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Abstract

Retrospective forecasts of precipitation, temperature and streamflow were generated with the Hydrologic Ensemble
Forecast Service (HEFS) of the U.S. National Weather Service (NWS) for selected river basins in the Mid-Atlantic
River Forecast Center (MARFC) and the North East RFC (NERFC). The meteorological hindcasts were produced
with the HEFS Meteorological Ensemble Forecast Processor (MEFP). The MEFP was calibrated with raw forcing
from the National Centers for Environmental Prediction (NCEP) Global Ensemble Forecast System (GEFS) from 1-15
days and the NCEP Climate Forecast System Version 2.0 (CFSv2) for 16-270 days, together with climatological
forcing from 271-330 days. The streamflow hindcasts cover a 15 year period between 1985 and 1999. The hindcasts
were verified conditionally upon forecast lead time, magnitude of the observed and forecast variables, season, and
aggregation period. Verification results are presented for the temperature, precipitation and streamflow forecasts. In
order to distinguish between the contributions of the meteorological and hydrologic uncertainties to the quality of the
streamflow forecasts, verification is performed against simulated streamflow (effectively removing hydrologic biases)
and against observed streamflow. Interpretation of the verification results leads to guidance on the expected
performance and limitations of the HEFS for long-range forecasting, together with recommendations on future
enhancements.
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How to read this document

This document aims to: 1) provide a comprehensive scientific evaluation

(verification) of the temperature, precipitation and streamflow forecasts from the

HEFSv1 with forcing inputs from the Global Ensemble Forecast System (GEFS), the

Climate Forecast System (CFSv2) and climatology (collectively referred to as GCC);

and 2) communicate the strengths and weaknesses of the HEFSv1 for operational

forecasting over the long-range. This section aims to guide readers with limited time or

experience of ensemble forecasting or verification to the main results and conclusions.

For these readers, the following sections are particularly important:

Executive summary and recommendations. This describes the structure of the

report and the strengths and weakness of the forecasts in non-technical terms;

Section 4.1. This provides a brief description of the study basins. Understanding
the hydrology of the study basins is central to interpreting the quality of the HEFS
forecasts and to applying the results more broadly (or understanding the risks of

extrapolation);

Appendix C. This shows a selection of the paired streamflow forecasts and
observations from which the verification results are derived. The relative scatter
of the observations within the ensemble forecast distribution provides some
insight into the quality of the forecasts when using different forcing inputs. In
general, the streamflow observations should fall “randomly” within the ensemble
range. They should not fall consistently in one part of the ensemble forecast

distribution or outside of the ensemble range;

Section 4.4 and Appendix B. In order to understand the remainder of the report, it
is necessary to consider the desirable attributes of ensemble forecasts and how
they can be measured. Tutorials on forecast verification can be found in the
documentation, presentations, and exercises that accompany recent training
workshops on the HEFS and in the user's manual of the Ensemble Verification

System (EVS). Key attributes of forecast quality are briefly described in Section
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4.4, while Appendix B summarizes the key measures of forecast quality used

throughout this report; and

V. Section 5.2. The verification results are presented separately for the
meteorological forecasts and the “raw” streamflow forecasts (which do not
include streamflow post-processing). The raw streamflow forecasts are verified
against simulated flows, as well as observed flows. By verifying against simulated

flows, the hydrologic biases and uncertainties are effectively removed.

Some plots are simpler to understand than others. Skill scores are generally
simpler to understand and to compare between basins, partly because they are
dimensionless. A skill score measures the fractional improvement of one forecasting
system over another (0—1, although negative values are possible). For example, Figure
7 shows the fractional improvement of the MEFP precipitation forecasts with GCC
forcing versus the unconditional observations (raw climatology) and with an enhanced
or “resampled” climatology. Figure 18 shows the skill of the raw streamflow forecasts
with GCC forcing when verified against the observed streamflows and the simulated
streamflows. The baseline comprises the raw streamflow forecasts with climatological

forcing.

It is also important to understand the limitations of this study. First, it does not
provide any guidance on the calibration or configuration of the HEFS. Such guidance
would require hindcasting and verification for multiple calibration and configuration
scenarios. Second, the report covers only a small fraction of the locations and scenarios
under which the HEFS will be used operationally. It focuses on headwater basins and
downstream basins that are effectively treated as headwaters. All of the downstream
basins are subject to river regulations, including flow diversions that are applied in real-
time. Estimates of the local streamflows were provided by the New York City
Department of Environmental Protection (NYCDEP), after accounting for reservoir
releases and flow diversions. Ideally, the archived diversions and other regulations
would be incorporated into the streamflow hindcasting, as the operational forecasts

comprise residual uncertainties and biases from upstream locations, including those
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from reservoir modeling. However, only the estimated local flows were available from
NYCDEP and, hence, only the local contributions were verified at downstream
locations. Thirdly, forecast products will generally comprise the bias-corrected
streamflow forecasts. However, the Ensemble Postprocessor (EnsPost) was
undergoing improvements and could not be considered here. In the absence of a formal
bias-correction, the raw streamflow forecasts were verified against simulated flows, as
well as observed flows, in order to factor out the hydrologic uncertainties and biases.
Finally, the report does not explicity benchmark the HEFSvl against archived
operational forecasts, notably from Ensemble Streamflow Prediction (ESP). However,
the GCC streamflow forecasts are compared to streamflow forecast with climatological

forcing, which are similar to those from ESP.
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Executive summary and recommendations

Ensemble forecasts of precipitation, temperature and streamflow were generated
with the NWS Hydrologic Ensemble Forecast Service (HEFS) for a 15 year
period between 1985 and 1999. The hindcasts were produced for eight river
basins, comprising four basins in each of two RFCs, namely the Middle Atlantic
River Forecast Center (MARFC) and the North-East River Forecast Center
(NERFC). The basins include a range of headwater and downstream locations
within the Delaware and Catskill systems of New York State. They are subject to
extensive river regulations, including diversions to the New York City (NYC)
municipal water supply. The four basins in MARFC comprise three locations on
the Delaware River, namely Walton (WALNG), Callicoon (CCRN6) and Montague
(MTGN4), and one location on the Neversink River, namely the Neversink
Reservoir (NVXNG). The four basins in NERFC comprise two locations on the
Esopus Creek, namely Mount Trempor (MTRN6) and Mount Marion (MRNNSG),
and two locations on the Schoharie Creek, namely Prattsville (PTVNG6) and the
Gilboa Dam (GILN®6). The hindcasts were commissioned by the NYC Department
of Environmental Protection (NYCDEP), in order to support the initial
implementation of the HEFS at MARFC and NERFC and to improve the
management of risks to water quantity and quality objectives in the NYC area.

The HEFS is being evaluated in several phases. In the initial phase, verification
was conducted for temperature, precipitation and streamflow hindcasts with
forcing inputs from the “frozen” version of NCEP’s Global Forecast System
(GFS). A subsequent phase will evaluate the HEFS with forcing inputs from
NCEP’s operational Global Ensemble Forecast System (GEFS) and compare to
those from the frozen GFS. This report focuses on the quality of the long-range
forecasts from ~15 days to ~1 year. Specifically, it focuses on the temperature,
precipitation and streamflow forecasts with forcing inputs from the GEFS, the
Climate Forecast System Version 2.0 (CFSv2) and resampled climatology
(defined below). While the focus is on the long-range forecasts, the HEFSv1

aims to provide “seamless” forecasts across multiple temporal scales. Depending
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on basin characteristics, skillful forcing from the GEFS may persist for several
weeks in the streamflow forecasts. Thus, the 1-15 day forecasts are also verified
at an appropriate temporal scale. Collectively, the phased evaluation aims to:
establish the expected performance and limitations of the HEFS; demonstrate
that the outputs from the HEFS are reasonably unbiased and skillful; identify the
key factors responsible for forecast error and skill in different situations; isolate
the contribution of the meteorological and hydrologic components of the HEFS to
the overall skill of the streamflow forecasts; establish a baseline for
enhancements to the HEFS and, where appropriate, to recommend specific
enhancements or further studies; and to illustrate how hindcasting and

verification of the HEFS might be conducted in future.

