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We assess the potential of updating soil moisture states of a distributed hydrologic model by assimilating
streamflow and in situ soil moisture data for high-resolution analysis and prediction of streamflow and
soil moisture. The model used is the gridded Sacramento (SAC) and kinematic-wave routing models of the
National Weather Service (NWS) Hydrology Laboratory’s Research Distributed Hydrologic Model (HL-
RDHM) operating at an hourly time step. The data assimilation (DA) technique used is variational assim-
ilation (VAR). Assimilating streamflow and soil moisture data into distributed hydrologic models is new
and particularly challenging due to the large degrees of freedom associated with the inverse problem.
This paper reports findings from the first phase of the research in which we assume, among others, per-
fectly known hydrometeorological forcing. The motivation for the simplification is to reduce the com-
plexity of the problem in favour of improved understanding and easier interpretation even if it may
compromise the goodness of the results. To assess the potential, two types of experiments, synthetic
and real-world, were carried out for Eldon (ELDO2), a 795-km2 headwater catchment located near the
Oklahoma (OK) and Arkansas (AR) border in the U.S. The synthetic experiment assesses the upper bound
of the performance of the assimilation procedure under the idealized conditions of no structural or para-
metric errors in the models, a full dynamic range and no microscale variability in the in situ observations
of soil moisture, and perfectly known univariate statistics of the observational errors. The results show
that assimilating in situ soil moisture data in addition to streamflow data significantly improves analysis
and prediction of soil moisture and streamflow, and that assimilating streamflow observations at interior
locations in addition to those at the outlet improves analysis and prediction of soil moisture within the
drainage areas of the interior stream gauges and of streamflow at downstream cells along the channel
network. To assess performance under more realistic conditions, but still under the assumption of per-
fectly known hydrometeorological forcing to allow comparisons with the synthetic experiment, an
exploratory real-world experiment was carried out in which all other assumptions were lifted. The
results show that, expectedly, assimilating interior flows in addition to outlet flow improves analysis
as well as prediction of streamflow at stream gauge locations, but that assimilating in situ soil moisture
data in addition to streamflow data provides little improvement in streamflow analysis and prediction
though it reduces systematic biases in soil moisture simulation.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Arguably the most important advantage of distributed models
over lumped models for operational hydrology is that the former
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provide a means to monitor and predict streamflow and soil mois-
ture anywhere in the basin at the spatial scale of modeling (i.e., at
the grid scale or the scale of subbasin delineation). Such capability
opens new doors for high-resolution hydrology and water re-
sources products and services for a wide range of users. It has been
demonstrated in recent years that calibrated distributed hydro-
logic models can simulate outlet streamflow at least as well as cal-
ibrated lumped models [1–3]. In operational forecasting using
lumped models, however, the model states are routinely adjusted
in real time by human forecaster and, if available, by automatic
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state updating procedures based on real-time streamflow and
forcing data [4–6]. Such real-time updating significantly improves
the accuracy of streamflow prediction at the outlet (see e.g. [6])
and constitutes an integral step in the operational hydrologic fore-
casting process. Similarly, one may expect that, for distributed
models to be a routinely-used tool in real-time hydrologic predic-
tion, real-time adjustment of distributed model states is necessary.

Regardless of the choice of the models used, analysis and pre-
diction of streamflow and soil moisture are subject to various
uncertainties in the observations and in the model structure,
parameters and initial conditions. Compared to that for lumped
models, state updating for distributed hydrologic models is partic-
ularly challenging due not only to the large degrees of freedom
(DOF) in the inverse problem, i.e., the number of control or state
variables involved can be very large compared to the information
content in the available real-time data, but also to the generally
large sensitivity of the nonlinear model dynamics to the space–
time scale of modeling [1,7,8]. The purpose of this work is to assess
the potential of real-time assimilation of streamflow and in situ
soil moisture data into operational distributed hydrologic models
for monitoring and prediction of streamflow and soil moisture.

Data assimilation (DA) has been used in various hydrologic
modelling and prediction studies and applications [9], including
satellite-derived soil moisture assimilation with land surface mod-
els [10–12], assimilation of satellite-derived snow covered area
with lumped models [13], streamflow assimilation with lumped
models [14,5,15,16], and streamflow assimilation with distributed
models [17–19], just to mention several. While many studies may
be found in the literature on soil moisture assimilation
[20,10,11,21,22,12] and streamflow assimilation [18,23,5,19,15],
to the best of the authors’ knowledge, few address assimilating
both streamflow and soil moisture data into lumped [24] or, in par-
ticular, distributed models. Since soil moisture observations con-
tain direct information (albeit at different scale) about the model
soil moisture states, they may be expected to help reduce DOF in
the inverse (i.e., DA) problem compared to using streamflow data
alone. Note that, with the latter, many different combinations of
the initial model soil moisture states may yield similar streamflow
simulation results at the basin outlet.
Fig. 1. Schematic of the gridded SAC and kinematic-wave (KW) routing models where AD
water content, upper zone tension water content, upper zone free water content, lower z
zone primary free water content, respectively.
In this paper, we design and carry out synthetic and real-world
experiments to assess the effects of uncertainties in the initial
model soil moisture states and real-time observations on assimila-
tion of streamflow and in situ soil moisture data into distributed
hydrologic models. In these experiments, we assume that precipi-
tation and potential evaporation are observed perfectly. The above
assumption, while less than realistic, is motivated in this first
phase of the research by the need to reduce the complexity of
the DA problem so that we may understand the problem better.
This paper is organized as follows. Section 2 describes the models
used. Section 3 describes and formulates the DA problem. Section 3
describes the solution approach to the formulated DA problem.
Section 5 describes the study area and data used. Sections 6 and
7 describe the synthetic and real-world experiments, respectively,
and present the results. Section 8 provides conclusions and future
research recommendations.
2. Models used

