as 

high-resolution forecasts or conditional climatologies, can better predict the multivariate 

relationships (Shefzik et al., 2013).  

In operational forecasting, there is always a trade-off between model complexity, 

or the need to capture salient features of the observations, and practicality, or the need 

for a model whose parameters can be estimated reliably. It is questionable whether the 

current implementation of the MEFP, or the choice of calibration used in this study, 

manages this trade-off effectively. The MEFP uses canonical events to sequentially 

adjust the climatological probability distribution. Each canonical event comprises a 

separate model of the joint probability distribution of the forecasts and observations. A 

canonical event defines a window centered on the forecast valid date (into which data 

are pooled from all historical years), together with the period of aggregation for which 

the joint distribution is estimated. Given this complexity, including the scope for 

interactions between canonical events, parameter estimation is a significant concern. 

The sample size used to calibrate the MEFP was not particularly small (15 years) and is 

consistent, or more favorable, than the expected operational practice. However, artificial 

periodicities were clearly visible in some of the verification statistics (shown in Section 

5). They were also observed in the raw ensemble traces, particularly for temperature, 

which should otherwise vary smoothly. By experimenting with the parameterization of 

the MEFP, these discontinuities were found to originate from the choice of canonical 

events. The addition or removal of particular canonical events led to discontinuities in 
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the ensemble traces at corresponding timescales during the forecast horizon. Further 

investigation should establish where and when explicit modeling of the multi-scale 

properties is warranted. In such cases, they should be modeled smoothly, 

parsimoniously and with reasonably small sampling uncertainty, whether using 

canonical events or other techniques.  

The overall uncertainties and biases in the streamflow forecasts comprise a 

combination of meteorological uncertainties and biases (from the MEFP) and hydrologic 

uncertainties and biases. By verifying the streamflow forecasts against hydrologic 

simulations, the meteorological uncertainties and biases can be separated from the 

hydrologic uncertainties and biases. In regulated rivers, the hydrologic uncertainties and 

biases are complicated by a range of natural and engineering influences. Also, some 

regulations may be obscured from operational forecasters because they involve rapidly 

changing conditions, multiple actors or agencies or commercially sensitive information. 

When information about diversions and other regulations is available in real-time, 

statistical post-processors, such as the EnsPost, should ideally adjust the natural flows, 

as regulations are difficult to model statistically. Also, when available from a trusted 

source, such information may imply a deterministic adjustment to the natural flows. 

However, the total (regulated) flows are preferred for hindcasting and verification, as 

they include the residual uncertainties from upstream basins (e.g. from hydrologic 

routing, poorly defined regulations, and simplified reservoir modeling), which are 

important in operational forecasting. In practice, only the local contributions were 

verified here, as the historical regulations were not sufficiently resolved to include in 

hindcasting; they comprised an overall adjustment to the observed flow, rather than a 

separate contribution for each regulation. In future, the precise regulations should be 

archived by the RFCs, in order to allow for hindcasting and verification of the total flows 

in downstream basins.  

In keeping with the MEFP-GCC precipitation forecasts, the GCC streamflow 

forecasts are substantially more skillful than the climatological forecasts during the first 

week. Beyond the short-range, they are no less skillful than the climatological forecasts. 

Also, the streamflow forecasts with climatological forcing, as well as those with GCC 
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forcing, are consistently more skillful than sample climatology (e.g. in terms of ROC 

area). In general, the hydrologic biases are more important under low flow conditions, 

where the streamflow forecasts systematically over-estimate the observed flows, 

particularly in CCRN6 and MTGN4. While the hydrologic models do not target specific 

applications or flow conditions, the high flows receive particular scrutiny during model 

calibration, and the Continuous API model used by MARFC (for CCRN6 and MTGN4) is 

less well-suited to dry conditions. Nevertheless, the hydrologic uncertainties are also 

important for moderate and high streamflows. Indeed, in WALN6, CCRN6, MTGN4, 

MTRN6, MRNN6 and GILN6, the correlations are substantially higher when verifying 

against simulated flows than observed flows. However, for long-range forecasting, the 

meteorological biases are more important than the hydrologic biases, as the MEFP-

GCC precipitation forecasts resemble the MEFP-CLIM forecasts beyond the short-

range. Climatology is, by definition, conditionally biased and the MEFP precipitation 

forecasts underestimate the heaviest precipitation amounts by up to ~80% at longer 

forecast lead times.  

Further work is needed to compare the long-range streamflow forecasts from the 

HEFS against the operational streamflow forecasts from the RFCs, which include ESP 

and statistical modeling on monthly and seasonal timescales. Given the lack of skill in 

the CFSv2, the opportunities to improve on ESP may appear limited. However, as 

indicated above, this does not imply similar performance in other regions or time 

periods. Also, some RFCs may benefit from the use of auxiliary variables, whether from 

seasonal climate outlooks or other large-scale climate indices (for a list of indices, see 

http://www.esrl.noaa.gov/psd/data/climateindices/list/, accessed 10th September 2013). 

For example, in comparing ESP with streamflow forecasts driven by NCEP’s Global 

Spectral Model (GSM), Wood et al. (2005) found practically no benefits of the GSM over 

ESP. However, when selecting the GSM forecasts conditionally upon ENSO strength, 

they found a significant improvement in forecast quality during the autumn and winter 

months, mainly in California but also in the Pacific Northwest and the Great Basin. 

Elsewhere, Yuan et al. (2013) found that the CFSv2 produced significantly more skilful 

hydrologic forecasts than ESP, both unconditionally and conditionally on ENSO 

strength, but these improvements generally only materialized after streamflow post-

http://www.esrl.noaa.gov/psd/data/climateindices/list/
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processing and were strongly dependent on the variables, seasons and locations 

considered. Alongside the resampling procedure adopted by the MEFP (Appendix A), 

there are other notable differences between the HEFS and ESP. For example, some 

RFCs incorporate adjustments or “MODs” into the hydrologic model states from which 

the ESP forecast are produced operationally. The latter is problematic for the HEFS 

(and more generally) if the MODs are subjective or not otherwise reproducible. Whether 

the HEFS can improve on ESP will also depend on basin characteristics. For headwater 

basins with longer memory (e.g. due to snow accumulation or soil characteristics), and 

for downstream basins in general, the skill from the GEFS may persist for longer 

periods. Also, the EnsPost should eliminate any unconditional biases and possibly 

reduce the conditional biases where the streamflow correlations are strong. For 

example, at MRNN6 and GILN6, the observed streamflows were consistently 

underestimated during the late spring and early summer. In CCRN6 and MTGN4, the 

observed streamflows were consistently overestimated during the summer months.  

