
Integrating RRS with Data Services in a Services
Oriented Architecture

Functional Requirements Document

June 1, 2004

Table of Contents

1. Introduction...2
2. Task Objectives..3
3. Architectural Considerations for a Migration Strategy..4

Key Migration Elements..5
The Importance of Separating Science Code from Data Source Implementation 5
Integration with FORTRAN...7

4. Requirements Related to Upgrading RRS...8
Terminology/Domain Model for Data used in RRS...8
Use Cases: Stations and Parameters..8
Use Cases: Observations...9
Use Cases: Time Series...9
Use Cases: Lock Management..9
Additional Considerations...10

5. Data Services Architecture Components...11
Terminology..11

6. Component Requirements: Science Application Interface (SAI) ..13
7. Component Requirements: Data Location Interrogator (DLI) ...15
8. Component Requirements: Data Service Adapter (DSA) ...17
9. Component Requirements: Data Service Adapter Factory (DSAF) ..19
10. Component Requirements: Data Access Controller (DAC) ..20
11. Component Requirements: Directory Service (DS) ..22
12. Component Requirements: Lock Management Service (LMS) .. 23
13. Summary..25

June 1, 2004
Page 1 o f 24

 NWS OHD Integrating RRS with Data Services

1. Introduction

The National Weather Service (NWS), through its Office of Hydrologic Development (OHD) has defined
and documented a high-level software architecture design for upgrading and enhancing its operational
forecasting systems. Now OHD intends to design the data services components that constitute a key part
of the architecture, with the purpose of assessing the feasibility of such a design and establishing the
scope of a proof-of-concept implementation of such components.

The proposed software architecture is focused on several key objectives, all of which revolve around the
OHD’s needs to modernize the NWSRFS (NWS River Forecasting System) scientific code, migrate to
standard database systems, improve system performance with multi-threaded operation, implement more
effective data locking capabilities, and enable greater configuration flexibility of the scientific systems.

The newly defined high-level software architecture focuses on services to address many of the
modernization objectives discussed above. While previously the architecture referred to as services-
oriented architecture (SOA) meant a services-oriented architecture built on XML standards and HTTP
(XML, SOAP, WSDL, HTTP), we have expanded the term to include other architectures built on additional
protocols and standards (JMS, JINI, CORBA, ODBC/JDBC).

In our document entitled “Software Architecture Engagement Summary” dated January 9th, 2004, we
recommended the design of several core components that will drive the proposed SOA. During the course
of writing the requirements for the components, we engaged in some design activities and defined the
components and their interaction more clearly. As a result, we have renamed most of the components
with more descriptive names, and have combined certain capabilities into one component where the more
detailed design called for such a consolidation.

June 1, 2004
Page 2 o f 24

 NWS OHD Integrating RRS with Data Services

2. Task Objectives

According to the Statement of Objective (SOO), the purpose of this task is “to create a Data Services
Design in accordance with the software architecture design described in the document Software
Architecture Engagement Summary as delivered to OHD by Apex Digital Systems, Inc…. The Data
Services Design resulting from this task must accurately describe the requirements and implementation
specifications for development of a proof-of-concept Data Service using the NWS River Forecast System
Rivers, Reservoirs and Snow (RRS) data pre-processor as an example application.” (OHD SOO for task
No. 4-0009.)

Specifically, OHD requested requirements discovery focused around two capabilities:

A. Requirements related to upgrading RRS

Since OHD intends to create a working proof-of-concept data service that functions in the context of one
NWSRFS application, OHD selected the RRS preprocessor (“Rivers, Reservoirs and Snow”) as an
example integration point for a proof-of-concept data service. To achieve the example integration, OHD
requested that Apex review the functionality of RRS’s interaction with its underlying data source. While the
current task does not require requirements documentation related to implementing changes to RRS for
integration with a future data service, we have outlined several relevant design issues below that will aid
the understanding of the data services components requirements.

B. Requirements discovery related to future data services components

In our previous engagement, Apex defined a set of components deemed to be required for a flexible data
service architecture that delivers the objectives described above. Under the current engagement, OHD
requested that Apex define design requirements for the following components:

 Local Data Access Agent/Service: Local or remote application that routes read or write requests
to the appropriate target repository.

 Data Location Agent/Service: Local or remote application that determines the location of a data
provider registered for a specific data space identification code.

 Local Data Format Agent/Service: Local or remote application that formats data during read
requests into a format specified by the calling application.

 Data Control Access Agent/Service: Local or remote application that accesses a specific data
source for reading or writing and performs read or write requests.

 Directory Service: Local or remote application that provides data service identifiers based on a set
of pre-defined parameters, such as a data space identification number.