Precipitation and temperature hindcasts were produced with the Meteorological
Ensemble Forecast Processor (MEFP) using “raw” precipitation and temperature
forecasts from multiple sources. Ensemble forecasts from NCEP’s GEFS were
used for the period 1-15 days. Single-valued forecasts from the CFSv2 were
used for the period 16-270 days. For the period 271-330 days, and as a
reference forecast for the period 1-330 days, climatological ensembles were
derived from historical observations of mean areal precipitation (MAP) and mean
areal temperature (MAT). This involved resampling the MAP and MAT in a
moving window of, respectively, 30 days and 15 days around the forecast valid
date (“‘resampled climatology”). The GEFS, CFSv2 and resampled climatology
are collectively denoted GCC, while resampled climatology is denoted CLIM. The
streamflow forecasts were produced with the Community Hydrologic Prediction
System (CHPS) using the operational hydrologic models and configurations
provided by MARFC and NERFC.

The precipitation, temperature and streamflow forecasts were verified with the
Ensemble Verification System (EVS). The forecasts were verified conditionally
upon season, forecast lead time, magnitude of the observed and forecast
variables, and aggregation period. The raw streamflow forecasts were verified

against simulated streamflows, as well as observed streamflows, in order to
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separate the meteorological uncertainties from the total (meteorological and
hydrologic) uncertainties. In practice, however, the simulated streamflows also
include errors in the meteorological observations, while the hydrologic
observations include errors from stage measurements, flow ratings and

accounting for upstream regulations (see below).

In general, the MEFP-GCC precipitation forecasts are both reliable and skillful
during the short-range (1-5 days). This largely originates from the skill in the raw
GEFS precipitation forecasts. Likewise, the MEFP-GCC temperature forecasts
are reliable and skillful during the short-range. Beyond the first 1-5 days, the skill
of the MEFP-GCC precipitation forecasts declines rapidly, while the temperature
forecasts remain skillful throughout the medium-range. However, neither the
precipitation nor the temperature forecasts are skillful beyond ~2 weeks. This
originates from a lack of skill in the raw CFSv2 forecasts and, beyond 270 days,
from resampled climatology, which is inherently unskillful. Indeed, for the period
from ~15-330 days, the MEFP-GCC forecasts show similar conditional biases to
the MEFP-CLIM forecasts. This includes a substantial underestimation of the
largest precipitation totals and a smaller conditional bias in the temperature
forecasts, whereby the lowest and highest observed temperatures are over- and
under-estimated, respectively. While the MEFP precipitation forecasts are
generally no worse than sample climatology, the forecasts of Probability of
Precipitation (PoP) are consistently worse than climatology. This originates from
a lack of reliability in the MEFP forecasts for PoP. Similar biases were observed
when calibrating the MEFP with the frozen version of NCEP’s GFS. Again, this
suggests a problem in the modeling, estimation, or implementation of the MEFP

for PoP and light precipitation amounts.

Except for PoP and light precipitation, the MEFP-GCC forecasts are no worse
than resampled climatology. This is an important attribute of any bias-correction
technigue whose unconditional distribution is climatology. Also, the MEFP
maintains or improves upon the correlations between the raw forcing from the

GEFS and CFSv2 and the corresponding observed precipitation amounts. For
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example, the MEFP-CLIM shows background correlations of ~0.2 during the
long-range, whereas the raw CFSv2 forecasts show correlations of ~0.0. Without
skillful predictors, the MEFP cannot improve upon climatology; it can only issue
forecasts that are unconditionally unbiased. In practice, the ensemble mean of
the MEFP-CLIM forecasts contain small unconditional biases (<5%), which may

be related to the modeling of PoP and light precipitation amounts.

Seasonal water supply and other long-range applications are known to benefit
from climatological forecasts (so-called Ensemble Streamflow Prediction, ESP).
Enhancements to the MEFP may consider additional predictors that improve
upon climatology. For example, given the strong autocorrelations in temperature,
the MEFP may benefit from an autoregression of the future MAT on the most
recently observed MAT, as well as the raw forecast. While precipitation generally
shows much weaker autocorrelations, auxiliary variables, such as relative
humidity, may improve forecast quality over the short- to medium-range. For
seasonal and long-range prediction, the MEFP may benefit from auxiliary climate
information, such as climate outlooks from NOAA'’s Climate Prediction Center
(CPC), or indices of teleconnection patterns, such as the EI-Nifio Southern
Oscillation (ENSO), the Pacific-North American teleconnection (PNA) and the
Pacific Diurnal Oscillation (PDO).

Recommendation 1: In order to enhance the limited skill of the CFSv2 for
long-range forecasting of precipitation and temperature, additional predictors
may be included in the MEFP alongside the raw CFSv2 forecasts. In some
regions and time periods, the MEFP may benefit from additional sources of
climate information, such as the 90-day climate outlooks from NOAA’s CPC.
Other useful predictors may include indices of the ENSO, PDO and PNA or
other regional climate patterns. In order to support the HEFS as a unified
platform for ensemble forecasting, any local implementations of ESP that
demonstrably improve upon the HEFS should be integrated into the HEFS and
ESP should then be retired as a legacy platform. For short- to medium-range
forecasting, the MEFP may benefit from an autoregression of the future MAT
on the most recently observed MAT, while the precipitation forecasts may
benefit from carefully-selected auxiliary variables (although precipitation is
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inherently difficult to forecast beyond the medium-range).

As well as producing reliable forecasts at discrete times and locations, the MEFP
should maintain realistic patterns in space and time and between variables.
These statistical dependencies and multi-scale properties are important for
decision making. In general, decisions about water resources are based on
products derived from hydrologic forecasts, such as aggregated quantities, or on
additional modeling studies or rules embedded into decision support systems. As
with hydrologic modeling, these calculations involve uncertainty propagation, for
which the space-time and cross variable relationships are important. In this
context, important attributes of the MEFP include the ability to: 1) preserve
space-time and cross-variable relationships via the Schaake Shuffle; 2) derive
skillful predictors at multiple space-time scales using “canonical events”
(aggregated predictors); and 3) provide seamless predictions across multiple
forecast horizons, depending on the raw forcing available. In practice, some
discontinuities were observed in the verification statistics between 270-271 days,
where the CFSv2 transitions to resampled climatology. This may originate from
sampling uncertainty, including uncertainty resulting from the parameterization of
the MEFP with too many canonical events (see below). Anecdotally, the reliability
and skill of the MEFP forecasts is the same or better at aggregated scales. This
is consistent with the temporal autocorrelations being modeled adequately.
Nevertheless, further investigation is warranted into the limitations of the
Schaake Shuffle, particularly for extreme events, and whether, at the basin-scale,
other empirical structures, such as high-resolution forecasts or conditional

climatologies, can better reproduce the space-time covariability.