Scientific evaluation of the HEFS is an ongoing activity; it requires a sustained 

effort and a dedicated infrastructure for hindcasting, verification and archiving of data, 

as well as communicating verification concepts and results. This study covers only a 

small fraction of the locations, conditions and forecasting scenarios under which the 

HEFS will be used operationally. In order to guide a broader range of applications and 

to establish a baseline for future enhancements, more comprehensive hindcasting and 

verification is needed. This should be conducted across all RFCs, for a range of forcing 

inputs, and for a broader range of river basins, including regulated rivers and outlets. 

Furthermore, there is a need to evaluate decision support systems and other models 

that rely on the HEFS (e.g. of water quality and ecology). Such applications will show 

varying sensitivities to the HEFS forecasts and may lead to targeted improvements in 

the HEFS and to new ensemble products.  
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7. Glossary of terms and acronyms 

ADJUST-Q – A procedure implemented within the CHPS to “blend” an operational 

streamflow forecast with the most recent streamflow observation. A rudimentary 

form of Data Assimilation that relies on hydrologic persistence 

Aggregation and Disaggregation – forming larger or smaller control volumes, 

respectively 

Bias – A systematic difference between an estimate of some quantity and its “true” 

(generally meaning observed) value 

BS – Brier Score. The average squared deviation between the predicted probabilities 

that a discrete event occurs (such as flooding) and the corresponding observed 

outcome (0 or 1) 

BSS – Brier Skill Score. The fractional reduction in the BS of one forecasting system 

relative to another. A value of 1 denotes perfect skill, 0 indicates that the forecasting 

systems are equivalent, and a negative value denotes a loss of skill 

Calibration – A process of estimating model parameters based on observations and 

corresponding (raw) predictions. In post-processing and verification, calibration has 

a second meaning, namely to correct for biases in ensemble forecasts by increasing 

their reliability. See Calibration-refinement  

Calibration-refinement – One factorization of the joint probability distribution of the 

forecasts and observations, obtained by conditioning on the forecast variable. 

Calibration is also known as reliability or Type-I conditional bias. See Likelihood-

base-rate 

Canonical Event – a partitioning of time scales in order to account for the varying 

information content of the different forcing inputs to MEFP (e.g., RFC QPF/QTF, 

GFS, and CFSv2)    
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CFSv2 – Climate Forecast System. A fully coupled model representing the interaction 

between the Earth's oceans, land and atmosphere that generates forecasts from 1-

270 days. See also: http://cfs.ncep.noaa.gov/  

CHPS – The Community Hydrologic Prediction System (pronounced “chips”)   

Climatology – The science that deals with average weather conditions over long 

periods. Climatology also refers the historical record of observations (e.g. mean 

areal averages of actual temperature and precipitation) used to drive a model 

Conditional bias – A bias in the forecasts over a subsample of the verification pairs. 

The subsample may originate from the application of one or more conditions to the 

paired data, such as observed values that exceed a given threshold. See Bias 

Continuous API – Continuous Antecedent Precipitation Index. An empirical hydrologic 

model used by the Middle Atlantic RFC  

Correlation coefficient – Pearson product-moment correlation coefficient. The 

covariance of two variables divided by the product of their standard deviations. A 

degree of linear association between two variables, with -1 and 1 denoting perfect 

negative and positive association, respectively, and 0 denoting the absence of a 

linear association (but not necessarily a non-linear association)  

CRPS – Continuous ranked probability score. The integral square difference between a 

forecast probability distribution and the observed outcome. It is typically averaged 

over many such cases (known as the “mean CRPS”) 

CRPSS – The continuous ranked probability skill score. The fractional reduction in 

CRPS of one forecasting system when compared to another (the reference or 

baseline). A value of 1 denotes perfect skill, 0 indicates that the forecasting systems 

are equivalent, and a negative value denotes a reduction in skill 

DA – Data Assimilation. A procedure for updating model states (and possibly other 

variables) with recent observations, thereby improving forecasts. 

http://cfs.ncep.noaa.gov/
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Disaggregation – (see aggregation/disaggregation) 

Discrimination – Discrimination is an attribute of forecast quality that measures the 

sensitivity of the forecast probabilities to different observed outcomes. A forecasting 

system is discriminatory if its forecast probabilities vary for different observed 

outcomes. Discrimination is insensitive to conditional bias, i.e. a forecasting system 

may be discriminatory but have large Type-II conditional biases. A component of the 

Likelihood-base-rate factorization 

Ensemble Forecast – A collection of equally likely predictions of the future states of the 

atmosphere or hydrologic system, based on sampling of the different sources of 

uncertainty and propagating them through a modeling system (such as CHPS). An 

“ensemble trace” comprises two or more forecast lead times 

EnsPost – Ensemble Post-processor. A software tool and a statistical technique that 

accounts for hydrologic uncertainties and biases separately from the forcing 

uncertainties and biases 

ESP – Ensemble Streamflow Prediction. In NWS operations, this has the specific 

meaning of forcing the NWS River Forecast System with a sample of observations 

from the same dates in previous years, i.e. climatological forcing. Some RFCs have 

augmented the original ESP algorithms to account for additional information  

EVS – Ensemble Verification System. A software tool for verifying ensemble forecasts  

Forcings – The model inputs (e.g., precipitation and temperature) that drive or “force” a 

hydrologic model 

Forecast Issue Time – The date/time at which a forecast is issued, also known as “T0.” 