We have conducted specific design activities to determine appropriate requirements for some of the
components. We also discovered in the detailed analysis of RRS that the application is highly optimized to
operate well within technical constraints present when RRS was created. These technical constraints,
mainly related to the availability of memory, no longer exist in the same form, and in fact may inhibit an
effective implementation of a services-oriented architecture surrounding the application. Before we
discuss specific requirements for the listed components, it is important to address several general themes
raised by the particular architecture underlying RRS.

June 1, 2004
Page 3 o f 24

 NWS OHD Integrating RRS with Data Services

3. Architectural Considerations for a Migration Strategy

The RRS program is an integral component to a critical national forecasting system. As a result, any
efforts to modernize RRS, and other scientific applications like it, must occur while continuing to support
production-level forecasting requirements. Any modernization efforts must produce a program that is at
least as reliable and stable as the current RRS, while delivering key migration priorities. It is therefore
imperative that OHD define a migration strategy that promotes stability and minimizes the risk of software
failures while achieving significant architectural and technical improvements.

OHD will have a choice of several approaches to modifying RRS and similar applications to make use of
the services-oriented architecture components proposed in this document, ranging from minimally
invasive modifications to a complete reconstruction, in componentized fashion, of the code. Specifically,
we have discussed with OHD the following migration options:

 Minimal impact: Rewrite functionality of read/write routines, and connect those revised routines
directly to new data sources. While limited in scope, this approach will likely face major
performance weaknesses as RRS accesses the current read and write routines very frequently. In
the review by the Apex team, this option was discarded as not viable.

 Moderate impact: Define a standard API for each science application, and implement this API in
an adapter-based code base. While this approach will likely require changes in the scientific code,
those changes all serve to isolate the scientific code further from the database implementation,
serving to stabilize the scientific code and enabling easier migration in the future.

 Significant impact: Rewrite science applications entirely in Java, C or C++. This approach has a
major disadvantage in that it retains no existing code and requires a level of effort that is not
viable for OHD at this time.

We recognize that the higher-impact solutions may be desirable, but conflict with the priorities stated
above. Major Modifications present a high risk of introducing new errors in the code, and could degrade
stability that has been achieved for key components. In addition, it is unlikely that NWS will have the
resources available (people, time and funds) to achieve a major reconstruction of much of the NWSRFS
code. Clearly, the selection of the appropriate migration option will remain a significant OHD policy
discussion.

As a result, the Apex team proposes a program design that minimizes as much as possible the number of
changes required to the scientific code and simplifies such changes as much as possible. The
requirements presented in this document assume the moderate-impact approach, based on the adapter
technology outlined below. This design approach reduces the risk of undermining production requirements
and greatly increases the chances of migrating successfully and efficiently to more modern data sources.
In addition, the design advocated in this document enables OHD to continue to modernize scientific code
and data storage code safely and efficiently and prevents OHD from becoming locked into current
database technology.

June 1, 2004
Page 4 o f 24

 NWS OHD Integrating RRS with Data Services

Key Migration Elements

Apex recommends a migration approach that will apply generally to NWSRFS applications that might be
modernized in the future, and builds on several basic priorities:

 The design should allow incremental implementation.

 The design should enable performance optimizations for specific data sources.

 The design should enable future changes to RRS data sources with minimal code changes to the
core interfaces.

 The design should promote stability and correctness while changing data sources.

 The design should enable data sources to be tested in isolation, prior to integration with scientific
code.

Translating these priorities into a specific architectural structure is grounded in best software design
practices on various platforms, we recommend that OHD consider implementing the following general
components. Later in this document, we provide specific instances of these components, and provide use
cases for their functionality.

 A defined Data API (Application Programming Interface), to provide scientific applications with a
common method of interacting with their data.

 An extensible set of Data Adapters to implement the Data API in terms of specific databases.
This enables almost any data source to be accessed from scientific code implemented in terms of
the Data API.

 A set of Data Adapter Factories that are closely related to Data Adapters and are used to
instantiate the specific driver needed by the scientific applications. This component loads a Data
Adapter by name.

In this document, we outline in detail the requirements for the various components required to implement
this architecture. We offer a piece of Java code to illustrate at a high level how these three components
might interact, and how simple the interaction is intended to be:

RRSDataAdapter myAdapter;
int[] theObservations;
myAdapter=RRSAdapterFactory.GetAdapter(“FS5”,“/users/…”);
//remainder of scientific code…
theObservations = myAdapter.getObservations(stationID);
…

The Importance of Separating Science Code from Data Source Implementation

The main current concern regarding the RRS implementation is the fact that RRS very closely models the
implementation of the database structures as part of the scientific code. Alternatively, the RRS Data API
will enable the RRS scientific code to access RRS data in a database-neutral manner. The design of this
API is critical to the success of the Data Adapter structure. Regardless of the level of representational
specificity implemented in the API, the API must provide the following programmatic capabilities:

June 1, 2004
Page 5 o f 24

 NWS OHD Integrating RRS with Data Services

 Enable data access in a database-neutral manner; it must enable data queries to be made based
on attributes of the data, rather than data storage attributes.