Many aspects of DA depend greatly on the particulars of the
models used. As such, we first describe the models used in this
work in some detail. The distributed models used are part of the
National Weather Service (NWS) Hydrology Laboratory’s Research
Distributed Hydrologic Model (HL-RDHM, [2]) operating at an
hourly time step. The HL-RDHM consists of the Sacramento Soil
Moisture Accounting Model (SAC,[25,2]), the Antecedent Precipi-
tation Index Model (API, [26]), the SNOW-17 model [27] and the
kinematic-wave routing models for hillslope and channel flows
[2]. The models operate at the Hydrologic Rainfall Analysis Project
(HRAP) grid scale (�16 km2) [28,29]. Of the four models in HL-
RDHM, only the SAC and kinematic-wave routing models are used
in this work.

The SAC is a conceptual soil moisture accounting model [25]
which calculates fast and slow runoffs from ‘‘buckets’’ in two ver-
tical layers. Kinematic-wave routing models calculate streamflow
at the outlet of each HRAP grid with runoff calculated from the
SAC. Cell-to-cell channel routing is performed based on the chan-
nel connectivity map derived by the COTAT (Cell Outlet Tracing
with an Area Threshold) algorithm [2,30]. The NEXRAD-based
IMC, UZTWC, UZFWC, LZTWC, LZFSC, and LZFPC, denote additional impervious area
one tension water content, lower zone supplemental free water content, and lower
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multi-sensor precipitation [31–34] and monthly climatology of
potential evaporation (PE) on the HRAP grid are used as hydrome-
teorological forcing to the SAC. Koren et al. [35] developed a pro-
cedure for deriving a priori estimates of the SAC parameters from
the soil data such as STATSGO2 [36] and SSURGO [37]. In this
work, those derived from the STATSGO2 data are used. Hillslope
and channel routing parameters were estimated from the digital
elevation model and channel hydraulic data [2]. These a priori
estimates may be refined or optimized manually or via an optimi-
zation tool [2]. In this work, we used the manually-optimized
parameter values developed from the Distributed Model Inter-
comparison Project (DMIP, [38]). Fig. 1 shows the schematic of
the gridded SAC and kinematic-wave routing models. Further de-
tails on the model structure of HL-RDHM and the estimation of a
priori SAC and routing parameters may be found in Koren et al.
[2]. Recently, Koren [39] and Koren et al. [40] extended SAC by
incorporating heat transfer (HT) dynamics. The extended model,
referred to as SAC-HT, allows mapping of the tension and free
water storages of SAC into soil moisture states in the vertical
[40]. This part of the SAC-HT is used in this work to map SAC
states into vertical distribution of soil water content and to
assimilate in situ soil moisture data.
3. Problem formulation

Our assimilation problem may be described in generality as fol-
lows. Given the a priori knowledge of the initial conditions of the
model states and model errors, real-time observations of stream-
flow, gridded precipitation and PE and in situ soil moisture, update
the model soil moisture states at the beginning of the assimilation
window (see Fig. 2) and multiplicative biases for the observed pre-
cipitation and PE within the assimilation window. The length of the
assimilation window is approximately the time scale of the fast
runoff reaching the outlet from the most upstream location in
the basin (see [5] for rationale). Note that adjusting multiplicative
biases for the observed precipitation and PE amounts to adjusting
the model soil moisture states within the assimilation window,
Fig. 2. Schematic of the assimilation window and the control vector. The control
vector is composed of five SAC states shown above at the beginning of the
assimilation window (UZTWCi,K�L, UZFWCi,K�L, LZTWCi,K�L, LZFSCi,K�L, LZFPCi, K � L)
and the adjustment factors to precipitation and potential evaporation (PE), XP,k and
XE,k, respectively, where i = 1, . . . ,nG, k = K � L + 1, . . . ,K, and UZTWC, UZFWC,
LZTWC, LZFSC, and LZFPC stand for the upper-zone tension water content (mm),
the upper-zone free water content (mm), the lower-zone tension water content
(mm), the lower-zone supplemental free water content (mm) and the lower-zone
primary free water content (mm), respectively. In the above, nG, L, and K denote the
number of HRAP cells in the basin, the size of the assimilation window, and the
current hour, respectively. In this work, XP,k and XE,k are excluded from the control
vector.
which results in updated initial conditions of model soil moisture
valid at the prediction time, denoted as K in Fig. 2. The above
may be formulated as the following nonlinear constrained least-
squares minimization problem:

Minimize JK ¼
1
2

XK

k¼K�Lþ1
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In the above, JK denotes the objective function value at the current
hour K, Z, H, X, R, and M denote the observation, the structure func-
tion that relates control variables to observed variables, the control
vector containing the set of variables to be adjusted (i.e., updated),
the observation error covariance matrix, and the soil moisture
accounting model, respectively, the subscripts Q, h, S, P, E, B and
W denote streamflow, in situ soil moisture, model soil moisture
state, precipitation, PE, background (i.e., a priori or before-DA) mod-
el soil moisture state, and rainfall-runoff model structural error,
respectively, and the superscript T denotes the matrix transpose.
Accordingly, ZQ, Zh, ZP, ZE, and ZB denote the observation vectors
for streamflow, soil moisture at the grid scale, precipitation, PE,
and SAC states at the beginning of the assimilation window, respec-
tively. The variable L denotes the length of the assimilation window,
and k denotes the hourly time index. Throughout this paper, we use
bold- and light-face letters to denote vector and scalar quantities,
respectively. In the above, we consider the model-generated (i.e.,
without-DA) SAC states to be the best estimates of ZB given that
ZB is not observed in reality. The vector XS,K�L denotes the five
SAC sates at hour K-L, the upper zone tension water content
(UZTWC), the upper zone free water content (UZFWC), the lower
zone tension water content (LZTWC), the lower zone supplemental
free water content (LZFSC), and the lower zone primary free water
content (LZFPC) [25]. The vectors XP,k and XE,k denote the multipli-
cative adjustment factors for the observed precipitation and PE at
hour k within the assimilation window, respectively. The vector
XW,k represents the model error at hour k. In Eq. (1), HQ( ) represents
the gridded SAC and kinematic-wave routing models, HP and HE are
the same as ZP and ZE, respectively, and HB is the identity matrix. In
Eq. (2), Xmin

S;j;i and Xmax
S;j;i denote the lower and upper bounds of the jth

state vector at the ith grid, XS,j,i, and nS and nC denote the number of
SAC states and the number of HRAP cells within the basin,
respectively.

The above formulation is based on the following observation
equations for the control vectors:
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ZP ¼ HPXP þ VP ð3Þ
ZE ¼ HEXE þ VE ð4Þ
ZB ¼ HBXS;K�L þ VB ð5Þ
ZQ ¼ HQ XS;K�L; XP; XE;XWð Þ þ VQ ð6Þ
Zh ¼ Hh XS; XWð Þ þ Vh; ð7Þ

where VP, VE,VB, VQ, and Vh denote the measurement error vectors
for precipitation, PE, background model state, streamflow, and
in situ soil moisture at the model grid scale, respectively. Following
the notational convention described above, XP, XE, and XW in Eqs.
(3)–(7) denote the control vectors of generally time-varying biases
in the precipitation and PE data, and the model error, respectively,
whereas the control vectors for bias at hour k within the assimila-
tion window are denoted as XP,k, XE,k, and XW,k respectively. To
specify the a priori or background values for the control vectors,
we assume no biases in precipitation (XP,k = 1.0) and PE
(XE,k = 1.0), no model structural error (XW,k = 0), and XS,K�L = ZB. In
the above, XW represents the error in the total channel inflow
(TCI), which combines the surface and groundwater runoffs from
the SAC [6].

Because soil moisture at the model grid is not observed in real-
ity, we upscale the point-scale in situ soil moisture observations to
those at the model grid scale via probability matching; Appendix B
describes this procedure and how the microscale variability of soil
moisture is accounted for in prescribing the variance of Vh. Eqs. (1)
and (2) are a least-squares constrained nonlinear minimization
problem with an objective function made of linearly weighted pen-
alty terms. It is worth noting that Eq. (1) is arrived at from the very
large static Fisher estimation problem [41] of estimating the con-
trol vectors from all available observations and a priori information
under the assumption that the observation errors associated with
ZQ, Zh, ZP, ZE and ZB are independent of one another. It is very
important to note that, in this work, we assume no structural or
parametric uncertainty in the model. The motivation for this
assumption in the synthetic experiment is to assess the upper
bound of the performance of DA under the idealized conditions.
With the assumption, we drop the model error terms and apply
the models as a strong constraint [42] in the data assimilation pro-
cedure. Below, we describe how Eqs. (1) and (2) are solved under
the above and additional simplifying assumptions.
4. Solution approach

Eqs. (1) and (2) may be solved via variational or sequential DA
techniques. Here we use variational assimilation (VAR, [43]). For
Kalman filter interpretation of the above formulation, the reader
is referred to Jazwinski [44]. With VAR, the minimization problem
of Eqs. (1) and (2) is solved numerically using gradient-based opti-
mization algorithms in which the gradient of the objective function
with respect to the control vector is evaluated by the adjoint meth-
od [45]. Additional details on VAR and the adjoint method can be
found in [45,43,9] and references therein. The primary motivation
for using VAR in this work is that it is a general gradient-based
nonlinear minimizer in the least squares sense and hence can han-
dle nonlinear observation equations as well as nonlinear model
dynamics to the extent that the tangent linear model can accu-
rately evaluate gradients (i.e., as long as the model dynamics does
not have discontinuities within the assimilation window [46]).
Ensemble Kalman filter [47], on the other hand, is optimal in the
mean squared error sense, only if the observation equations are
linear. In theory, one could use particle filtering [48], which is free
of distributional or linearity assumptions. In reality, however, com-
putational burden is prohibitively large for particle filters to be
practical for large-dimensional DA problems [49].
As written in Eqs. (1) and (2), the minimization problem is dif-
ficult to solve in practice because we usually do not have enough
available information to model the space–time structure of the
observational error covariance terms. Here, we assume that the
observation errors are independent of one another and time-
invariant (see [5] for justification), which renders the observation
error covariance matrices R in Eq. (1) diagonal and static. The
use of the above assumptions is justified by the following reasons.
First, we have little information on the spatiotemporal statistical
properties of the observation error for streamflow and grid-scale
soil moisture. As such, modeling of the spatiotemporal correlation
structures would have been at best ad hoc. The second is that the
observation errors for streamflow and soil moisture may be consid-
ered independent as there is no physical or statistical reason to
postulate that they are correlated, causally or statistically. Even if
we could accurately model the spatiotemporal correlation struc-
ture of the observation errors of streamflow and that of soil mois-
ture, its primary impact would be on determination of the relative
magnitude of the first two terms in Eq. (8) below, and not necessar-
ily on the state identifiability. While we acknowledge that the rel-
ative magnitude of the two terms in Eq. (8) may be specified more
accurately by modeling the spatiotemporal correlation structures,
the impact of such modeling is only of second-order importance
and does not justify the increase in computational burden. The
third is that, even though the relative magnitude of the first two
terms in Eq. (8) may not be very accurate due to the independence
assumption, the range of observation error variance values used in
the sensitivity analysis as carried out in this study is likely to
encompass the true relative magnitude of the two terms with
the independence assumption relaxed or even lifted. As such, the
performance bound obtained from this study is likely to delineate
reasonably well the outcome obtainable with the regularization ef-
fects associated with non-diagonal observational covariance. Also,
as noted in the Introduction Section, we limit ourselves here to
updating the model soil moisture states at the beginning of the
assimilation window without adjusting the observed precipitation
and PE within the assimilation window (see Fig. 2). Then, Eqs. (1)
and (2) may be simplified to:

Minimize JK ¼
1
2

XK

k¼K�Lþ1

XnQ

l¼1

ZQ ;l;k � HQ ;l;k XS;K�Lð Þ
� �2r�2

Q ;l

þ 1
2

XK
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XnC
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XnD

m¼1
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h;i;m;k � Hh;i;m;k XS;k
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r�2
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þ 1
2
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XnC

i¼1

ZB;j;i;K�L � XS;j;i;K�L
� �2r�2
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subject to

XS;k ¼MðXS;k�1Þ; k ¼ K � Lþ 1; . . . ;K;

Xmin
S;j;i 6 XS;j;i;k 6 Xmax

S;j;i ; k ¼ K � L; . . . ;K;

j ¼ 1; . . . ;nS; i ¼ 1; . . . ;nC ;

8><
>: ð9Þ

In the above, nQ denotes the number of stream gauge stations, ZQ,l,k

denotes the streamflow observation at the lth gauge station at hour
k, ZP

h;i;m;k denotes the pseudo in situ soil moisture observation at the
HRAP scale (see below for explanation) at the ith grid, mth depth,
and hour k, and ZB, j, i, K�L denotes the background model soil mois-
ture state associated with the jth state variable and ith cell at the
beginning of the assimilation window, HQ,l,k( ) denotes the observa-
tion equation that maps the model soil moisture at the beginning of
the assimilation window, XS,K�L, to streamflow at the lth gauge sta-
tion and hour k, Hh,i,m,k( ) denotes the observation equation that
maps XS,k to soil moisture at the HRAP scale at the ith grid, the
mth depth, and hour k, where XS,k denotes the SAC states at hour
k, rQ,l denotes the standard deviation of the streamflow observation
error at the lth stream gauge location, rh,i,m denotes the standard
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deviation of the observation error associated with the in situ soil
moisture at the HRAP scale at the ith grid and the mth depth, rB,j,i

denotes the standard deviation of the error associated with the
jth background model state at the ith grid. In Eq. (8), the pseudo
in situ soil moisture observation ZP

h;i;m;k is an estimate of the
in situ soil moisture at the HRAP scale as obtained from
the in situ soil moisture observation at the point scale via probabil-
ity matching (see Appendix B for details).

Eqs. (8) and (9) may be solved numerically by gradient-based
nonlinear minimization. We evaluated gradients in this work using
the adjoint code generated from Tapenade (http://tape-
nade.inria.fr:8080/tapenade/index.jsp). The gradients were verified
against those obtained from the tangent linear code generated also
from Tapenade. We tested two minimization algorithms, Fletcher–
Reeves–Polak–Ribiere minimization (FRPRMN) and the Broyden–
Fletcher–Goldfarb–Shanno variant of Davidon–Fletcher–Powell
minimization (DFPMIN) [50]. The algorithms FRPRMN and DFPMIN
implement conjugate gradient and quasi-Newton methods, respec-
tively. In comparative testing using Eqs. (8) and (9), both algo-
rithms required similar numbers of function evaluations, ranging
from 15 to 150 (mostly around 20), for each assimilation run with
similar minimization results. Throughout this work, we used
FRPRMN.
Fig. 3. (a) Digital elevation map, 50 m-interval elevation contours, main channel
network, location of the soil moisture measurement site, and stream gauge
locations, (b) soil map, and (c) channel connectivity map of ELDO2.
5. Study area and data used