This differs from the Forecast Valid Time 

Forecast Lead time – The difference between the Forecast Valid Time and the 

Forecast Issue Time 

Forecast Valid Time – The time at which a forecast is valid 
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GEFS - Global Ensemble Forecast system – An ensemble forecasting system that 

uses an enhanced version of the GFS  

GFS – Global Forecast System. An operational NWP model developed by NCEP. The 

operational GFS is run four times daily, with forecasts out to 384 hours. The GFS 

was also “frozen” in 1997 (the “frozen GFS”) and used to generate hindcasts 

beginning in 1979, which are used to calibrate the MEFP. The frozen GFS is a 

legacy model and operational forecasts will end in 2013. See GEFS also 

HEFS – Hydrologic Ensemble Forecast Service. Also, HEFSv1, the first version of the 

HEFS 

HEP – Hydrologic Ensemble Processor. A component of the HEFS implemented within 

the CHPS. The HEPS integrates a finite number of “equally likely” traces of 

precipitation and temperature through the NWS hydrologic models  

HEPS – Hydrologic Ensemble Prediction System. The general approach of which the 

HEFS is one example 

Hindcast – A retrospective forecast or reforecast. A forecast begins on each of several 

historical days. Reforecast is a term frequently used for weather models 

Lag/K – A simple technique for routing an inflow hydrograph downstream, originally 

developed as a graphical routing procedure. The outflow hydrograph comprises one 

or both of a time lag and attenuation (K) of the input hydrograph   

Likelihood-base-rate – The second of two factorizations of the joint probability 

distribution of the forecasts and observations, obtained by conditioning on the 

observed variable. See Calibration-refinement 

Long-range – The latter portion of the forecast time horizon, generally interpreted as 

more than ~14 days, where the forecast skill is lowest. See short-range and 

medium-range also.  

MAP – Mean Areal Precipitation over a basin/watershed  



59 of 128 
 

MAT – Mean Areal Temperature over a basin/watershed   

Medium-range – The middle portion of the forecast time horizon, generally interpreted 

as ~5-14 days. See short-range and long-range also.  

MEFP – Meteorological Ensemble Forecast Processor. A software tool and statistical 

technique that produces ensemble forecasts of temperature and precipitation using 

(single-valued) operational forecasts from NWP models. The forecast spread is 

derived from historical information about forecast errors 

MOS – Model Output Statistics. A statistical technique for bias-correcting weather and 

water forecasts (e.g. Hydrologic MOS or HMOS) 

NQT – Normal Quantile Transform. A transformation made to a data sample so that it 

follows a normal probability distribution (i.e. so that the histogram of values would 

appear normal) 

NWP – Numerical Weather Prediction 

NWSRFS – National Weather Service River Forecast System.  Replaced by CHPS 

NYCDEP – New York City Department of Environmental Protection 

PoD – Probability of Detection. The probability that a discrete event is detected by an 

ensemble forecasting system. An event is detected when the forecast probability 

exceeds a pre-defined threshold and the event occurs. In general, a high threshold 

will reduce the PoFD, but may also reduce the PoD. Hence, the PoD and PoFD are 

typically compared in a ROC diagram  

PoFD – Probability of False Detection. The probability that a discrete event is incorrectly 

detected by an ensemble forecasting system. An event is incorrectly detected when 

the forecast probability exceeds a pre-defined threshold and the event does not 

occur. In general, a low threshold will increase the PoD, but may also increase the 

PoFD. Hence, the PoD and PoFD are typically compared in a ROC diagram 
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PoP – Probability of precipitation. The probability that a non-zero precipitation amount 

will occur. 

Reforecast – See Hindcast. Commonly used in the atmospheric sciences. 

Reliability (Type-I conditional bias or calibration) – A flood forecasting system is 

“reliable” if flooding occurs with the same relative frequency as the forecast 

probabilities imply. For example, flooding should occur 20% of the time when the 

forecast probability is 0.2. An attribute of forecast quality and a component of the 

Calibration-refinement factorization 

Resampled climatology – A procedure for generating an ensemble of precipitation and 

temperature forecasts from the MEFP using historical observations. The 

observations are resampled in a moving window either side of the forecast valid date 

across all historical years. A smooth probability distribution is then fitted to the 

resampled observations and ensemble members are derived from the fitted 

distribution 

Resolution – Should not be confused with spatial or temporal resolution. Resolution is 

an attribute of forecast quality that measures the sensitivity of the observed 

outcomes to differences in the forecast probabilities of those outcomes. Resolution 

is insensitive to conditional bias, i.e. a forecasting system may be resolved but 

unreliable.  A component of the Calibration-refinement factorization 

RME – Relative Mean Error. The average fractional bias of the ensemble mean forecast 

or the mean error of the ensemble mean, divided by the mean observed value. 

Positive, zero, and negative values denote a positive, zero, and negative bias, 

respectively  

ROC – The Relative Operating Characteristic. Measures the ability of a forecasting 

system to correctly predict (or “discriminate”) the occurrence of an event (PoD) while 

avoiding too many incorrect forecasts when it does not occur (PoFD)   
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SAC-SMA – The Sacramento Soil Moisture Accounting Model. A conceptual hydrologic 

model used in CHPS.    

Sharpness – Sharpness is an attribute of the forecast variable used in verifying 

ensemble forecasts. Specifically, it refers to the variability (e.g. measured by the 

variance) of the forecast probabilities.  Sharpness may be considered desirable 

insofar as decisions may be hampered if a forecast lacks sharpness (i.e. comprises 

a larger range of possibilities), but sharpness is not desirable at the expense of other 

attributes of forecast quality, such as reliability.  A component of the Likelihood-

base-rate factorization 

Short-range – The early part of the forecast time horizon, generally interpreted as ~1-5 

days or less, where the forecast skill is highest. See medium-range and long-range 

also.  

Simulation – A hydrologic prediction based on observed temperature and precipitation 

(as distinct from a forecast, which comprises forecast inputs) 

Skill – The fractional improvement of one forecasting system relative to a baseline. The 

measure used for skill could vary (e.g. the Brier Skill Score uses the Brier Score).  