 Provide data in ways that is suited for effective use by the scientific code.

 Easily adapt to FORTRAN, C, C++, and Java; this means that data should be returned from data
queries in types that are available in all these languages.

 Enable the Data Adapter to make performance decisions independently.

The API-based approach, coupled with the adapter technology described in further detailed below,
enables the listed priorities. Figure 1 below provides a graphical representation of a possible
implementation structure, showing that RRS scientific code uses a standard RRS Data API to interact with
Data Adapters designed to interact with specific repositories. The diagram shows that the API remains
consistent across adapters, while the implementation of the adapter’s connection to the repository is
specific to each adapter.

Figure 1: Conceptual RRS Data API

The RRS Data API could be implemented with varying degrees of specificity to the data representation, as
follows:

 Full abstraction: Full data abstraction would require a general data representation language such
as ANSI SQL. For accessing FS5 files, such a representation language would be onerous and
would not provide much value. A sample call for data might have the following structure:

RRSDataAdapter myAdapter;
String mySQL;

mySQL=”Select * from Observations where StationID=’AB8JK73R0’”;
myObservations = myAdapter.getData(mySQL);
…

 Full encapsulation: Full encapsulation would simplify the API and its implementation by providing
specific-purpose interfaces. A sample call for data might have the following structure:

RRSDataAdapter myAdapter;
int[] myObservations;

June 1, 2004
Page 6 o f 24

 NWS OHD Integrating RRS with Data Services

String myStationID=”AB8JK73R0”;
myObservations= myAdapter.getAllObservations(myStationID);
…

At this point, the Apex team would recommend the latter approach, mostly due to its simplicity and
stability. However, the approach should be tested further in the proof-of-concept phase of this project.

Integration with FORTRAN

The Data Adapter design cannot be implemented directly in FORTRAN. It can be implemented in C, C++,
Java, and other languages. To integrate this design into RRS, a component is required to convert
FORTRAN calls into calls native to the Data Adapter and Factory implementation. In this document, this
component is described as the Science Application Interface (SAI). The SAI will expose all API methods
with methods appropriate for FORTRAN. It will also expose methods that enable the calling application to
identify the appropriate adapter based on application configuration settings.

June 1, 2004
Page 7 o f 24

 NWS OHD Integrating RRS with Data Services

4. Requirements Related to Upgrading RRS

In the course of analysis of RRS in its current implementation (version 72), we found RRS to be highly
optimized for minimal availability of process memory. As a result, the scientific code is tightly integrated
with the technical implementation of the underlying data repository, built in the proprietary FS5 technology.
OHD will have a choice of several approaches to modifying RRS to make use of the data services
architecture, ranging from minimally invasive modifications to a complete recreation, in componentized
fashion, of the code. The moderate-impact approach, discussed above, establishes a challenging path to
the solution. Any more significant modification to RRS is assumed to ease integration with newer
technology such as the data services components presented in this document.

In order to begin to abstract RRS away from the specific database implementation, we are providing
terminology and general use cases here. OHD will need to select a specific implementation approach for
the proof-of-concept design effort.

Terminology/Domain Model for Data used in RRS

Station: A location of one or more meteorological or hydrologic data collection instruments. A station is
represented by an 8-character identifier. A station typically contains more than on instrument, but only one
instrument for each type of data.

Instrument: A device that collects hydrologic or meteorological data. An instrument is located at a station.

Data Type (Measurement Type): A categorization for measurements that have the same set of properties.
Data types can refer to simulations as well as observations.

Observation: A single numeric measurement at a station for a specific point in time or time period. If the
Observation applies to a time period, the observation has a start date and time as well as an end date and
time. Each observation is of some Data Type.

Use Cases: Stations and Parameters

UC RRS-1.1: RRS will read Station parameters for several Stations and all parameter types.
RRS will retrieve from its repository a set of Stations, along with a list of all appropriate parameter types
and parameter value arrays for each Station.

UC RRS-1.2: RRS will read Station parameters for one Station and all parameter types.
RRS will retrieve from its repository one Station, along with all the parameter types and parameter value
arrays for the selected Station.

UC RRS-1.3: RRS will read Station parameters for one Station and selected parameter types.
RRS will retrieve from its repository one Station, along with the list of parameter values for a selected list
of parameter types.

UC RRS-1.4: RRS will read Station parameters for several Stations and selected parameter types.

June 1, 2004
Page 8 o f 24

 NWS OHD Integrating RRS with Data Services

RRS will retrieve from its repository a set of Stations, along with the list of parameter values for a selected
list of parameter types.