Recommendation 2: Further investigation is warranted into the limitations of
the Schaake Shuffle and the conditions under which other empirical structures
(empirical copulas) may improve the modeling of space-time and cross-variable
relationships. In practice, these relationships are conditional upon the state of
the atmosphere at the forecast valid time, yet the Schaake Shuffle relies on
unconditional structures only (i.e. conditional upon forecast valid time, but not
on the state of the atmosphere). Among other things, there is a need to explore
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the consequences of this assumption during high-impact events, for which
suitable analogs are unlikely to appear on the same date in historical years.
More generally, there is a need to evaluate the MEFP for high-impact events
by deconstructing and evaluating specific forecasts. Here, there is a trade-off
between the ability of the MEFP to learn from historical experience, in order to
reduce conditional biases, and the need to preserve any novel information in
the raw model forecasts (i.e. for which historical experience is limited).

In operational forecasting, there is always a trade-off between model complexity,
or the need to capture salient features of the observations, and practicality, or the
need for a model whose parameters can be estimated reliably. It is questionable
whether the current implementation (or parameterization) of the MEFP manages
this trade-off effectively. The MEFP uses canonical events to sequentially adjust
the climatological probability distribution. Each canonical event comprises a
separate model of the joint probability distribution of the forecasts and
observations. A canonical event defines a window centered on the forecast valid
date (into which data are pooled from all historical years), together with the
period of aggregation for which the joint distribution is estimated. The sample
size used to calibrate the MEFP was not particularly small (15 years) and is
consistent, or more favorable, than the expected operational practice. However,
artificial periodicities were clearly visible in some of the verification statistics.
They were also observed in the raw ensemble traces, particularly for
temperature, which should otherwise vary smoothly. By experimenting with the
parameterization of the MEFP, these discontinuities were found to originate from
the use of canonical events. The addition or removal of particular canonical
events led to discontinuities in the ensemble traces at corresponding timescales

during the forecast horizon.

Recommendation 3: Further investigation is warranted into the use of
canonical events and, more generally, the need to parameterize the multiscale
properties of temperature and precipitation in the MEFP. Where explicit
modeling is justified, it should be parsimonious, smooth and allow for
reasonably small sampling uncertainty, whether using canonical events or
other techniques. Outcomes of this investigation may include simplified
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modeling approaches or further guidance on calibrating the MEFP with
canonical events (e.g. based on geography and climatology).

In regulated rivers, the hydrologic uncertainties reflect a combination of natural
and engineering influences. Some regulations may be obscured from operational
forecasters because they are operated with limited warning or specificity (e.g.
because they involve rapidly changing conditions, multiple actors or agencies or
commercially sensitive information). When information about diversions and other
regulations is available in real-time, statistical post-processors, such as the
Ensemble Post-processor (EnsPost), should ideally model the natural (local)
flows, as upstream regulations are difficult to model statistically. However, the
total flows are preferred for hindcasting and verification, as they include the
residual uncertainties from upstream basins. In practice, only the estimated local
flows were available from NYCDEP and, hence, only the local contributions were
verified at downstream locations. In future, river regulations should be archived
by the RFCs, in order to allow for hindcasting and verification of the total flows at

downstream locations.

Recommendation 4: There are a number of challenges for the successful
application of the HEFS in regulated rivers. These include inadequate archiving
of real-time adjustments to operational forecasts (runtime modifications), which
are also required for hindcasting and verification, and difficulties in adjusting
regulated flows with statistical techniques. Where possible, the EnsPost should
be calibrated on natural flows and any known regulations incorporated in real-
time. In other cases (e.g. when the regulations are poorly defined), regulations
may leave signatures in the streamflow observations that can be modeled
indirectly, whether using deterministic or stochastic techniques. In order to
guide practical applications of the HEFS in regulated rivers, further evaluation
is needed, including evaluation of the total flows at downstream locations. In
this context, collaborations between the NWS and other agencies, such as the
NYCDEP, should be encouraged. Ultimately, improvements in the modeling of
upstream regulations will reduce the need for indirect accounting and increase
the operational readiness of the HEFS. Aside from these collaborations, the
RFCs should archive all adjustments to their operational forecasts, in order to
support routine hindcasting and verification in regulated rivers.
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In keeping with the MEFP-GCC precipitation forecasts, the GCC streamflow
forecasts are substantially more skillful than the climatological forecasts during
the first week. Beyond the short-range, they are as skillful as the climatological
forecasts. In general, the hydrologic biases are greater under low flow conditions,
where the streamflow forecasts systematically over-estimate the observed flows,
particularly in CCRN6 and MTGN4. While the hydrologic models do not target
specific applications or flow conditions, the high flows receive particular scrutiny
during model calibration, and the “Continuous API” model used by MARFC (for
CCRN6 and MTGN4) is less well-suited to dry conditions. For long-range
forecasting, the meteorological biases are more important than the hydrologic
biases, as the MEFP-GCC precipitation forecasts resemble climatology after ~5
days. In particular, they underestimate the heaviest precipitation amounts by up

to ~80% at longer forecast lead times.

Further work is needed to compare the long-range streamflow forecasts from the
HEFS against the RFC operational forecasts, which include ESP and statistical
modeling on monthly and seasonal timescales. Given the lack of skill in the
CFSv2, the opportunities to improve on climatological forcing and, thus, on ESP
may appear limited. However, this does not imply similar performance in other
regions or time periods, where long-range prediction is more straightforward (e.g.
the coastal mountain ranges of California and the Pacific Northwest). Alongside
the resampling procedure adopted by the MEFP, there are other notable
differences between the HEFS and ESP. For example, some RFCs incorporate
runtime modifications into the hydrologic model states from which the ESP
forecasts are produced operationally. Whether the HEFS can improve on ESP
will also depend on basin characteristics. For headwater basins with longer
memory (e.g. due to snow accumulation or soil characteristics), and for
downstream basins in general, the skill from the GEFS will persist for longer in
the streamflow forecasts. Also, the EnsPost should eliminate any unconditional
biases, which may originate from weaknesses in the structure or calibration of the
hydrologic models, and may reduce conditional biases where the streamflow

correlations are strong. For example, at MRNN6 and GILNG, the observed
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streamflows were consistently underestimated during the late spring and early
summer. At CCRN6 and MTGN4, the observed streamflows were consistently

overestimated during the summer months.

Scientific evaluation of the HEFS is an ongoing activity; it requires a sustained
effort and a dedicated infrastructure for archiving data and for hindcasting and
verification, as well as communicating verification concepts and results. This
study covers only a small fraction of the locations, conditions and scenarios
under which the HEFS will be used operationally. In order to guide a broader
range of applications and to establish a baseline for future enhancements, more
comprehensive hindcasting and verification is needed. This should be conducted
across all RFCs, for a range of forcing inputs, and for a broader range of river
basins, including regulated rivers and outlets. Furthermore, there is a need to
evaluate decision support systems and other applications that rely on the HEFS
(e.g. water quality models, water regulation/supply decisions). Such applications
will show varying sensitivities to the HEFS forecasts and may lead to targeted

improvements in the HEFS, as well as new ensemble products.