SNOW-17 – Snow Accumulation and Ablation Model 17. A conceptual hydrologic model 

for snow processes, incorporated in the CHPS  

SREF – Short-Range Ensemble Forecast (SREF) system. An NCEP model that issues 

short-range ensemble forecasts 

Support – Synonymous with scale. The temporal or spatial control volume. 

T0 – Forecast issue (System/Basis) Time. The time at which a forecast is produced 

Type-II conditional bias – A bias in the ensemble forecasts when viewed conditionally 

upon the observed variable. For example, a bias in the forecast ensemble mean 

when the observations exceed a given threshold. An attribute of forecast quality and 

a component of the Likelihood-base-rate factorization 
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Uncertainty – An attribute of the Calibration-refinement factorization, not to be 

confused with the more general concept of “uncertainty.” Specifically, it refers to the 

variability (e.g. measured by the variance) of the observations 

UTC – Coordinated Universal Time, also known as Zulu (Z) time and synonymous with 

Greenwich Mean Time (GMT). Forecasts from the HEFSv1 are issued daily at 12Z   

WPC – Weather Prediction Center, formerly the Hydrometeorological Prediction Center 

XEFS – Experimental Ensemble Forecast System. The experimental precursor to the 

HEFS 
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9. Tables 

Table 1: characteristics of the study basins  

Characteristic 

MARFC NERFC 

NVXN6 WALN6 CCRN6 MTGN4 MTRN6 MRNN6 PTVN6 GILN6 

Lat. of outlet 41.8269 42.1661 41.7567 41.3092 42.0142 42.0378 42.3194 42.3558 

Long. of outlet -74.6389 -75.1403 75.0578 74.7956 74.2708 73.9725 74.4369 74.4450 

Lat. of GEFS node 41.8985 42.3667 41.8985 41.4304 42.3667 42.3667 42.3667 42.3667 

Long. of GEFS node -74.5312 -75.0000 -75.0000 -74.5312 -74.5312 -74.0625 -74.0625 -74.5312 

Lat. of CFS node 42.0471 42.0471 42.0471 42.0471 42.0471 42.0471 42.0471 42.0471 

Long. of CFS node -75.0000 -75.0000 -75.0000 -75.0000 -74.0625 -74.0625 -74.0625 -74.0625 

Area (total, km2) 240 860 4714 9013 497 1085 614 816 

Mean elev. (m) 209.8 180.1 232.4 100.5 169.8 138.4 197.4 172.8 

Annual P (mm) 1308 1049 1117 1157 1463 1268 1101 956 

Annual PE (mm) 692 692 692 782 622 701 633 643 

P/PE 1.89 1.52 1.61 1.48 2.35 1.81 1.74 1.49 

Annual runoff (mm) 932 588 489 527 1280 590 380 710 

Runoff coefficient 0.71 0.56 0.44 0.46 0.88 0.47 0.35 0.74 

P = precipitation  
PE = potential evaporation 

Table 2: indices of verifying observations (day of year) for different forecast lead times and multiple T0s 

T0 (day 
of year) 

Forecast lead time (days) 

1 2 3 4 5 6 7 8 9 10 11 … 

1 2 3 4 5 6 7 8 9 10 11 12 … 

6 7 8 9 10 11 12 13 14 15 16 17 … 

11 12 13 14 15 16 17 18 19 20 21 22 … 

16 17 18 19 20 21 22 23 24 25 26 27 … 

21 22 23 24 25 26 27 28 29 30 31 32 … 

26 27 28 29 30 31 32 33 34 35 36 37 … 

31 32 33 34 35 36 37 37 39 40 41 42 … 

… … … … … … … … … … … … … 
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10. Figures 

Figure 1: the study area, comprising four basins in MARFC and four basins in NERFC (highlighted), together with the surrounding 

basins. The MARFC basins include: WALN6 (A), NVXN6 (B), CCRN6 (C) and MTGN4 (D). The NERFC basins include: GILN6 (E), 

PTVN6 (F), MTRN6 (G) and MRNN6 (H). 
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Figure 2a: Daily averages of temperature, precipitation and runoff by calendar month for each study basin in MARFC. Locations 

MTRN6 and PTVN6 in NERFC each comprise two sub-basins; the meteorological variables are averaged over these sub-basins, 

weighed by basin area. 
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Figure 2b: Daily averages of temperature, precipitation and runoff by calendar month for each study basin in NERFC. Locations 

MTRN6 and PTVN6 each comprise two sub-basins; the meteorological variables are averaged over these sub-basins, weighed by 

basin area. 
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Figure 3: topology of the forecast locations for MARFC and NERFC. The shaded boxes denote the eight locations considered in 

this study. Mount Trempor (MTRN6) receives diverted flows from the Schoharie Reservoir (GILN6). In practice, GFRY is modeled as 

part of BRGN6. 
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Figure 4: schematic of the flow pathways and regulations associated with the Ashoken Reservoir in NERFC.  
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Figure 5: Correlation of the ensemble mean forecast and observed precipitation amounts by forecast lead time for each source of 

forcing from the MEFP, namely resampled climatology (CLIM) and GEFS+CFSv2+CLIM (GCC), together with the raw forcing from 

the GEFS and CFSv2 for the period 1-270 days. 
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Figure 6: Relative mean error of the ensemble mean forecasts of precipitation by forecast lead time for each source of forcing from 

the MEFP, namely resampled climatology (CLIM) and GEFS+CFSv2+CLIM (GCC).  
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Figure 7: Mean Continuous Ranked Probability Skill Score (CRPSS) of the MEFP-CLIM and MEFP-GCC precipitation forecasts 

relative to sample climatology.  
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Figure 8: Mean Continuous Ranked Probability Skill Score (CRPSS) of the MEFP-CLIM and MEFP-GCC temperature forecasts 