Use Cases: Observations

UC RRS-1.5: RRS will read Observations for one Station, all parameter types and all time periods.
RRS will retrieve from its repository a time-ordered list of Observations that were recorded during all
available time periods for a specific Station.

UC RRS-1.6: RRS will read Observations for one Station, all parameter types and selected time
periods.
RRS will retrieve from its repository a time-ordered list of Observations that were recorded during a
selected time period for one Station for all Data Types.

UC RRS-1.7: RRS will read Observations for one Station, selected parameter and selected time
periods.
RRS will retrieve from its repository a time-ordered list of Observations that were recorded during a
selected time period for one Station for selected time Data Types.

UC RRS-1.8: RRS will read Observations for all Stations, all parameters and all time periods.
RRS will retrieve from its repository a time-ordered list of Observations that were recorded during all
available time periods for all Stations for all Data Types.

UC RRS-1.9: RRS will read Observations for all Stations, all parameters and selected time periods.
RRS will retrieve from its repository a time-ordered list of Observations that were recorded during a
selected time period for all Stations for all Data Types.

UC RRS-1.10: RRS will read Observations for all Stations, selected parameters and selected time
periods.
RRS will retrieve from its repository a time-ordered list of Observations that were recorded during a
selected time period for all Stations for selected Data Types.

Use Cases: Time Series

UC RRS-1.11: RRS will write time series data for a specific Station.
RRS will write to its repository time-ordered time series for a specific Station.

UC RRS-1.12: RRS will write time series data for various Stations.
RRS will write to its repository time-ordered time series for any number of Stations.

Use Cases: Lock Management

UC RRS-1.13: RRS will be able to lock a data source.

June 1, 2004
Page 9 o f 24

 NWS OHD Integrating RRS with Data Services

RRS will be able to exclusively lock a database. After RRS has requested a lock, the database is in the
“Locked” state. While in the “Locked” state, all write operations to the database will return an exception,
except when executed by the application that requested the lock. When locking a data source, RRS will
indicate a timeout period after which the data source may unlock itself without an explicit unlock
instruction.

UC RRS-1.14: RRS will be able to unlock a data source.
Only the RRS application instance that issued a specific lock will be able to unlock the data source, except
when the unlock statement is issued after the timeout period expires.

UC RRS-1.15: A data source locked by RRS will unlock itself after the indicated time-out.
A database in the “Locked” state will return to “Unlocked” when the timeout period elapses. See section 12
for a further discussion of locking options.

Additional Considerations

The use cases listed above assume that only RRS-specific code will be addressed. For example, the new
components will not process HCL in any way, nor will they provide the capability to manage system state
for FORTRAN. Further, OHD will need to consider ways to manage RRS execution metadata, such as
common block variable contents, as such metadata must be passed to the data services components
explicitly. The appropriate approach for managing such metadata is yet unclear, and remains to be
defined during the proof-of-concept phase.

Currently, user authentication in the context of NWSRFS is provided by operating system authentication –
if a user has “execute” access to a directory, they have de-facto access to any application that may reside
in that directory. With a services-oriented approach, authentication of callers to a service becomes an
explicit requirement, as the user does not explicitly log on to the server or workstation that provides the
services interface. Several options of providing authentication services should be considered, ranging
from code-level authentication, where executing code must present a certificate to a service prior to
exchanging data with it, to user-level authentication requiring application logons from the user executing
an application.

June 1, 2004
Page 10 o f 24

 NWS OHD Integrating RRS with Data Services

5. Data Services Architecture Components

We have conducted specific design activities to determine appropriate requirements for some of the
components, resulting in a slight reorganization and renaming of the components. As a result, this
document discusses the following components:

Science Application Interface (SAI): The SAI enables existing FORTRAN code to access in a
standardized fashion any new component to be integrated with the science algorithm, such as the new,
services-oriented data services.

Data Location Interrogator (DLI), formerly called the Data Location Agent/Service: The DLI retrieves
directory information regarding services-oriented data sources.

Data Service Adapter (DSA), formerly part of the Local Data Access Agent: The DSA connects to a data
service of a specific type and specification, and exchanges data via a specific application-programming
interface (API). The DSA implements a standard API which the SAI uses to make generalized calls to the
data repository. Using this API, the SAI does not require any implementation-specific knowledge of the
underlying repository. As a result, the SAI can use the same API for any data source implemented by a
DSA.

Data Service Adapter Factory (DSAF), formerly part of the Local Data Access Agent: The DSAF
ensures the correct setup and connection of data service adapters.

Data Access Controller (DAC), formerly called the Data Control Access Agent/Service: The DAC
represents the data management code required to interact with a data source of a specific type, such as
FS5, Informix, XML/HML, or others.

Directory Service (DS): The DS is a local or remote application that provides data service identifiers
based on a set of pre-defined parameters, such as a data space identification number.