Recommendation 5: In order to evaluate the quality of the HEFS and to
establish a baseline for future enhancements, more comprehensive
hindcasting and verification is needed. This should be conducted across all
RFCs, for a range of forcing inputs, and for a broader range of river basins,
including regulated rivers and outlets. Further work is needed to compare the
long-range streamflow forecasts from the HEFS against the RFC operational
forecasts, which include ESP and statistical modeling on monthly and seasonal
timescales. While such comparisons are not straightforward (e.g. because the
raw forcing data used by the HEFS is not used for operational forecasting),
they are necessary to benchmark the HEFS and to show that, overall, the
forecasts improve on existing products. In addition, there is a need to evaluate
decision support systems and other applications that rely on the HEFS, such
as water quality, ecology, river navigation, water supply, and civil engineering
design. Such applications will show varying sensitivities to the HEFS forecasts
and are necessary to demonstrate the wider, societal and economic, benefits
of the HEFS and ensemble forecasting more generally.
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3. Introduction

Uncertainties are manifest in all aspects of environmental modeling (Brown,
2010a) and they contribute to risks in environmental decision making (Handmer et al.,
2001; Beven, 2000; Ramos et al., 2012; Demeritt et al., 2013). In order to evaluate,
communicate and manage these risks effectively, operational forecasting agencies,
such as the U.S. National Weather Service (NWS), must properly account for, and
quantify, the uncertainties associated with model predictions. Whether using physically-
based models, statistical models or some combination of the two, the inputs, structure,
and parameters of these models are all uncertain (Matott et al., 2009). Uncertainties
propagate through the modeling system and lead to uncertainties about the model
outputs (Brown and Heuvelink, 2005). Broadly, there are two approaches to quantifying
and propagating uncertainty, namely source-based modeling (“bottom up”), where
specific sources of uncertainty are combined and integrated numerically (Gneiting and
Raftery, 2005; Helton et al., 2006; Cloke et al., 2013), and statistical modeling (“top
down”), where the total uncertainty is modeled empirically (Glahn and Lowery, 1972). A
hybrid of these approaches involves statistical post-processing of ensemble forecasts
(Gneiting et al., 2007; Montanari and Grossi, 2008; van Andel et al., 2013). The latter

uses historical observations to correct for biases in the forecast probabilities.

The NWS Hydrologic Ensemble Forecast Service (HEFS) provides ensemble
forecasts of temperature, precipitation and streamflow at lead times ranging from one
hour to one year (Seo et al., 2010; Demargne et al., 2014). The HEFS quantifies the
total uncertainty in streamflow as a combination of specific sources of uncertainty (Seo
et al., 2010). The meteorological uncertainties are modeled with the Meteorological
Ensemble Forecast Processor (MEFP). The MEFP generates ensemble forecasts of
precipitation and temperature conditionally upon a raw, single-valued, forecast (Wu et
al., 2011). The raw forcing may comprise operational quantitative precipitation forecasts
(QPF) and quantitative temperature forecasts (QTF) from the NWS River Forecast
Centers (RFCs) or the ensemble mean of NCEP’s Global Ensemble Forecast System
(GEFS), among others. For the period from 16 days to 9 months, the MEFP uses raw

forcing from the Climate Forecast System Version 2.0 (CFSv2) and, beyond 9 months
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or as a baseline for evaluating other forecasts, various types of conditional climatology.
The total uncertainty in the streamflow forecasts is modeled in two stages (see Kelly
and Krzysztofowicz, 1997 also). First, the meteorological forecasts from the MEFP are
used to generate “raw” streamflow forecasts, which may contain hydrologic biases, but
do not explicitly account for any hydrologic uncertainties. Second, the raw streamflow
forecasts are post-processed with the Ensemble Postprocessor (EnsPost). The EnsPost
accounts for the hydrologic uncertainties and reduces any systematic biases in the
streamflow forecasts (Seo et al., 2006).

The HEFS is being implemented in several phases, with the initial version
(HEFSv1) scheduled for operational use at all RFCs by the end of 2014. In order to
establish a baseline for future enhancements, and to guide the operational use of the
HEFSv1, several phases of hindcasting and verification are also underway. This
involves retrospective forecasting of temperature, precipitation, and streamflow at
selected RFCs and for selected sources of meteorological forcing. In an earlier phase of
evaluation (see Brown, 2013), temperature, precipitation and streamflow hindcasts were
generated with the HEFSv1 using forcing inputs from the “frozen” version of NCEP’s
Global Forecast System (GFS; Hamill et al.,, 2006). In a subsequent phase of
evaluation, temperature, precipitation, and streamflow hindcasts will be generated with
the HEFSv1 using forcing hindcasts from NCEP’s Global Ensemble Forecast System
(GEFS; Hamill et al., 2013). This report focuses on the quality of the long-range
forecasts from ~15 days to ~1 year. Specifically, it focuses on the temperature,
precipitation and streamflow forecasts with forcing inputs from the GEFS, CFSv2 and
climatology. While the focus is on the long-range forecasts, the HEFSv1 aims to provide
“seamless” forecasts across multiple temporal scales and, depending on basin
characteristics, skillful forcing from the GEFS may persist for several weeks in the

streamflow forecasts.

Approaches to long-range forecasting vary between RFCs, but most use
statistical modeling, physically-based modeling or a subjective combination of the two.
Ensemble Streamflow Prediction (ESP) was developed in the late 1970s (Day, 1985)

and is used operationally by many RFCs. For example, it is used in the western U.S. to
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forecast seasonal water supply (Wood and Lettenmaier, 2006), while the North Central
RFC uses ESP to evaluate the probability of flooding from snowmelt in the following
spring. By initializing the NWS River Forecast System (NWSRFS) and looping through
historical time-series of observed temperature and precipitation, ESP provides
ensemble forecasts of streamflow that are consistent with the historical climatology.
Enhancements to ESP include sampling of the raw climatology with conditioning
variables, such as the 90-day climate outlooks from NOAA'’s Climate Prediction Center
(Perica, 1998) or large-scale climate indices (Najafi et al., 2012). Statistical models for
long-range forecasting generally employ multiple linear regression (Garen, 1992).
Common predictors include snow water equivalent (SWE), precipitation, large-scale
climate indices, and antecedent streamflow, among others (e.g. Robertson and Wang,
2013). In order to avoid collinearity, the original covariates may be aggregated or
translated into fewer principal components (Regonda, 2006; Garen and Pagano, 2007).
Combinations of ESP and statistical modeling are also common, and may involve post-
processing ESP forecasts (e.g. Wood and Schaake, 2008) or a subjective blending of
ESP and regression models. For example, until recently, the NWS coordinated with the
Natural Resources Conservation Service (NRCS) to provide “consensus” forecasts of
water supply for 700 basins in the western U.S. In negotiating a best estimate and
spread from the individual forecasts, the consensus was necessarily subjective.
However, it avoided confusion among end-users and provided a single forecast for
critical decisions about water supply (Pagano et al., 2013). Currently, the operational
practice varies between RFCs, with some using unconditional ESP (e.g. NWRFC), and

others using a subjective combination of ESP and statistical modeling (e.g. CBRFC).