relative to sample climatology. 
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Figure 9a: Brier Skill Score (BSS) of the MEFP-CLIM and MEFP-GCC precipitation forecasts relative to sample climatology. The 

results are shown for a forecast lead time of 95-100 days and for increasing amounts of observed precipitation. The precipitation 

thresholds are expressed as climatological probabilities and plotted on a probit scale (but labeled with actual probability). 
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Figure 9b: Calibration-refinement factorization of the Brier Skill Score (BSS) for the MEFP-CLIM and MEFP-GCC precipitation 

forecasts relative to sample climatology. The results are shown for a forecast lead time of 95-100 days and for increasing amounts 

of observed precipitation. The precipitation thresholds are expressed as climatological probabilities and plotted on a probit scale. 
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Figure 10: Brier Skill Score (BSS) of the MEFP-CLIM and MEFP-GCC temperature forecasts relative to sample climatology. The 

results are shown for a forecast lead time of 95-100 days and for increasing amounts of observed precipitation. The precipitation 

thresholds are expressed as climatological probabilities and plotted on a probit scale (but labeled with actual probability). 
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Figure 11: Box plots of errors in the MEFP precipitation forecasts with GCC forcing at a forecast lead time of 95-100 days. The 

boxes are ordered by increasing amounts of observed precipitation. 
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Figure 12: Box plots of errors in the MEFP temperature forecasts with GCC forcing at a forecast lead time of 95-100 days. The 

boxes are ordered by increasing observed temperatures. 
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Figure 13: Average observed and forecast precipitation rates by calendar month for each source of forcing from the MEFP (CLIM 

and GCC). The forecasts comprise the average of the ensemble means by calendar month across all forecast lead times, together 

with the range of the conditional averages by forecast lead time. The results are shown for basins in MARFC and NERFC. 
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Figure 14a: Mean Continuous Ranked Probability Skill Score (CRPSS) of the MEFP-GCC and MEFP-CLIM precipitation forecasts 

with sample climatology as the baseline. The results are shown for the basins in MARFC with a forecast lead time of 95-100 days 

and comprise the overall period and the wet and dry seasons separately.  
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Figure 14b: Mean Continuous Ranked Probability Skill Score (CRPSS) of the MEFP-GCC and MEFP-CLIM precipitation forecasts 

with sample climatology as the baseline. The results are shown for the basins in NERFC with a forecast lead time of 95-100 days 

and comprise the overall period and the wet and dry seasons separately. 
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Figure 15a: Selected verification metrics for the MEFP-GCC precipitation forecasts at three aggregation periods (5-, 10- and 30-

days) for basins in MARFC. 
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Figure 15b: Selected verification metrics for the MEFP-GCC precipitation forecasts at three aggregation periods (5-, 10- and 30-

days) for basins in NERFC. 
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Figure 16: Relative mean error of the streamflow forecasts (ensemble mean) with MEFP-GCC and MEFP-CLIM forcing against 

observed (O) and simulated (S) flows. 
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Figure 17: Correlation of the streamflow forecasts (ensemble mean) with MEFP-GCC and MEFP-CLIM forcing against observed 

(O) and simulated (S) flows.  
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Figure 18: Mean Continuous Ranked Probability Skill score (CRPSS) of the streamflow forecasts with MEFP-GCC forcing (GCC). 

The forecasts are verified against observed (O) and simulated (S) flows. The reference streamflow forecasts comprise forcing from 

the MEFP with resampled climatology as input. 
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Figure 19: Relative mean error of the MEFP-CLIM and MEFP-GCC streamflow forecasts when verified against observed (O) and 

simulated (S) flows. The results are shown for a forecast lead time of 95-100 days and for increasing streamflow thresholds. The 

thresholds are expressed as climatological probabilities and plotted on a probit scale (but labeled with actual probability). 
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Figure 20: Box plots of errors (forecast - observed) in the MEFP-GCC streamflow forecasts. The results are shown for a forecast 

lead time of 95-100 days. 
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Figure 21: Correlation of the MEFP-CLIM and MEFP-GCC streamflow forecasts (ensemble mean) against observed (O) and 

simulated (S) flows. The results are shown for a forecast lead time of 95-100 days and for increasing streamflow thresholds. The 

thresholds are expressed as climatological probabilities and plotted on a probit scale (but labeled with actual probability). 
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Figure 22: Mean CRPSS of the MEFP-GCC streamflow forecasts against those with MEFP-CLIM forcing using both observed (O) 

and simulated (S) flows. The results are shown for a forecast lead time of 95-100 days and for increasing streamflow thresholds. 

The thresholds are expressed as climatological probabilities and plotted on a probit scale (but labeled with actual probability). 



98 of 128 
 

Figure 23: Relative Operating Characteristic (ROC) curves for an upstream basin and an outlet in each RFC. The ROC curves were 

fitted to the empirical points under an assumption of bivariate normality between the PoD and the PoFD. The results are shown at a 

forecast lead time of 95-100 days and for selected thresholds, which are denoted by their climatological probabilities of exceedence. 
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Figure 24: Average observed, simulated, and forecast streamflow by calendar month for each source of forcing from the MEFP 

(CLIM and GCC). The forecasts comprise the average of the ensemble means by calendar month across all forecast lead times, 

together with the range of the conditional averages by forecast lead time. The results are shown for basins in MARFC and NERFC. 
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Figure 25a: Mean CRPSS of the MEFP-GCC streamflow forecasts in MARFC against those with MEFP-CLIM forcing using both 

observed (O) and simulated (S) flows. The results are shown for the overall period and for the “wet” and “dry” seasons separately.  
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Figure 25b: Mean CRPSS of the MEFP-GCC streamflow forecasts in NERFC against those with MEFP-CLIM forcing using both 

observed (O) and simulated (S) flows. The results are shown for the overall period and for the “wet” and “dry” seasons separately.  
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Figure 26a: Selected verification metrics for the MEFP-GCC streamflow forecasts at three aggregation periods (5-, 10- and 30-

days) for basins in MARFC. 
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Figure 26b: Selected verification metrics for the MEFP-GCC streamflow forecasts at three aggregation periods (5-, 10- and 30-

days) for basins in NERFC. 
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APPENDIX A: The Hydrologic Ensemble Forecast Service (HEFS) 