Lock Management Service (LMS): The LMS manages data source locking requests and distributes lock
session tokens to requesting applications.

In addition, we have decided to integrate the Local Data Format Agent/Service into the Data Service
Adapter, primarily because the Adapter will be designed specifically for each data type returned by the
associated remote data source and must be able to return data fully formatted.

Further, the directory service definition remains unchanged, as is the overall concept of the data service
interface, which is initially envisioned as a standard XML Web Services interface. The high-level diagram
below shows the general relationships between the components. These relationships are described in
more detail below. In the discussions below about each component, portions of this diagram will be
repeated for clarity.

Terminology

Science Application: An application that contains scientific algorithms used to compute forecast data.

June 1, 2004
Page 11 o f 24

 NWS OHD Integrating RRS with Data Services

Data Space: An abstract group of data records or data tables in a repository that should be treated as one
logical or transactional unit. In some cases, a data space identifier will point to an entire database,
whereas in other cases such an identifier may only point to a specific set of records.

Science
Application

Science
Application

Interface (SAI)

Data Service
Adapter (DSA)

Data Service
Adapter Factory

(DSAF)

Data Location
Interrogator (DLI)

Data Service
Adapter (DSA)

Lock Management
Service (LMS)

Data Access
Controller (DAC)

Data
Source

Loads
Calls to read or write data

DLI Configuration
File

One or more
Directory Services

(DS)

DAC
Configuration File

Requests adapter information

Requests and receives adapter

Loads adapter

Loads directory
configuration

Instantiates Optional Web
Services
Interface

Communicates read
and write requests

Instantiates

Loads database
configuration

Reads and writes
data

Retrieves adapter
information

Note: both symbols refer
to the same adapter

Requests
lock session

Validates lock session

Web Services
Interface

Legend:

Component Interface Data
Source

File

NWS OHD Proposed Data Service Component Architecture Version 2.1, June 1, 2004
Code: Fortran

Code: C++

Direct communication
Direct communication

Web Services
Interface

Web Services
Interface

Figure 2: Data Services Components Overview

June 1, 2004
Page 12 o f 24

 NWS OHD Integrating RRS with Data Services

6. Component Requirements: Science Application Interface (SAI)

Overview

For existing applications, most of which are written in FORTRAN, to communicate with any new
components, such as the envisioned data services components, they will require a small layer that serves
as the conduit and integration point to code written in C or Java.

Use Cases

UC SAI-1.1: SAI provides a single integration point.
The SAI will serve as the single integration point for Science Applications with any data services to be
used by the Science Application.

UC SAI-1.2: SAI invokes services components.
The SAI will invoke specific components to manage the flow of data between the Science Application into
which the SAI is integrated, and the data services with which the Science Application must communicate.

UC SAI-1.3: SAI manages data outflow from the Science Application.
The SAI will receive data to be written to repositories from the Science Application and will present such
data to the appropriate component for writing to the data source via the marshaled components.

UC SAI-1.4: SAI manages data inflow to the Science Application.
The SAI will receive data to be read from repositories by the Science Application and will present such
data to the Science Application for algorithmic use.

UC SAI-1.5: SAI will manage DLI lookup failure.
The SAI will manage a failure by the DLI to resolve a data space identifier, and will communicate this
failure in a standardized manner to the calling Science Application.

UC SAI-1.6: SAI manages lock session.
The SAI will exchange lock session data with the LMS required to ensure that connected data services
only service requests from the SAI’s Science Application.

The following diagram shows the SAI and its direct interactions with other components:

June 1, 2004
Page 13 o f 24

 NWS OHD Integrating RRS with Data Services

Science
Application

Science
Application

Interface (SAI)

Data Service
Adapter (DSA)

Data Service
Adapter Factory

(DSAF)

Data Location
Interrogator (DLI)

Loads
Calls to read or write data

Requests adapter information

Requests and receives adapter

Loads adapter

Code: Fortran

Code: C++

Figure 3: Science Application Interface component interactions

June 1, 2004
Page 14 o f 24

 NWS OHD Integrating RRS with Data Services

7. Component Requirements: Data Location Interrogator (DLI)

Overview

The purpose of the DLI is to communicate with configured Directory Services to retrieve connection
information for specific services via a data space identifier.

Use Cases
UC DLI-1.1: DLI is user-configurable.
The DLI will be locally configurable by a workstation user or administrator to determine all the Directory
Services the DLI may contact to resolve a given data space identifier. Configuration will occur via a locally
stored XML configuration file, which the DLI loads on startup.

UC DLI-1.2: DLI invoked by SAI.
The DLI will be invoked by the SAI, will receive from it the data space identifier, and will return to it a
service address (IP address), Data Service Adapter type, and required connecting data.