In parts of the U.S., there are strong climate anomalies or teleconnection patterns
that significantly impact temperature, precipitation and streamflow on seasonal to
decadal timescales (Regonda, 2006). These include the EI-Nifio Southern Oscillation
(ENSO), the Pacific-North American teleconnection (PNA) and the Pacific Diurnal
Oscillation (PDO). By capturing the phase and strength of these teleconnections in
climate indices, statistical models may be augmented with additional predictors (Garen
and Pagano, 2007, Robertson and Wang, 2012), probability distributions sampled
conditionally upon the auxiliary information (Perica, 1998) or statistical and dynamical
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forecasts weighed and combined (e.g. Schepen et al., 2012). For example, Hamlet and
Lettenmaier (1999) use climate indices of the ENSO and PDO to improve long-range
streamflow forecasting in the Columbia River Basin. Elsewhere, Grantz et al. (2005) use
large scale climate indices to improve streamflow forecasting on the Truckee and
Carson Rivers in Nevada for two seasons ahead. However, the ENSO, PNA and PDO
are not uniformly strong, and impacts on streamflow are generally weaker and more
variable in the interior west (Cayan, 1996; Regonda, 2006). Alongside climate indices,
and in areas where a significant fraction of the annual precipitation falls as snow,
measures of SWE are also used in ensemble forecasting and statistical models of water
supply. For example, Clark et al. (2001) use a combination of large-scale climate
indices and information on SWE to improve long-range streamflow forecasts in the
Columbia and Colorado River Basins. In alpine regions, snow accumulation and melting
is driven by air temperature, as well as precipitation, and both are important in long-
range forecasting. For example, in a study of streamflow responses to climate change in
the Colorado Basin, Nash and Gleick (1991) found that increases in temperature of 2-
4°C would reduce the mean annual runoff by 4-20%, while changes in precipitation of

10-20% would alter the mean annual runoff by 10-20%.

In practice, both ESP and statistical models are imperfect tools for long-range
forecasting. For example, regression models use observations of SWE that do not
include the entire period of snow accumulation. Also, they may rely on teleconnection
patterns that have limited explanatory power in some regions or invoke assumptions of
stationarity that are complicated by intra- and inter-annual climate variability. Similarly,
ESP relies on historical forcing and does not incorporate the latest information from
global climate models, such as the CFSv2. In this context, Yuan et al. (2013) found that
seasonal hydroclimate forecasts with the CFSv2 significantly improved upon ESP for
many locations in the CONUS, but these improvements generally only materialized after
streamflow post-processing and were strongly dependent on the variables, seasons and
regions considered. In the absence of streamflow post-processing, ESP relies on
hydrologic models that are well-calibrated or climatologically unbiased (Shi et al., 2008).

In practice, ESP forecasts may comprise a range of unconditional and conditional
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biases that could be addressed through statistical post-processing (Wood and Schaake,
2008; Shi et al.,, 2008). Some of these weaknesses are addressed by the HEFSv1,
while others may be addressed in future. First, the HEFS uses an objective combination
of ensemble forecasting and statistical modelling. Second, the HEFS uses raw forcing
information from the GEFS and CFSv2, among others. While the GEFS forecasts are
limited to 1-15 days, the skill from these forecasts may persist in streamflow for longer
periods, depending on basin characteristics. Finally, the forcing and streamflow
forecasts are corrected for biases, including biases in the meteorological forcing
(MEFP) and in the hydrologic modelling (EnsPost). However, the MEFP does not
include auxiliary information from the CPC’s climate outlooks or large-scale climate

indices, which may be useful in some basins.

Whether using statistical models, physically-based models or some combination
of the two, hydrometeorological and hydrologic forecasts are subject to error. These
errors may be correlated in space and time and may be systematic. The skill of an
ensemble forecasting system can depend largely on its systematic biases (Hashino et
al., 2006; Wilczac et al., 2006; Brown and Seo, 2013). Forecast verification is necessary
to identify these biases and to establish the skill of the forecasting system under a range
of observed and forecast conditions (Jakeman et al., 2006; Demargne et al., 2010).
Examples of hindcasting and verification for the long-range include Franz et al. (2003),
Pagano et al. (2004), Bradley et al. (2004), Regonda (2006), Schepen et al. (2012) and
Robertson and Wang (2013). In ensemble forecasting, biases produce systematic
differences between the forecast probabilities of particular events and the
corresponding observed outcomes [0,1] over a large sample of historical data (Wilks,
2006; Jolliffe and Stephenson, 2011). By conditioning on the observed and forecast
variables, these residuals can be factored into more detailed attributes of forecast
quality. For example, a flood forecasting system is “reliable”, on average, if flooding is
observed twenty percent of the time when it is forecast with probability 0.2 (repeated for
all probabilities). An ensemble forecasting system is discriminatory with respect to
flooding if it consistently forecasts the occurrence of flooding with a probability higher
than chance and consistently forecasts its non-occurrence with a probability lower than

chance.
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In this report, hindcasts of temperature, precipitation and streamflow are
generated with the HEFSv1 for selected river basins in the North East RFC (NERFC)
and the Middle-Atlantic RFC (RFC). The hindcasts are verified conditionally upon
forecast lead time, magnitude of the observed and forecast variables, season, and
aggregation period. Limited combinations of these attributes are also considered.
Verification results are presented for the temperature and precipitation forecasts from
the MEFP and for the raw streamflow forecasts, which do not include statistical post-
processing. In order to distinguish between the meteorological and hydrologic
uncertainties, the raw streamflow forecasts are verified against simulated streamflows,
as well as observed streamflows. The report is separated into three parts. It begins with
the Material and Methods section, comprising an overview of the study basins and
datasets, the HEFS methodology, and the verification strategy (Section 4). The results
are then presented separately for the meteorological forecasts (Section 5.1) and the raw
streamflow forecasts (Section 5.2). Finally, the Discussion and Conclusions (Section 6)
lead to guidance on the expected performance and limitations of the HEFSv1 for long-

range forecasting, together with recommendations on future enhancements.
4, Materials and methods
4.1  Study basins

Eight river basins were considered in this study, of which four are located in
MARFC and four in NERFC. Figure 1 and Table 1 show the latitude and longitude,
drainage area and mean elevation of each basin, together with the nearest GEFS and
CFSv2 grid nodes. Table 1 also shows the annual precipitation, the runoff coefficient
(runoff/precipitation) and the ratio of precipitation to potential evaporation. The drainage
areas range from 240 square kilometers (NVXNG) to 9013 square kilometers (MTGN4)
and the runoff coefficients vary from 0.35 (PTVNG6) to 0.88 (MTRNG6). Figure 2a and
Figure 2b show the daily means of temperature, precipitation and runoff for each basin
in MARFC and NERFC, respectively. The averages are shown for each calendar month
and were derived from gauged temperature, precipitation, and streamflow over a 15

year period between 1985 and 1999 (see Section 4.3). Nominally, two seasons are

21 0f 128



identified for each RFC, namely a “wet” season and a “dry” season (Figure 2a/b). The
forcing and streamflow hindcasts are verified separately for each of these seasons, as

well as for the overall period (Section 5).

The eight river basins have similar climate and runoff characteristics (Figure
2a/b), with slightly higher precipitation and much higher temperatures during the
summer months. The runoff peaks in April, when snowmelt from the Catskill Mountains
contributes to higher streamflow in the Catskill and Delaware basins. Runoff is much
lower between June and October, as flows are diverted for irrigation and water supply.
Both forecast groups are subject to extensive river regulations and diversions. The
Catskill and Delaware systems account for ~90% of the municipal water supply to New
York City (NYC), with approximately 1.75x10° m? of water stored in six reservoirs
(Figure 1). The Catskill Basin comprises the Schoharie and Ashoken Reservoirs, which
drain the eastern portion of the Catskill Mountains. The Delaware Basin comprises the
Cannonsville, Pepacton (Downsville), Neversink and Rondout Reservoirs, which drain
the western portion of the Catskill Mountains. Water from the Catskill Basin is stored in
the Ashoken Reservoir and diverted via the Catskill Aqueduct to NYC. Water from the
Delaware Basin is stored in the Rondout Reservoir and distributed via the Delaware
Aqueduct to NYC.