A detailed description of the Hydrologic Ensemble Forecast Service (HEFS) can 

be found in Seo et al. (2010) and Demargne et al. (2013), and only a brief outline is 

provided here. Let fq denote the observed streamflow at some future times and cq  

denote the observed streamflow up to the current time. Omitting the random variables 

for simplicity, the conditional distribution, 1( | )f cf q q , may be factored into a “raw” 

streamflow forecast, 3( | )q qr cf , and an “adjusted” streamflow forecast, given the raw 

forecast, 2 ( | , )q q qf c rf  

1 2 3( | ) ( | , ) ( | ) , q q q q q q q qf c f c r r c rf f f d

RawTotal Adjusted

                               (A1) 

where qr  denotes the raw model forecast (or the simulated streamflow if the adjustment 

can be made independently of forecast lead time). The future (observed) streamflow is 

then estimated by factoring out the raw forecast from the adjusted forecast. The raw 

forecast, 3( | )q qr cf , may be further separated into specific sources of uncertainty in the 

hydrologic modeling,  

 
3 4 5 6 7( | ) ( | , , , ) ( | , , ) ( | , ) ( | ) , q q q m i p q m i p q p i q i q m i pr c r f c f c f c f c ff f f f f d d d   (A2) 

where i  denotes the initial conditions, p  denotes the model parameters and fm  

denotes the meteorological forcing. Although updating with streamflow and other 

observations (e.g. soil moisture) may be desirable (Liu et al, 2012), this is not currently 

supported by the HEFS.  

The conditional distribution, 4( | , , , )q m i p qr f cf , is estimated with the HEP, which 

integrates the adjusted forcing from the MEFP through the hydrologic models. The 

MEFP generates precipitation and temperature forcing conditionally upon a raw forecast 

(Wu et al., 2011). The raw forcing may comprise the RFCs operational quantitative 

precipitation and temperature forecasts or the ensemble mean of NCEP’s GFS, among 
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others. In forming predictors from the raw forecasts, the MEFP separates the forecast 

horizon into multiple temporal scales. At each scale, the predictors are aggregated into 

time periods or “canonical events” that reflect the underlying skill in the raw forecasts. 

Thus, while short-range forecasts may be skillful at hourly or daily aggregations, long-

range forecasts may benefit from predictors formed at larger (e.g. monthly) 

aggregations. By separately factoring precipitation occurrence and amount, the MEFP 

allows for a highly parsimonious model of fm  (Wu et al., 2011). The space-time 

covariances in fm are modeled with the Schaake Shuffle, which re-orders the ensemble 

members to match the rank ordering of observations from similar dates in the past (see 

Clark et al., 2004 and Wu et al., 2011 for details). Currently, the uncertainties in the 

initial conditions and parameters of the hydrologic model are not modeled separately 

(see below).  

The raw streamflow forecast is then adjusted by the EnsPost to account for any 

“residual” hydrologic uncertainty, not included in the raw forecast (Seo et al., 2006). This 

adjustment is factored into the conditional distribution, 2 ( | , )q q qf c rf . The structure and 

modeling of the adjusted forecast will depend on the sources of uncertainty that are 

addressed in the raw forecast. For example, without factoring any sources of 

uncertainty into 3( | )q qr cf , the adjusted forecast, 2 ( | , )q q qf c rf  may be approximated 

with a simple model of the total uncertainty, such that the contributions from ( , , fi p m ) 

are lumped into 2 ( | , )q q qf c rf . Regonda et al. (2013) describe one approach to lumped 

modeling of 2 ( | , )q q qf c rf , known as “Hydrologic Model Output Statistics” (HMOS). 

Conversely, 2 ( | , )q q qf c rf  would be structureless if the hydrologic uncertainties were 

properly accounted for in 3( | )q qr cf . In practice, a compromise is sought in the HEFS 

whereby the hydrologic uncertainties ( ,i p ) are lumped into the adjusted forecast, 

2 ( | , )q q qf c rf , but the critically important meteorological uncertainties, ( fm ), are 

modeled separately by the MEFP,  
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3 4 5( | ) ( | , ) ( ) . q q q q m m mr c r c f f ff f f d

Raw Raw | Forcing Forcing

                                 (A3) 

Thus, while the hydrologic uncertainties are not factored into specific 

contributions, their aggregate effects on 2 ( | , )q q qf c rf  are modeled by the EnsPost in a 

highly simplified way (Seo et al., 2006). Here, the model predicted and observed 

streamflows are transformed using the Normal Quantile transform (NQT; Kelly and 

Krzysztofowicz, 1997) and their joint distribution modeled as bivariate normal. In order 

to account for the temporal dependencies, future streamflows are assumed conditionally 

independent of past streamflows, given the present (Markov property) and an AR(1,1) 

structure used to model these dependencies (Seo et al., 2006). In modeling the residual 

uncertainty, the EnsPost assumes that the forcing ensembles are unconditionally and 

conditionally unbiased and that the hydrologic biases and uncertainty are independent 

of forecast lead time. Specifically, the model predicted streamflow, qr , in eqn. A1 is 

substituted with simulated streamflow.  This is reasonable in the context of the HEP, but 

implies that any residual biases in the meteorological forcing will also factor in the post-

processed streamflow.     

While the HEFS distinguishes between the meteorological and hydrologic 

uncertainties, further lumping of these uncertainties is not necessarily undesirable. 