UC DLI-1.3: DLI iterates over defined Directory Services.
The DLI will process data space identifier resolution in an iterative fashion, in the following manner:

 The DLI will contact the first configured Directory Service, requesting data space resolution.
 If the contacted Directory Service returns information that the Directory Service does not list

the service, the DLI will contact the next configured Data Service and repeat the resolution
request.

 The DLI will continue processing configured Directory Services until either the data space
identifier is resolved, or the last configured Directory Service fails to resolve the identifier.

UC DLI-1.4: DLI manages lookup failure.
The DLI will manage a failure to determine a service address and connection data and communicate this
failure in a standardized manner to the calling SAI.

The following diagram shows the DLI and its direct interactions with other components:

June 1, 2004
Page 15 o f 24

 NWS OHD Integrating RRS with Data Services

Science
Application

Interface (SAI)

Data Location
Interrogator (DLI)

DLI Configuration
File

One or more
Directory Services

(DS)

Requests adapter information

Loads directory
configuration

Retrieves adapter
information

Web Services
Interface

Figure 4: Data Location Interrogator component interactions

June 1, 2004
Page 16 o f 24

 NWS OHD Integrating RRS with Data Services

8. Component Requirements: Data Service Adapter (DSA)

Overview

The purpose of the DSA is to create an abstraction layer between the calling SAI and the actual data
service, regardless of the service type. As a result, the DSA implements a standard API that is specific to
the Science Application’s data, but which is also specific to a particular data service or source. For
example, a data service implemented as an XML web service will require a separate adapter from a data
service implemented as a JMS messaging-based data service. Further, adapters will also be used for
access to locally stored files. This architecture ensures a single interface point for science algorithms to
underlying data repositories, regardless of their location or type.

Use Cases
UC DSA-1.1: DSA will be instantiated by the DSAF.
The DSA is always instantiated by the DSAF, and receives specific connection information in order to
connect to the correct data source. Once instantiated, the DSA is returned to the calling SAI.

UC DSA-1.2: One DSA will exist for each repository and access method.
Each combination of a repository and an access method requires a unique adapter. For example, for the
SAI to connect to a FS5 database for RRS via XML web services, it requires access to a unique adapter.
For the SAI to connect to the same database via JDBC, it requires a separate adapter. However, both
adapters will implement a standard interface to RRS data.

UC DSA-1.3: All DSAs related to one particular application will implement the same generalized
API.
Since the SAI must be able to access any data source regardless of its implementation, all adapters to be
used by the SAI will implement the same standard API. In the case of RRS, the API will implement the
functionality described by the RRS-related use cases above. The API will expose properties and methods
to the SAI through which the SAI may read or write data from and to the data service.

UC DSA-1.4: A DSA will manage the connection to a DAC component.
A DSA, provided with the appropriate connection information, will monitor and manage the logical
connection with the DAC via the required interface. The DSA will be able to detect connection failures, and
will be able to communicate such a failure to the calling SAI.

UC DSA-1.5: A DSA will manage data exchange with a DAC component.
A DSA, provided with the appropriate connection information, will establish and manage a data exchange
session with a DAC component via a specific interface (such as XML web services, JDBC, etc.) The DSA
will execute method calls via the interface to the DAC and access properties, as needed, to read from the
DAC or write to the DAC as required by calls from the SAI. The connection to the DAC may be a local
connection, or it may connect through a remote interface or service.

June 1, 2004
Page 17 o f 24

 NWS OHD Integrating RRS with Data Services

UC DSA-1.6: A DSA will format data as required by the SAI and the DAC.
A DSA will format data passing through it appropriately for each consumer. If the SAI is reading data via
the Adapter, the DSA will format data into structures required by the Science Application. If the SAI is
writing to the Adapter and provides, e.g., array data, the DSA will transform the array data into the
appropriate representation prior to calling the necessary methods and properties of the DAC.

UC DSA-1.7: A DSA will operate within a managed lock session.
A DSA will manage its connection to the DAC via the appropriate interface subject to the control of a
managed lock session. If the SAI does not request an explicit lock management session, the DSA will
request an implicit lock session, similar to implicit transactioning in relational database management
systems. If a connection attempt occurs without valid explicit or implicit lock authentication, the DSA’s
connection attempt will fail. However, the DSA itself will not manage lock session information as such
information will be managed by the SAI.

The following diagram shows the DSA and its direct interactions with other components:

Science
Application

Interface (SAI)

Data Service
Adapter (DSA)

Data Service
Adapter Factory

(DSAF)

Data Service
Adapter (DSA)

Data Access
Controller (DAC)

Requests and receives adapter

Loads adapter

Instantiates Optional Web
Services
Interface

Communicates read
and write requests

Instantiates

Figure 5: Data Service Adapter component interaction

June 1, 2004
Page 18 o f 24

 NWS OHD Integrating RRS with Data Services

9. Component Requirements: Data Service Adapter Factory (DSAF)

Overview

The purpose of the DSAF is to instantiate the appropriate Adapter with the connection settings provided by
the SAI.