Figure 3 shows the topology of the eight river basins, together with the
surrounding basins for which streamflow hindcasting was conducted. The four basins in
MARFC comprise three locations on the Delaware River, namely Walton (WALNSG),
Callicoon (CCRN6) and Montague (MTGN4), and one location on the Neversink River,
namely the Neversink Reservoir (NVXNG). The four basins in NERFC comprise two
locations on the Esopus Creek, namely Mount Trempor (MTRNG6) and Mount Marion
(MRNNS®B), and two locations on the Schoharie Creek, namely Prattsville (PTVNG6) and
the Gilboa Dam (GILN6). Mount Trempor and Mount Marion are separated by the
Ashoken Reservoir (ASEN6) and the Schoharie Reservoir lies between Prattsville and
the Gilboa Dam.
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In MARFC, flows are diverted from the Cannonsville Reservoir (CNNN6) and the
Downsville Reservoir (DWNNG6) to the NYC municipal water supply. The remaining
flows, except for conservation releases and spills, are impounded for subsequent
release in the lower Delaware Basin under dry conditions. Information about these
diversions and releases is provided to MARFC in near real-time for operational
forecasting. However, records of the individual diversions and releases were not
available for hindcasting. As the diversions remove a significant fraction of the total
flows at downstream locations, the hindcast (total) flows could not be compared with
USGS gaged flows at basins downstream of CNNN6 and DWNNG6 in MARFC. Instead,
estimated natural flows were provided by NYCDEP, which adjust the gaged flows to
account for the overall effects of diversions and other regulations. The estimated flows
generally correspond to the local contributions at downstream locations. For example, at
CCRNBSG, the estimated flows provided by NYCDEP correspond to the local contribution
between HLEN6 and FSHN6 upstream and CCRN6 downstream. However, MTGN4 is
modeled differently by MARFC than NYCDEP. Specifically, the local areas of MTGN4
and BRGN6 in MARFC are equivalent to those of Montague, Oakland Valley and
Woodbourne in NYCDEP. Thus, in order to verify the streamflow forecasts at MTGNA4,
the observed flows from Oakland Valley and Woodbourne were routed to MTGN4 and
added to the local contribution from Montague. In summary, the (total) hindcast flows
were verified against USGS gaged flows at WALN6 and NVXNG6 (see Section 4.3 for
data sources), while estimated local flows were used to verify the (local) hindcast flows
for CCRN6 and MTGN4.

Figure 4 provides a schematic of the flow pathways and regulations associated
with the Ashoken Reservoir. Flows are diverted from the Ashokan Reservoir to NYC
and from several upstream locations for local irrigation and water supply. These
diversions remove a significant fraction of the total flows at Mount Marion (MRNN®G).
Estimated flows were provided by NYCDEP for the NERFC river basins. At MRNNG, the
estimated flows comprise the local contribution to MRNNG6 only, without any spillage or
waste channel flows from the Ashoken Reservoir (Figure 4). As indicated in Figure 4,
flows are routed through the Schandaken Tunnel (STUNG6) from the Schoharie
Reservoir (GILNG) to the Esopus Creek upstream of Mount Trempor (MTRNG6) and then
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to the Ashoken Reservoir. The Ashoken Reservoir comprises two storage basins,
namely the East Ashoken (ASENG6) and the West Ashoken (ASWNG6), which are

separated by a concrete dividing weir and roadway.

At MTRNSG, the total streamflow comprises the local contribution at MTRNG6 plus
the diverted flows from the Schoharie Reservoir. An archive of these diverted flows was
provided by the USGS for the entrance to the Schandaken Tunnel. This was subtracted
from the USGS gaged flow at MTRNG6 for comparison with the streamflow hindcasts,
which only comprise the local contribution at MTRN6. The diverted flow was not routed
to MTRNG6 before being subtracted from the USGS gaged flow. Thus, a small timing
error should be expected in the estimated streamflows at MTRNG6. In practice, this
timing error is unlikely to be significant as the verification focuses on aggregated time-
scales of 5 days or more (see Section 4.4). Finally, the hydrologic models were
calibrated against the observed flows at MTRN6 without accounting for diversions.
Thus, the model parameters and associated forecasts at MTRN6 may show reduced
skill.

At GILNG, the hindcasts comprise inflows to the Schoharie Reservoir, which are
not impacted by the diversions to MTRNG6. The USGS gage at the Schoharie Reservoir
is located in the reservoir pool, rather than the inflow. Thus, the NYCDEP estimated
inflows were compared to the corresponding forecast inflows. The inflows were
estimated by NYCDEP using gauged reservoir levels and outflows. The outflows

comprise all diversions, spills and releases, but evaporation is not considered.

In summary, the (total) hindcast flows were verified against the USGS gaged
flows at PTVNG6, whereas the hindcast flows at MTRN6, MRNN6 and GILN6 were
verified against estimated flows provided by NYCDEP.

4.2  The Hydrologic Ensemble Forecast Service (HEFS) methodology

Further details on the HEFS methodology can be found in Appendix A. The

HEFS models the total uncertainty in streamflow at some future times, g, , conditionally

upon the observed streamflow up to, and including, the current time,q,. The total
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uncertainty is factored into two main sources of uncertainty, the “hydrologic
uncertainties” and the “meteorological uncertainties”. The meteorological uncertainties
are included in the raw streamflow forecast and the hydrologic uncertainties are
modeled in an adjusted streamflow forecast. Omitting the random variables for

simplicity,
f,(d;1a.) =] f,@; |a..a,) f(a,|q.) da,, 1)
(S
Total Adjusted Raw

where q, denotes the raw streamflow forecast. The raw streamflow forecast is

estimated with the Hydrologic Ensemble Processor (HEP). The HEP integrates a finite
number of “equally likely” traces of precipitation and temperature through the hydrologic

models. These traces include the forcing uncertainty, which is modeled explicitly

f,a, q.) = [ f.(a, la..m;) fy(m,) dm,, ey
%(_/ \ AN —
Raw Raw |Forcing  Forcing

where m, denotes the future (observed) forcing. The forcing uncertainties are

guantified by the Meteorological Ensemble Forecast Processor (MEFP). The MEFP

models the observed forcing conditionally upon a raw forecast, r, ; that is, by estimating

the joint distribution, f,(m,,r,), and factoring out r, in real time

fy(m) = f(m,,r,) dr,. (3)

The raw forcing may comprise the ensemble mean of NCEP’s GEFS or single-valued
guantitative precipitation forecasts from the RFCs, among others (Wu et al., 2011). The
HEFS does not currently isolate the contributions from other sources of uncertainty,
such as the initial conditions or parameters of the hydrologic models (Appendix A).
Rather, the overall effects of these additional uncertainties are modeled in the adjusted
streamflow forecast using the Ensemble Post-processor (EnsPost; Seo et al., 2006). In
all cases, the parameters of future quantities are estimated from subsets of the

historical data, for which a degree of stationarity is assumed. Here, the parameters of
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the HEFS were estimated from the same historical period (1985-1999) used for the
streamflow hindcasting and verification. While statistical models generally perform
better under dependent than independent validation, the HEFS was designed with a
minimum number of parameters to estimate. Not surprisingly, therefore, experiments
with the MEFP (e.g. Wu et al., 2011) and with the EnsPost (e.g. Seo et al., 2006) have
shown negligible differences between dependent and cross-validation when using a