The basin chosen for this work is Eldon (ELDO2), a 795-km2

headwater catchment (see Fig. 3) located near the Oklahoma
(OK)-Arkansas (AR) border in the southern plains of the US. The
basin is within the coverage of the WSR-88D’s (Weather Surveil-
lance Radar – 1988 Doppler version) at Springfield, MO, Inola,
OK, and Ft. Smith, AR. The basin is an agricultural area with
gently-rolling to hilly topography [6]. The hourly streamflow data
from the United States Geological Survey (USGS) are available at
two interior locations, Christie (65 km2) and Dutch (105 km2),
and at the outlet, Eldon. Mean annual precipitation for ELDO2
from 1997 to 2002, the period of study in this work, is
1,232 mm. Mean annual surface runoff for the same period is
approximately 388, 199 and 451 mm for Eldon, Christie and
Dutch, respectively. Within the catchment, there is an Oklahoma
Mesonet soil moisture measurement site at Westville, OK [51]. A
Campbell Scientific Inc. (CSI) 229-L soil moisture sensor measures
temperature changes in the soil from which soil moisture may be
estimated [52]. For this study, we used the hourly soil moisture
data at two different depths, 25 and 60 cm. The size of the assim-
ilation window used for ELDO2 is 36 h, which is the same as the
duration of unit hydrograph estimated for this basin. Fig. 3a
shows the elevation map of the study area with 50 m-interval
contours, the stream gauge locations, the soil moisture measure-
ment location, and the main channel network. Fig. 3(b) shows
the soil types in the basin which are mainly sandy loam and silty
loam. Fig. 3(c) shows the channel connectivity map derived by the
Cell Outlet Tracing with an Area Threshold (COTAT) algorithm
[30]. To assess the potential of assimilating streamflow and soil
moisture data into distributed hydrologic models, we performed
two types of experiments, synthetic and real-world. They are
described in the following two sections.
6. Synthetic experiment

The motivation for the synthetic experiment is to improve
understanding of the DA problem described in Section 3 in an ide-
alized controlled environment so that we may be able to make
meaningful attribution and interpretation of the results. The exper-
iment was designed in particular to help answer the following
questions: (1) What is the value of assimilating streamflow data,
at the outlet only and both at the outlet and interior locations,
for analysis and prediction of streamflow and soil moisture at some
interior location? (Figs. 4–10), (2) How does the value of DA vary
according to the drainage area (Figs. 8 and 10), amount of uncer-
tainty in the initial model soil moisture states (Figs. 4 and 5), and
prediction lead time (Figs. 8 and 10)?, (3) What is the value of
assimilating in situ soil moisture data in addition to streamflow
data? (Figs. 4–10), 4) How accurate do the data have to be to ben-
efit from DA? (Figs. 4–7).

6.1. Experiment design

Once the time period for the experiment was chosen (see be-
low), the synthetic experiment consisted of the following steps:
(1) Run the gridded SAC and kinematic-wave routing models
using the available real-world forcing (i.e., precipitation and PE)
data, and assume that the forcing data and the simulated stream-
flow and soil moisture represent the truth, (2) Add noise to the as-
sumed ‘‘true’’ observations and initial soil moisture states to
mimic uncertainty in the data and in the model initial soil mois-
ture states; the results are then assumed to represent plausible
realizations of real-world observations and model initial soil
moisture states, (3) Repeat Step 2 100 times, (4) Calculate the
observation error variances in Eq. (8) from Step 3, (5) Perform

http://tapenade.inria.fr:8080/tapenade/index.jsp
http://tapenade.inria.fr:8080/tapenade/index.jsp


Fig. 4. The RMSE, as a function of the uncertainty level in the initial conditions (ULs), of model-simulated (a) streamflow, (b) soil moisture at 25 cm depth and (c) soil
moisture at 60 cm depth with and without different combinations of data assimilated. In the above, QE denotes the streamflow observations at Eldon, and hW denotes the
in situ soil moisture observations at Westville. Superscripts ‘‘low’’, ‘‘med’’ and ‘‘high’’ denote small, medium and large levels of uncertainties, respectively (see also Table 1).
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DA as described in Section 4 for each of the 100 realizations in
Step 3, and (6) Evaluate the streamflow and soil moisture results
by comparing the prior, i.e., before- or without-DA, and the pos-
terior, i.e., after- or with-DA, ensembles. Note that Step 4 allows
accurate specification of the observation error variances for
streamflow, soil moisture, and model initial soil moisture states.
In Step 6, the prior are the model simulations generated in Step
2 with noise-added model initial soil moisture states.

To generate ensembles of the SAC states at the beginning of the
assimilation window and those of the in situ soil moisture and
streamflow observations within the assimilation window, we used
the three synthetic error models described in Appendix A. In this
work, the observation error variances for soil moisture and SAC
states were assumed to be homoscedastic whereas that for stream-
flow was assumed to be heteroscedastic (see Appendix A). The
amount of noise added is controlled by the three parameters, rh,
CQ, and CS (see Appendix A for details). Based on visual examination
of the perturbed observations and soil moisture states, we chose 2,
3 and 3 varying levels of uncertainty for rh, CQ, and CS, respectively
(see Table 1 for summary). Particular care was taken in estimating
the observation error variance for in situ soil moisture data, which
is described in detail in Appendix B. The interested reader is kindly
advised to read Appendices A and B before proceeding.