Use Cases
UC DSAF-1.1: DSAF will instantiate a specific Data Service Adapter to load.
From the information retrieved via the DLI from Directory Service, the DSAF will instantiate a Data Service
Adapter of a specific type that is matched to the Data Service to be contacted. The DSAF will provide all
necessary connection information to the Adapter.

UC DSAF-1.2: DSAF will return Data Service Adapter to the SAI.
If the Adapter instantiation succeeds, the DSAF will return the Adapter to the SAI, which in turn will use the
adapter to contact the Data Service directly.

UC DSAF-1.3: DSAF will manage Adapter instantiation failure.
The DSAF will manage a failure to load a specified Data Service Adapter, and will communicate this
failure in a standardized manner to the calling SAI.

The following diagram shows the DSAF and its direct interactions with other components:

Science
Application

Interface (SAI)

Data Service
Adapter Factory

(DSAF)

Data Service
Adapter (DSA)

Requests and receives adapter

Instantiates

Figure 6: Data Service Adapter Factory component interaction
June 1, 2004

Page 19 o f 24

 NWS OHD Integrating RRS with Data Services

10. Component Requirements: Data Access Controller (DAC)

Overview

The purpose of the DAC is to communicate directly with a specific data source and read data from the
source or write data to the source. In many instances, the DAC will perform the routines now performed by
the FORTRAN UREADT and UWRITT functions.

Use Cases
UC DAC-1.1: A DAC will be instantiated by a service or by a DSA.
If operating in a services-oriented mode, DACs will be instantiated by the service implementation (e.g., an
XML web services running on a local or remote server). If an application is configured to use local data
sources, a DAC will be instantiated directly by a specific adapter.

UC DAC-1.2: Each DAC will be associated with one repository.
Each DAC will be written to exchange data with one specific repository of a specific type and containing
specific data. DACs will function as “custom” data exchange components closely fitted to the underlying
data repository.

UC DAC-1.3: A DAC will directly access a repository using configuration data.
Since a DAC always operates directly on a repository, it will be configured to access such a repository as
required. This may involve running local FORTRAN code to access FS5 data, using JDBC or ODBC to
connect to Informix data, etc.

UC DAC-1.4: A DAC may receive read specifications from the DSA.
In order to read data from its associated repository, a DAC will receive a specific read specification,
described in a generic language such as SQL, or defined by specific function calls with individual
parameters. The DAC will be able to translate the request such that it can successfully retrieve the data
described in the request.

UC DAC-1.5: A DAC may receive write specifications from the DSA.
In order to write data from its associated repository, a DAC will receive a specific write specification with
the data to be written to the repository. This request will be described in a generic language such as SQL,
or defined by specific function calls with individual parameters. The DAC will be able to translate the
request such that it can successfully write the data described in the request.

UC DAC-1.6: A DAC will manage lock session information.
A DAC will be able to operate subject to the restrictions of lock sessions defined elsewhere. As a result,
the DAC will only respond to requests that occur within a currently registered lock session.

June 1, 2004
Page 20 o f 24

 NWS OHD Integrating RRS with Data Services

UC DAC-1.7: A DAC will manage database errors.
A DAC will insulate calling Adapters from internal repository errors, and will expose standardized,
structured exception information to the Adapter when exceptions occur.

UC DAC-1.8: A DAC is user-configurable.
The DAC will be locally configurable by a workstation user or administrator to determine the specific
database connection required to access the database. Configuration will occur via a locally stored XML
configuration file, which the DLI loads on startup.

The impact of this architecture on transactions in the science applications remains to be investigated in
the future. While the data sources managed by DAC components will support transactions, the data space
management capabilities will also have to provide such transaction management.

The following diagram shows the DAC and its direct interactions with other components:

Data Access
Controller (DAC)

Data
Source

DAC
Configuration File

Optional Web
Services
Interface

Instantiates

Loads database
configuration

Reads and writes
data

Figure 7: Data Access Controller component interaction

June 1, 2004
Page 21 o f 24

 NWS OHD Integrating RRS with Data Services

11. Component Requirements: Directory Service (DS)

Overview

The purpose of the Directory Service is to provide location and parametric information about specific
services-based resources available to calling applications. A DS could be described as a global, specific-
purpose data service in that it always serves resource location and connection parameter data via an XML
web services protocol. In this way, it is similar to UDDI, but has a broader purpose.

Use Cases
UC DS-1.1: A DS will manage directory entries for data sources.
Directory entries will, at a minimum, consist of a data space identifier, an adapter type identifier, and
connection parameters.