Rather, modeling of 7 ( )ff m  is complicated by the “mixed” nature of precipitation, both in 

terms of precipitation occurrence and amount and liquid versus solid precipitation. It is 

also complicated by the sensitivity of streamflow to the correct modeling of space-time 

and cross-variable relationships in the forcing. The Schaake Shuffle is often used to 

capture these dependencies (Clark et al., 2004; Kang et al., 2010; Wu et al., 2011), but 

has several limitations. An intermediate solution between lumped modeling of the 

forcing contribution in 2 ( | , )q q qf c rf  and posterior modeling of 5( )ff m  may involve an a 

priori estimate of 5( )ff m  with a raw ensemble of meteorological forcing, together with a 

posterior adjustment to the streamflow for any residual forcing bias and uncertainty; that 

is, by substituting the raw forcing for fm  in eqn. (3). This approach is used operationally 
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by the European Floods Awareness System (EFAS; Thielen et al., 2009) and is 

currently being evaluated by the NWS Eastern Region as part of their Meteorological 

Model Ensemble Forecast System (MMEFS; Philpott et al., 2012). 

The total uncertainty in eqn. (1) is approximated, numerically, by integrating a 

finite number of “equally likely” ensemble members through the operational forecasting 

system. The HEFS is embedded within the Community Hydrologic Prediction System 

(CHPS), which provides the operational forecasting environment. A phased 

implementation of the HEFS is currently underway, with the first version (HEFSv1) due 

to be implemented across all RFCs by 2014. In support of this phased implementation, 

hindcasting and verification is being conducted at ~30 river basins in five RFCs (partly 

described here). The hindcasts are also being used by the NYCDEP in their Operational 

Support Tool (OST) for managing water supply to NYC. 
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APPENDIX B: Key verification metrics 

a. Relative mean error 

The relative mean error (RME), or relative bias, measures the average difference 

between a set of forecasts and corresponding observations as a fraction of the average 

observation. Here, it measures the average difference between the ensemble mean 

forecast, y , and the corresponding observation, x, over n pairs of forecasts and 

observations 

 

n

i i

i 1
n

i

i 1









y - x

RME =

x

.                                                     (B1) 

 

The RME provides a measure of relative bias in the ensemble mean forecast, 

and may be positive, zero, or negative. A positive RME denotes overforecasting and a 

negative RME denotes underforecasting (insofar as the ensemble mean should equal 

the observed value).  

b. Brier Score and Brier Skill Score  

The Brier Score (BS; Brier, 1950) quantifies the mean square error of n forecast 

probabilities that Q exceeds q 

          
1

i i i i

n 2
i

X Y X i Y

i

1,Y > q;       
1BS = F q - F q ,  where F q = Pr X > q and F q =

n 0, otherwise,





    

(B2)

 

where  
iYF q  and  

iXF q  denote the ith observed and forecast probabilities that Q 

exceeds q, respectively. By conditioning on the forecast probability, and partitioning 

over J categories, the BS is decomposed into the calibration-refinement measures of 

Type-I conditional bias (CB) or ‘reliability’ (REL), resolution (RES), and uncertainty 

(UNC) (see Bradley et al., 2004 also) 
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j j

1 1BS = N F q - F q N F q - F q q
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UNCREL RES
        (B3)

 

Here,  YF q  represents the average relative frequency (ARF) with which the 

observation exceeds q.  The term  
jYF q  represents the conditional observed ARF, 

given that the forecast probability falls within the jth category, which occurs Nj times. 

Normalizing by the climatological variance,  2

Yσ q , leads to the Brier Skill Score (BSS) 

     2 2 2

Y Y Y

BS RES REL
BSS = 1- = - .

σ q σ q σ q
                                     (B4) 

By conditioning on the K=2 two possible observed outcomes, {0,1}, the BS is 

decomposed into the likelihood-base-rate measures of Type-II CB (T2), discrimination 

(DIS), and sharpness (SHA), 
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  k kk

K K2 2

k X Y k X

k
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k

1 1BS = N F q - F q N F q - F q q
n n



T2 DIS UNC

      

 (B5)

 

where  
kXF q  denotes the conditional ARF that X is forecast to exceed q given 

that Y is observed to exceed q (k=1) or observed to not exceed q (k=2), where Nk is the 

conditional sample size for each case, and  XF q denotes the unconditional ARF. Here, 

 
kYF q  denotes the conditional average probability that Y is observed to exceed q. Since 

 
kYF q  is either zero or one, the Type-II CB can only be zero if the forecasts are 

perfectly sharp. Conditionally upon the observed outcome, the BSS is given by, 

    
     2 2 2

Y Y Y

SHA DIS T2
BSS = 1- + - .

σ q σ q σ q
                                          (B6) 



110 of 128 
 

c. Continuous Ranked Probability Score and skill score 

The Continuous Ranked Probability Score (CRPS) measures the integral square 

difference between the cumulative distribution functions of the observed and predicted 

variables 

 
2

( ) ( ) .X YCRPS = F q F q dq                                             (B7) 

The mean CRPS comprises the CRPS averaged across n pairs of forecasts and 

observations. While less accessible than eqn. B2, and with a somewhat different 

interpretation, the CRPS can be factored into a combination of reliability, resolution and 

uncertainty (see Hersbach, 2000). The Continuous Ranked Probability Skill Score 

(CRPSS) is a ratio of the mean CRPS of the main prediction system, CRPS , and a 

reference system, REFCRPS  

REF

REF

CRPS -CRPS
CRPSS =

CRPS
.                                               (B8) 

d. Relative Operating Characteristic 

The Relative Operating Characteristic (ROC; Green and Swets, 1966) measures 

the ability of a forecasting system to correctly predict the occurrence of an event 

(Probability of Detection or PoD) while avoiding too many incorrect forecasts when it 

does not occur (Probability of False Detection or PoFD).  For probability forecasts, this 

trade-off is expressed as a probability threshold, d, at which the forecast triggers a 

decision.  The ROC plots the PoD versus the PoFD for all possible values of d in [0,1].  