calibration period of ~20 years.
4.3 Datasets

Hindcasts of mean areal temperature (MAT) and mean areal precipitation (MAP)
were generated with the MEFP for a 15 year period between 1985 and 1999. The
hindcasts of MAP and MAT were produced at 12Z every 5 days. Each forecast
comprised ~50 ensemble members, with lead times varying from 6 to 7,920 hours in six-
hourly increments. Inputs to the MEFP comprised “raw” precipitation and temperature
hindcasts from NCEP’s Global Ensemble Forecast System (GEFS; Hamill et al., 2013)
and the Climate Forecast System Version 2.0 (CFSv2). For the period 1-15 days, the
MEFP was calibrated with the ensemble mean of the GEFS hindcasts. For the period
16-270 days, the MEFP was calibrated with the single-valued forecasts from the CFSv2.
As the CFSv2 forecasts were initialized only once every 5 days, the HEFS forcing and
streamflow hindcasts were also produced at this frequency (i.e. 6-hourly forecasts with
a TO every 5 days). For the period 271-330 days, a “resampled climatology” was
derived from the historical observations of MAP and MAT. Specifically, the MAP and
MAT were resampled in a moving window of, respectively, 30 days and 15 days either
side of the forecast valid date. A smooth probability distribution was then fitted to the
resampled observations and ensemble members were derived from the fitted
distribution. The MEFP forecasts with combined inputs from the GEFS, CFSv2 and
resampled climatology are denoted MEFP-GCC. Resampled climatology was also
generated for the period 1-330 days, in order to evaluate the skill of the MEFP-GCC
forecasts. The resampled climatology forecasts are denoted MEFP-CLIM.
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Raw streamflow hindcasts were generated with the HEFS using the precipitation
and temperature forecasts from the MEFP. The hydrologic modeling was conducted
with the CHPS using the operational models implemented at each RFC. In NERFC the
Snow Accumulation and Ablation Model (SNOW-17; Anderson, 1973) is used together
with the Sacramento Soil Moisture Accounting Model (SAC-SMA; Burnash, 1995). In
MARFC, the SNOW17 model is used together with an empirical hydrologic model,
based on the Antecedent Precipitation Index (API), but adapted for continuous
simulations (the so-called “Continuous API” model). Where applicable, routing is
conducted with Lag/K using constant or variable lag and attenuation (e.g. WALNG6 to
CNNNG6 uses a constant lag with no attenuation). In several RFCs, an ADJUST-Q
operation is used to blend the most recent observed streamflow into the operational
forecast, although hydrologic persistence is generally limited for long-range forecasting.
In the HEFS, ADJUST-Q is (largely) replicated by the EnsPost, which corrects for
biases in the raw streamflow forecasts conditionally upon the prior observed flow, as
well as the contemporary simulated flow (see Seo et al., 2006). However, following a
preliminary application of the EnsPost for long-range forecasting, some enhancements
were deemed necessary. Thus, only the raw streamflow forecasts are considered in this
study. Nevertheless, in order to separate the meteorological uncertainties and biases
(addressed by the MEFP) from the hydrologic uncertainties and biases (otherwise
addressed by the EnsPost), the streamflow forecasts were verified against simulated

streamflow as well as observed streamflow (see Section 4.4).

Observations of precipitation and temperature were obtained from each RFC and
comprised areal averages (MAP, MAT) of the gauged precipitation and temperature in
each basin. The data comprise six-hourly observations at {0Z,6Z,127,18Z} between
1949 and 1999. Streamflow observations were obtained from the United States
Geological Survey (USGS) for the period 1985-1999. They comprise daily mean
streamflows at the outlet of each basin. The averages were determined from
observations of river stage, beginning at midnight in local time, and converted to
streamflow using a measured stage-discharge relation (Kennedy, 1983). Subsequently,
they were converted to runoff values (mm/day) for ease of comparison between basins.

However, the USGS gaged flows were only used to verify the streamflow forecasts at
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three headwater locations, namely WALN6 and NVXN6 in MARFC and PTVNG6 in
NERFC. All other locations (including MTRNG6, which receives diverted flows from the
Schoharie Reservoir) were effectively treated as headwaters. Specifically, the forecast
local flows were verified against estimated local flows provided by NYCDEP.

In practice, the estimated flows provided by NYCDEP are known to be imperfect.
For example, reservoir inflows are estimated from gaged reservoir levels and outflows.
The outflows comprise all diversions, spills and releases, but evaporation is not
considered. During the dry season, this can lead to approximation errors for low flows,
which are assigned zero if the inflow estimates are negative. In other cases, the
contributing areas defined by NYCDEP differ from those used by the RFC and observed
flows are estimated by routing and summing contributions from multiple sub-basins (e.qg.
MTGNA4).

There are several challenges for applying the HEFS consistently in regulated
rivers; that is, to maintain consistency between calibration and operational use and
between hindcasting and operational use. Consistency between hindcasting and
operational use is necessary to evaluate the HEFS and provide measures of forecast
guality that can guide operational applications. Consistency between calibration and
operational use is necessary to train the EnsPost on hydrologic biases and uncertainties
that represent the operational reality. These issues are currently being explored, and
recommendations developed, as part of a Concept Of Operations (CONOPS) for the
HEFS. Elsewhere, Georgakakos et al. (2010) describe a methodology for

accommodating river regulations in operational ESP.
4.4  Verification strategy

Verification was conducted with the Ensemble Verification System (EVS; Brown
et al., 2010b). The forecasts were verified conditionally upon season, forecast lead time,
magnitude of the observed and forecast variables, and aggregation period. While limited
combinations of these attributes were also considered, they were often constrained by
the sampling uncertainties of the verification metrics. The sampling uncertainties were

not explicitly quantified here (see Brown and Seo, 2013 for an example). However, the

28 of 128



verification results were only computed for samples of 30 or more verification pairs (the

smaller of the number of occurrences and non-occurrences for discrete metrics).

In pairing the meteorological forecasts and observations, the observed values
were chosen from the nearest available time in {0Z, 6Z, 12Z, 18Z}. This introduced a
timing error into the observations of +1 hour in both MARFC and NERFC (UTC-5). As
the forecasts were verified at an aggregated support of five days or larger (see below),
this timing error was considered unimportant. Pairing of the observed and forecast
streamflows was complicated by the daily frequency of the verifying observations and
estimates. Specifically, the observations comprise daily mean flows from 5Z-5Z. Thus,
in pairing the streamflow forecasts and observations, it was assumed that the observed
streamflows adequately represent the period 6Z-6Z. The first three forecasts, which
comprise valid times of 18Z, 0Z and 6Z (representing the period 12Z-6Z), were then
ignored. As such, the first verification pair comprises the observed streamflow from 5Z-
5Z and the average of the 6-hourly forecasts from 12Z, 187, 0Z, and 6Z with forecast
lead times of 24, 30, 36 and 42 hours, respectively (nominally labelled 42 hours). For
consistency, the first three forecasts were also dropped when pairing against the

simulated flows.

While pairing was conducted for daily averages of temperature and runoff, and
for accumulated precipitation, the verification was conducted for aggregated periods of
five days or more, as: 1) this study focuses on the long-range forecasts, for which most
practical applications benefit from aggregated quantities (i.e. daily averages have little
skill for the long-range); and 2) the hindcasts were initialized only once every five days,
which introduced an artificial cyclicity into the paired sample when verifying at a daily
scale. The latter is illustrated in Table 2, where the indices of verifying observations are
shown for a selection of forecast initialization times (TO) and lead times. As evidenced
by the shading in Table 2, the composition of the observed sample varies systematically
with forecast lead time (i.e. every five days) when verifying at a daily timescale. By
aggregating the forecasts and observations into periods of five or more days, this

sampling artifact was avoided.
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In evaluating the quality of the HEFS forecasts, unconditional bias and skill are
important, as the HEFS is an operational forecasting system for which many
applications are anticipated (with varying sensitivities to streamflow amount). However,
“average conditions” generally imply dryer weather and lower flows, as precipitation and
streamflow are both skewed variables. Thus, conditional verification is also important.
The MEFP forecasts were verified against observed temperature and precipitation. The
streamflow forecasts were verified against observed streamflow at the outlet of each
basin. In addition, the raw streamflow forecasts were verified against simulated
streamflow. Verification against simulated streamflow allows the total uncertainty to be
separated from the meteorological uncertainties, as the hydrologic simulations and
forecasts both comprise hydrologic uncertainty. In short, any differences between the
hydrologic forecasts and simulations reflect the contribution of meteorological
uncertainty to the streamflow forecasts, independently of any hydrologic uncertainties

and biases (but notwithstanding errors in the meteorological observations).