To express the amount of uncertainty added through the per-
turbation in more easily understandable terms, we define the
uncertainty levels for the initial model soil moisture states (ULS),
for the in situ soil moisture observations (ULh), and for the stream-
flow observations (ULQ) as follows:
ULS ¼
1

nSnC

XnS

j¼1

XnC

i¼1

1
Xmax

S;j;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nE

XnE

l¼1

Xl
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1
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XnE

l¼1
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XK
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1
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nE

XnE

l¼1

Q l
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� �2

vuut ; ð12Þ

In the above, nE denotes the number of ensemble traces, Xl
S;j;i;K�L de-

notes the lth ensemble trace of the jth SAC state at the ith cell at the
beginning of the assimilation window (i.e., k = K-L), hl

k denotes the
lth ensemble trace of the synthetically-generated depth-specific soil
moisture at hour k, and Ql

k denotes the lth ensemble trace of the
synthetically-generated streamflow at hour k, n denotes porosity
(0.47 at Westville), Xmax

S;j;i denotes the upper bound of the jth SAC
state at the ith cell, and the subscript T signifies that the variable
subscripted is the model-simulated assumed truth. As defined
above, ULS represents the uncertainty in the initial model soil mois-
ture states normalized by Xmax

S;j;i , ULh represents the uncertainty in the
in situ soil moisture observations within the assimilation window
normalized by porosity, and ULQ represents the uncertainty in the
streamflow observations within the assimilation window normal-
ized by the true streamflow QT,k. The uncertainty level ULS is



Fig. 5. Same as Fig. 4, but for the cases of simultaneously assimilating streamflow observations at Eldon, Christie and Dutch. In the above, QECD denotes the streamflow
observations at Eldon, Christie and Dutch collectively.
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calculated for the five SAC states, UZTWC, UZFWC, LZTWC, LZFSC
and LZFPC, for all cells within the basin.

The synthetic experiment described above requires solving the
minimization problem in Eqs. (8) and (9) 100 times for each com-
bination of the uncertainties prescribed. Due to excessive compu-
tational burden, we could not choose a lengthy simulation period
or multiple events. For the synthetic experiment, we chose the
June 20–26, 2000, event which produced a peak flow of
1,549 cms, the largest observed flow between 1997 and 2002.

6.2. Results

Our primary interest in this work was in assessing the potential
of DA in the context of single-valued prediction. As such, here we
use performance measures for single-valued prediction instead of
those for ensemble or probabilistic forecasts [53–55]. Throughout
the rest of this paper, streamflow at Eldon is denoted by QE, and
streamflows at Eldon, Christie and Dutch are denoted collectively
by QECD for notational brevity. Soil moisture at Westville is denoted
by hW. The prediction time (K in Fig. 2) used to generate the results
in Figs. 4–9 corresponds to Hour 36 in Fig. 9, which is in the lower
part of the falling limb of the hydrograph where the effects of pre-
cipitation forcing and fast runoff have worn off. The analysis results
in the above figures hence represent the DA-aided model simula-
tion over the assimilation window of hours 1–36 in Fig. 9, which
includes all of the rising limb and the upper part of the falling limb
of the hydrograph.
Figs. 4 and 5 show the root mean squared error (RMSE) of the
model-simulated, with and without DA, streamflow and soil mois-
ture at 25 and 60 cm depths within the assimilation window as a
function of the uncertainty level in the initial model soil moisture
conditions (ULS, see Eq. (10)). The RMSE is calculated using the
model-simulated streamflow or soil moisture at all cells within
the basin over all 100 ensemble traces and all hours within the
assimilation window of 36 h. As such, it represents an average
accuracy of the model-simulated streamflow or soil moisture with
and without DA at some cell at some hour within the assimilation
window. Note in interpreting the streamflow results of Figs. 4 and
5 that, because streamflow at downstream cells is much larger
than that at upstream cells, the RMSE of streamflow is necessarily
weighted more heavily toward the downstream cells.

The results for assimilating QE in Fig. 4 may be summarized as
follows. Assimilating highly uncertain streamflow observations at
Eldon (i.e., the outlet) only, or Qhigh

E , does not improve streamflow
analysis over the control (i.e., DA-less) simulation regardless of the
level of uncertainty in the initial model soil moisture states. When
the initial model soil moisture states have a medium level of
uncertainty (ULS > 0.3), assimilating streamflow data with a med-
ium level of observational uncertainty improves streamflow analy-
sis noticeably (see the Q med

E result). When the streamflow data is
accurate, DA improves streamflow analysis substantially (see the
Q low

E result) except when the initial conditions are already known
extremely accurately (ULS < 0.1). Assimilating QE improves soil
moisture analysis somewhat only if the streamflow observations



Fig. 7. Same as Fig. 6, but for soil moisture at 25 cm depth.

Fig. 6. The Skill Score (SS) map for streamflow analysis for ULS (the initial condition uncertainty level) = 0.36. The 1st, 2nd and 3rd rows correspond to the assimilation results
without hW, with hmed

W and with hlow
W , respectively. The superscripts, ‘‘low’’, ‘‘med’’, and ‘‘high’’ denote the low, medium and high levels of uncertainty, respectively, in the data

(see also Table 1). In the figure, QE denotes streamflow at Eldon and QECD denotes streamflow at Eldon, Christie, and Dutch collectively.
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are highly accurate and the initial conditions are uncertain
(ULS > 0.4).