For a particular threshold, the empirical PoD is 
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where I denotes the indicator function. The empirical PoFD is 
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Here, the relationship between the PoD and PoFD is assumed bivariate normal 

(Hanley, 1988; Metz and Pan, 1999)  

  -1 PoD PoFD PoFD

PoD PoD

μ - μ σ
PoD=Φ a+bΦ PoFD  where a=  and b= ,

σ σ
              (B11) 

and Φ is the cumulative distribution function of the standard normal distribution.  The 

means of the PoD and PoFD are PoDμ  and PoFDμ , respectively, and their corresponding 

standard deviations are PoD  and PoFD . Calculation of the fitted ROC amounts to 

estimating the parameters, a and b, of the linear relationship between the PoD and the 

PoFD in normal space, for which Ordinary Least Squares regression was used. 
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APPENDIX C: Event-based analysis of the streamflow forecasts 

Paired streamflow forecasts and observations are presented for selected years in 

each basin. The results comprise the raw streamflow forecasts with forcing inputs from 

the MEFP-GCC and MEFP-CLIM. The plots include the single-valued streamflow 

observations and simulations, together with the ensemble range (maximum – minimum 

value) of the corresponding streamflow forecast on each valid date during one calendar 

year. The results are shown at forecast lead times of 18-138 hours, 2298-2418 hours, 

4698-4818 hours and 7098-7218 hours and for calendar years 1986 and 1996. The 

plots support visual inspection of the HEFS streamflow forecasts, including timing and 

amplitude errors for specific hydrologic events and in different portions of the streamflow 

hydrographs. However, some care (and subjective interpretation) is needed in 

separating between random and systematic behaviors over a small number of 

hydrologic events. Thus, the plots should only be viewed as supplementary to the 

verification results presented above. 
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Figure C01: Mean and range of the streamflow forecasts in WALN6. The results are shown by forecast valid date in 1986 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology for 1-330 

days (CLIM), together with GEFS (1-15 days), plus CFSv2 (16-270 days), plus CLIM (271-330 days), which is denoted GCC.  
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Figure C02: Mean and range of the streamflow forecasts in WALN6. The results are shown by forecast valid date in 1996 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology for 1-330 

days (CLIM), together with GEFS (1-15 days), plus CFSv2 (16-270 days), plus CLIM (271-330 days), which is denoted GCC. 
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Figure C03: Mean and range of the streamflow forecasts in CCRN6. The results are shown by forecast valid date in 1986 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology for 1-330 

days (CLIM), together with GEFS (1-15 days), plus CFSv2 (16-270 days), plus CLIM (271-330 days), which is denoted GCC. 
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Figure C04: Mean and range of the streamflow forecasts in CCRN6. The results are shown by forecast valid date in 1996 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology for 1-330 

days (CLIM), together with GEFS (1-15 days), plus CFSv2 (16-270 days), plus CLIM (271-330 days), which is denoted GCC. 
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Figure C05: Mean and range of the streamflow forecasts in MTGN4. The results are shown by forecast valid date in 1986 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology for 1-330 

days (CLIM), together with GEFS (1-15 days), plus CFSv2 (16-270 days), plus CLIM (271-330 days), which is denoted GCC. 
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Figure C06: Mean and range of the streamflow forecasts in MTGN4. The results are shown by forecast valid date in 1996 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology for 1-330 

days (CLIM), together with GEFS (1-15 days), plus CFSv2 (16-270 days), plus CLIM (271-330 days), which is denoted GCC. 
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Figure C07: Mean and range of the streamflow forecasts in NVXN6. The results are shown by forecast valid date in 1986 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology for 1-330 

days (CLIM), together with GEFS (1-15 days), plus CFSv2 (16-270 days), plus CLIM (271-330 days), which is denoted GCC. 
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Figure C08: Mean and range of the streamflow forecasts in NVXN6. The results are shown by forecast valid date in 1996 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology for 1-330 

days (CLIM), together with GEFS (1-15 days), plus CFSv2 (16-270 days), plus CLIM (271-330 days), which is denoted GCC. 



121 of 128 
 

Figure C09: Mean and range of the streamflow forecasts in MTRN6. The results are shown by forecast valid date in 1986 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology for 1-330 

days (CLIM), together with GEFS (1-15 days), plus CFSv2 (16-270 days), plus CLIM (271-330 days), which is denoted GCC. 
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Figure C10: Mean and range of the streamflow forecasts in MTRN6. The results are shown by forecast valid date in 1996 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology for 1-330 

days (CLIM), together with GEFS (1-15 days), plus CFSv2 (16-270 days), plus CLIM (271-330 days), which is denoted GCC. 
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Figure C11: Mean and range of the streamflow forecasts in MRNN6. The results are shown by forecast valid date in 1986 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology for 1-330 

days (CLIM), together with GEFS (1-15 days), plus CFSv2 (16-270 days), plus CLIM (271-330 days), which is denoted GCC. 
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Figure C12: Mean and range of the streamflow forecasts in MRNN6. The results are shown by forecast valid date in 1996 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology for 1-330 

days (CLIM), together with GEFS (1-15 days), plus CFSv2 (16-270 days), plus CLIM (271-330 days), which is denoted GCC. 
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Figure C13: Mean and range of the streamflow forecasts in PTVN6. The results are shown by forecast valid date in 1986 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology for 1-330 

days (CLIM), together with GEFS (1-15 days), plus CFSv2 (16-270 days), plus CLIM (271-330 days), which is denoted GCC. 
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Figure C14: Mean and range of the streamflow forecasts in PTVN6. The results are shown by forecast valid date in 1996 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology for 1-330 

days (CLIM), together with GEFS (1-15 days), plus CFSv2 (16-270 days), plus CLIM (271-330 days), which is denoted GCC. 
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Figure C15: Mean and range of the streamflow forecasts in GILN6. The results are shown by forecast valid date in 1986 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology for 1-330 

days (CLIM), together with GEFS (1-15 days), plus CFSv2 (16-270 days), plus CLIM (271-330 days), which is denoted GCC. 
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Figure C16: Mean and range of the streamflow forecasts in GILN6. The results are shown by forecast valid date in 1996 and for 

selected forecast lead times. The raw streamflow forecasts comprise forcing from the MEFP with resampled climatology for 1-330 

days (CLIM), together with GEFS (1-15 days), plus CFSv2 (16-270 days), plus CLIM (271-330 days), which is denoted GCC. 