UC DS-1.2: A DS will receive requests to read directory entries from DLI instances.
A DS will listen, via an XML web services interface, to requests to read directory information from DLI
instances. The DS will receive data space identifiers with each read request from a DLI.

UC DS-1.3: A DS will return directory information when possible.
When a DS matches a data space identifier with one entry in the directory repository, the DS will return the
resource/service address, an adapter type identifier that indicates which adapter must be used to connect
to the resource, and connection parameter information.

UC DS-1.4: A DS will return no-match-found information when appropriate.
If a DS cannot find a match for a data space identifier in its repository, the DS will return an exception to
the calling DLI indicating that no match was found.

The following diagram shows the DS and its direct interactions with other components:

One or more
Directory Services

(DS)

Web Services
Interface

Figure 8: Data Service component interaction

June 1, 2004
Page 22 o f 24

 NWS OHD Integrating RRS with Data Services

12. Component Requirements: Lock Management Service (LMS)

Overview

Note: The Lock Management Service requirements and discussion are included for the purpose of
comprehensiveness of the discussion in this document, but are not intended as Apex’s final
recommendation regarding locking. As stated in the proposal for the task for which this document is the
final deliverable, lock management capabilities are complex and will require a separate discovery effort.

The purpose of the Lock Management Service is to manage data source locking requests effectively. We
envision three options for managing locks, as follows. The specific implementation requirements remain to
be determined once data space management capabilities are addressed in the future.

 Passive Lock Management: Locks are cleared based on pre-determined time-out periods

 Active Lock Management: Locks are cleared based on pre-determined time-out periods, but
running processes may extend the pre-determined time-out periods at run-time. As a result,
lock management achieves a higher degree of stability.

 Integrated Lock Management: This option requires deployment of a small software agent on
all systems that execute applications requiring locks. When a lock approaches time-out, the
LMS will be able to contact the agent on the application’s host system and receive positive
confirmation whether or not the application is still running. This option achieves the highest
accuracy and stability, but also requires additional network traffic.

The use cases described here are based on Active Lock Management as described above.

Use Cases
UC LMS-1.1: The LMS will receive lock requests.
The LMS will receive locking requests that specify the application requesting the lock, the requested
locking time, and a default lock timeout period.

UC LMS-1.2: The LMS will receive unlock requests.
The LMS will receive unlocking requests that specify the application requesting the unlock and the
requested unlock time.

UC LMS-1.3: The LMS will receive lock period update requests.
The LMS will receive lock period update requests from applications that need to continue using a lock
beyond the initially indicated timeout period.

UC LMS-1.4: The LMS will manage lock timeouts.
The LMS will automatically unlock data sources for which the LMS has not received an unlock request
within the timeout period, and for which the LMS has not received a lock period update.

The following diagram shows the LMS and its direct interactions with other components:

June 1, 2004
Page 23 o f 24

 NWS OHD Integrating RRS with Data Services

Science
Application

Interface (SAI)

Lock Management
Service (LMS)

Data Access
Controller (DAC)

Requests
lock session

Validates lock session

Web Services
Interface

Web Services
Interface

Figure 9: Lock Management Service component interaction

June 1, 2004
Page 24 o f 24

 NWS OHD Integrating RRS with Data Services

13. Summary

The use cases and requirements identified in this document are intended to describe the capabilities
required for a proof-of-concept data service implementation, using RRS as a test-case application for
integrating existing, FORTRAN-based code with the new architecture. The requirements all point to a
readily extensible implementation that is non-specific to RRS, but will support all of RRS’s data exchange
needs.

The requirements in this document serve multiple purposes. First and foremost, they are intended to
articulate the need for a consistent technical migration strategy built around standard APIs. The purpose
of the APIs is to abstract scientific operations clearly from the logical and physical implementation of
underlying data repositories, enabling future enhancements or replacements of scientific code without a
major impact on all of NWSRFS.

Second, the requirements are intended to outline a specific design pattern that is used widely in the
software industry, as the best-practices approach to implementing the migration strategy. With the
adapter-centric design pattern, OHD will be able to implement improvements, upgrades and replacements
to parts of NWSRFS while maintaining system operations, working in small increments and iterations, and
in easily testable code segments. The adapter pattern will be valuable especially in migrating applications
from older data repositories to more modern ones without losing functionality.

Finally, the design advocated here is simple in a positive way: the components described here require
careful and knowledgeable design, but have a relatively small footprint, which means that they can be
adapted and used widely with moderate effort once the base components have been created. Component
simplicity and stability may, in the final analysis, drive the success of this approach. The requirements
outlined here, with the implicit design described, meet key requirements, ranging from organizational to
technical, and should be implemented in a proof-of-concept fashion for validation.

June 1, 2004
Page 25 o f 24

 NWS OHD Integrating RRS with Data Services