The results for assimilating both QE and hW in Fig. 4 may be
summarized as follows. If QE is highly uncertain Q high

E

� �
, addition-

ally assimilating hw (either hmed
W or hlow

W ) greatly improves both
streamflow and soil moisture analysis. If QE is accurate Q low

E

� �
,

however, additionally assimilating hw (either hmed
W or hlow

W ) provides
little improvement to analysis of streamflow and soil moisture at
25 cm depth over assimilating QE alone. Also seen in Fig. 4 is that
assimilating hW in addition to Q low

E results in a larger RMSE than
assimilating hW in addition to either Qmed

E or Qhigh
E . The last finding

is counterintuitive and suggests that the effects of assimilating QE

and hW as carried out in this work may be in conflict, and that
uncertainty modeling and modeling of the observation equation
for in situ soil moisture may need improvement. It is also postu-
lated that the counterintuitive results may be due to overfitting
[56], i.e., the inverse problem may be too underdetermined. Our
ongoing work includes reducing DOF by increasing the space–time
scales of adjustment and evaluating performance of the resulting
data assimilation procedure.
Note also in Fig. 4b and c that, if the initial model soil moisture
states are known relatively accurately (ULS < 0.3), assimilating Q low

E

(with or without hW) as carried out in this work may deteriorate
the DA-less soil moisture analysis, another indication that uncer-
tainty modeling needs improvement and/or the inverse problem
may be too underdetermined. Fig. 5 shows that assimilating
streamflow observations at all locations of Eldon, Christie and
Dutch, or QECD, improves streamflow analysis somewhat over
assimilating QE alone (shown in Fig. 4) and, if the streamflow
observations are accurate Q low

ECD

� �
, also improves soil moisture anal-

ysis somewhat. Assimilating hW in addition to Qhigh
ECD or Qmed

ECD , on the
other hand, greatly improves streamflow and soil moisture analy-
sis over assimilating QECD alone. Similarly to assimilating hw in
addition to QE (Fig. 4), assimilating hw in addition to Q low

ECD yields
counterintuitive results in that they produce a larger RMSE than
assimilating hw in addition to Qmed

ECD or Q high
ECD (See the explanations

and comments above on Fig. 4). Note that Figs. 4 and 5 are based
on relatively wet initial soil moisture conditions. If different initial
soil moisture conditions are used, the overall picture may be differ-
ent [57]. To assess this sensitivity, additional work is necessary.



Fig. 8. The Skill Score (SS) of analysis of streamflow (1st column), soil moisture at 25 cm depth (2nd column), and soil moisture at 60 cm depth (3rd column) with
assimilation of Qmed

E (1st row), Qmed
E and hmed

W (2nd row), Qmed
ECD (3rd row), and both Qmed

ECD and hmed
W (4th row). The superscript ‘‘med’’ denotes the medium level of uncertainty in

the data (see also Table 1) and QE, QECD, and hW denote streamflow at Eldon, streamflow at Eldon, Christie and Dutch collectively, and in situ soil moisture at Westville,
respectively. In the above, ULS (the initial condition uncertainty level) = 0.36 was used (see Table 1). Circles denote SS of DA-aided analysis of streamflow or soil moisture
within the assimilation window. Solid lines denote SS of prediction of streamflow or soil moisture for lead times of 1 through 72 h. The assimilation window corresponds to
1–36 h (see the x-axis of Fig. 9).
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Figs. 6 and 7 show the spatial pattern of the Skill Score (SS) of
DA-aided analysis of streamflow and soil moisture at 25 cm depth,
respectively. The SS, which measures the quality of DA-aided sim-
ulation relative to the DA-less, is defined as follows:

SSi ¼ 1�MSEDA

MSE
; i ¼ 1; . . . ; nC ð13Þ

where MSE and MSEDA denote the mean squared errors (MSE) of
DA-less and DA-aided analysis, respectively. The value of SS ranges
from 1 (DA is perfect) to 0 (DA adds nothing) to negative (DA
makes worse). Figs. 6 and 7 may be summarized as follows. As ex-
pected, assimilating QECD improves both streamflow and soil mois-
ture analysis over assimilating QE alone. Fig. 6 shows that the
improvement made at Christie and Dutch propagates to the down-
stream cells along the main stem of the channel. Improvement in
soil moisture analysis by assimilating QECD over assimilating QE is
seen in Fig. 7. Expectedly, the improvement is limited mainly to
Christie and Dutch. The contrast in the spatial pattern of SS
between streamflow and soil moisture reflects the fact that the
SAC models soil moisture dynamics only in the vertical whereas
the impact of streamflow assimilation is routed horizontally
through the channel network.

As also observed in Figs. 4–7 indicate that additionally assim-
ilating hW greatly improves SS for analysis of streamflow and soil
moisture over assimilating Qhigh or Qmed alone, but not over
assimilating Qlow alone regardless of the availability of interior
gauge observations for assimilation. Clearly, we owe the above
dramatic improvement in SS from assimilating hW in addition to
Qhigh or Qmed to the fact that, through the controlled experiment,
we removed the model structural and parametric errors as well
as the input errors. Also, in the controlled experiment, the
in situ soil moisture observations were given full dynamic range
(from residual water content to porosity) and were not subject
to the microscale variability of point soil moisture within an HRAP
cell. In addition, through the controlled experiment, we were able
to quantify at least the univariate statistics of the observation



Fig. 9. Ensembles of simulated streamflow (solid lines) for Eldon (1st column), Christie (2nd column) and Dutch (3rd column) without assimilation (1st row), and with
assimilation of Qmed

E (2nd row), Qmed
E hmed

W (3rd row), Qmed
ECD (4th row), Qmed

ECD hmed
W (5th row), respectively. The superscript ‘‘med’’ denotes the medium level of uncertainty in the

data (see also Table 1) and QE, QECD, and hW denote streamflow at Eldon, streamflow at Eldon, Christie and Dutch collectively, and in situ soil moisture at Westville,
respectively. In the above, ULS (the initial condition uncertainty level) = 0.36 was used (see Table 1). The assimilation window corresponds to 1 to 36 h. The dotted line
denotes the assumed truth.
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error variances accurately (albeit only homoscedastically for those
of the background model states and soil moisture). In reality, one
may expect the positive impact of assimilating streamflow or
streamflow and soil moisture observations to be significantly
smaller.