When verifying forecasts of continuous random variables, such as precipitation
and streamflow, verification is often performed both unconditionally and conditionally
upon particular events (Wilks, 2006; Jolliffe and Stephenson, 2011). In order to compare
the verification results between basins and seasons, for different forecast lead times
and valid times, and for different aggregation periods, common events were identified
for each basin. Specifically, for each verifying dataset (v), aggregation period (a) and

basin (b), a climatological distribution function, Ifn,v,a,b(x) was computed from the n

observations collected between 1985 and 1999. Real-valued thresholds were then

-1
n,v,a,b

determined for k~100 climatological exceedence probabilities, ¢, F (c,), where

c, e[0,1] and p=1,...,k. Verification measures that depend continuously on the data,

such as the mean error, were derived from the conditional sample in which the
observed value exceeded the threshold. For consistency, exceedence thresholds are
used throughout; for continuous measures, this implies greater emphasis on high
streamflows. Measures defined for discrete events, such as the Brier Score, were

computed from the observed and forecast probabilities of exceeding the threshold.
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When verifying the raw streamflow forecasts, Ifn,v,a,b(x) was derived separately for the

streamflow observations and simulations.

Key attributes of forecast quality are obtained by examining the joint probability

distribution of the observed variable, Y, and the forecast variable, X, f,,(X,y). The joint
distribution can be factored into f, (x,y)=f,,(y|x) f,(x), which is known as the
“calibration-refinement” (CR) factorization and f, (x,y)= f,,(x|y) f,(y), which is
known as the “likelihood-base rate” (LBR) factorization (Murphy and Winkler, 1987). The
conditional distribution, f,, (y[x), reflects the Type-I conditional bias or reliability of
the forecast probabilities when compared to f,(x)and resolution when only its

sensitivity to X is considered. For a given level of reliability, sharp forecasts (i.e.
forecasts with smaller spread or a greater deviation from climatology) are sometimes
preferred over unsharp ones, as they contribute less uncertainty to decision making
(Gneiting et al., 2007). Put differently, as the sharpness increases, other attributes of
forecast quality must also increase to maintain a given level of forecast skill. The

conditional distribution, f, (x|y) , reflects the Type-Il conditional bias of the forecasts
when compared to f,(y) and discrimination when only its sensitivity to Y is

considered. If Y is assumed certain, i.e. f,(y)=45(y), the forecasts must be perfectly

sharp (deterministic) and perfectly accurate to have no Type-Il conditional bias. In
practice, no single metric provides a complete description of forecast quality (Hersbach,

2000; Bradley et al., 2004). Appendix B summarizes the key metrics used in this paper.
5. Results and analysis
5.1  Quality of the precipitation and temperature forecasts

The precipitation and temperature forecasts from the MEFP are verified against
observed MAP and MAT, respectively. The results are presented by forecast lead time,

magnitude of the forcing variable, season and aggregation period.
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5.1.1 Forecast lead time

Figure 5 shows the correlations of the ensemble mean forecast and observed
precipitation amounts by forecast lead time. The results are shown for the raw forcing
from the GEFS and CFSv2 for the period 1-270 days, together with the bias-corrected
forcing from the MEFP-CLIM and MEFP-GCC for the period 1-330 days. The
correlations between the ensemble mean of the MEFP-GCC precipitation forecasts and
the corresponding observed precipitation generally exceeds 0.6 when averaged over
the first 5-day period, but decline rapidly thereafter. Beyond 5-10 days, the correlations
approach the background signal of 0.1-0.2 associated with resampled climatology. At
some locations, such as GILN6 and PTVNG6 in NERFC, the MEFP-GCC forecasts show
lower correlations than the MEFP-CLIM forecasts between 10 and 15 days, but recover
after 15 days. During the period of CFSv2 forcing (16-270) days, the ensemble mean of
the MEFP precipitation forecasts is no more correlated with the observed precipitation
amount than resampled climatology. However, the MEFP maintains or improves upon
the correlations between the raw forcing from the GEFS and CFSv2 and the
corresponding observed precipitation amounts.

Both the MEFP-GCC and MEFP-CLIM forecasts show cyclic variations in the
correlation coefficient, with a cycle of ~30 days. This originates from the use of so-called
‘canonical events” in the MEFP, whereby predictors are formed from different
aggregation periods for each forecast valid time (Appendix A). These canonical events
are grouped into 30-day periods within the forecast horizon (or multiples thereof), with
separate events applying to days 1-30, 31-60 etc. The observed cyclicity in some
verification statistics may be an artifact of calibrating the MEFP with limited sample
data, as the precipitation climatology should otherwise vary smoothly during the forecast

horizon.

Figure 6 shows the relative mean error (RME) of the MEFP-CLIM and MEFP-
GCC precipitation forecasts by increasing forecast lead time. On average, the ensemble
mean of the MEFP underestimates the observed precipitation amount by ~5% for both

sources of raw forcing, in all basins, and at most forecast lead times. However, in
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absolute terms, these biases amount to less than 1mm accumulation over 5 days. As
indicated in Figure 6, the MEFP-GCC precipitation forecasts show a slight discontinuity
in the RME at 271 days, where the raw forecasts transition from CFSv2 to resampled
climatology and the underforecasting bias increases slightly. This artifact is not visible in
the mean error of the ensemble mean forecast (results not shown) and reflects the
greater sensitivity of the RME to small changes in mean error under typical (i.e. dry)

conditions.

Figure 7 shows the mean Continuous Ranked Probability Skill Score (CRPSS) of
the MEFP-GCC and MEFP-CLIM precipitation forecasts against sample climatology.
Sample climatology comprises the unconditional probability distribution of precipitation
between 1985 and 1999. During the first ~5 days of the forecast horizon, the MEFP-
GCC precipitation forecasts are 20-25% more skillful than sample climatology. This
originates from the skill of the raw GEFS forecasts during the first week. In contrast, the
forecasts are only marginally more skillful than sample climatology after ~5 days. This
originates from the (lack of) skill in the raw forcing beyond the first week. As
climatological forcing is currently used by the RFCs for ESP, it is unlikely that the MEFP
will improve upon the existing long-range temperature and precipitation forecasts at

these locations.

Figure 8 shows the mean CRPSS of the MEFP-GCC and MEFP-CLIM
temperature forecasts against sample climatology. On average, the MEFP-GCC
temperature forecasts are ~80-90% more skillful than sample climatology at a forecast
lead time of 1-5 days across all basins and ~65-70% more skillful than sample
climatology after ~15 days. Unlike the precipitation forecasts, the raw GEFS forecasts
and hence the MEFP-GEFS forecasts remain skillful after 5 days when compared to the
MEFP-CLIM forecasts. This stems from the relative predictability and temporal
autocorrelation of temperature versus precipitation. Howe