Fig. 8 shows the SS for analysis and prediction of streamflow
(1st column), soil moisture at 25 cm depth (2nd column), and soil
moisture at 60 cm depth (3rd column) from assimilating Q med

E (1st
row), Q med

E and hmed
W (2nd row), Q med

ECD (3rd row), and Qmed
ECD and hmed

W

(4th row). In each plot, the x-axis denotes the cell number. The
cells are numbered in an increasing order of the contributing area.
As such, for streamflow (1st column), the leftmost SS values are
associated with the SS of DA-aided streamflow generated from sin-
gle cells, and the rightmost SS value is associated with that from
the entire basin. The same cell numbering is used for the SS plots
of DA-aided soil moisture (2nd and 3rd columns). In each plot,
the circles denote the SS of DA-aided hourly analysis of streamflow
or soil moisture within the assimilation window. The solid lines,



Fig. 10. The Skill Score (SS) of DA-aided analysis (dots) and prediction from 1 to 72 h of lead time (solid lines) of streamflow at all grid cells (sorted in the increasing order of
the contributing area on the x-axis). The prediction times are, from the top to the bottom row, 12, 26, 45 and 61 h (see the x-axis of Fig. 9). The 1st through 4th columns
correspond to assimilating Qmed

E ;Qmed
E hmed

W ;Qmed
ECD , and Qmed

ECD hmed
W , respectively. The superscript ‘‘med’’ denotes the medium level of uncertainty in the data (see also Table 1) and

QE, QECD, and hW denote streamflow at Eldon, streamflow at Eldon, Christie and Dutch collectively, and in situ soil moisture at Westville, respectively. For all cases, ULS (the
initial condition uncertainty level) = 0.59 was used (see Table 1).

Table 1
Uncertainty levels for initial SAC states, soil moisture observations and streamflow observations, respectively (see Eqs. (10)–(12)) for definitions). In the table,
CS, rhand CQ denote the perturbation coefficients used to generate synthetic observations of the initial SAC states (XS,k=K�L), soil moisture at Westville (hW) and
streamflows at Eldon (QE), Christie (QC) and Dutch (QD), respectively (see Appendix A for details), K and L denote the current hour and the length of the
assimilation window, respectively, and [a,b] denotes the closed range of a perturbation coefficient between a and b.

Variables Perturbation coefficient Coefficient value Uncertainty level Symbol Uncertainty level value

Initial SAC states (XS,k=K�L) CS [0.001,0.005] Low ULS [0.06,0.22]
[0.006,0.01] Medium [026,0.36]
[0.02,0.1] High [0.49,0.63]

Soil moisture observations (hW) rh 0.01 Low ULh 0.03
0.03 Medium 0.07

Streamflow observations (QE,QC,QD) CQ 0.01 Low ULQ 0.01
0.1 Medium 0.11
0.3 High 0.33
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which connect the data points only to aid visualization, correspond
to the SS of streamflow or soil moisture prediction for lead times of
1–72 h. In general, the shorter the lead time is, the higher the SS is.
In Fig. 8, the four plots from top to bottom in the 1st and 2nd col-
umns correspond to the (1,2)-nd, (2,2)-nd, (1,5)th and (2,5)th SS
maps in Figs. 6 and 7, respectively. In the upper half of Fig. 8, there
are cells with negative SS values which have been truncated at zero
for comparison with the rest of the figure; it suggests that the DA
problem may be significantly underdetermined when assimilating
Qmed
E or Q med

E hmed
W . Fig. 8 also shows that the SS has large variability

up to a spatial scale of about 165 km2 of the contributing area; it
suggests that the impact of underdeterminedness is greater for up-
stream locations. Fig. 8 may be summarized as follows. Assimilat-
ing QE (see the Qmed

E result) has significant positive impact on
analysis and prediction of streamflow and soil moisture. The im-
pact tends to be larger at downstream locations for which the con-
tributing areas are larger. Assimilating hW in addition to QE (see the
Qmed

E hmed
W result) greatly improves analysis and prediction of



1608 H. Lee et al. / Advances in Water Resources 34 (2011) 1597–1615
streamflow and soil moisture at all ranges of contributing area over
assimilating QE alone (see the Qmed

E result). Compared to assimilat-
ing QE only (see the Q med

E result), assimilating QECD (see the Q med
ECD re-

sult) provides significant positive impact for both analysis and
prediction of streamflow and soil moisture. Assimilating hW in
addition to QECD (see the Q med

ECD hmed
W result) has a very large positive

impact for analysis and prediction of streamflow and soil moisture.
It also greatly reduces cell-to-cell variability of skill in the DA-
aided analysis and prediction in the upstream areas, an indication
that, under the idealized conditions, soil moisture observations
may reduce the under-determinedness of the inverse problem
significantly.

Fig. 9 shows the 100 ensemble traces of perturbed (solid lines in
the 1st-row plots) and DA-aided (solid lines in the 2nd- to 5th-row
plots) hydrographs at the three stream gauge locations of Eldon
(1st column), Christie (2nd column) and Dutch (3rd column) for
ULS of 0.36 (see Eq. (10) and Fig. 5 for interpretation). These plots
provide a visual sense of the quality of the DA-aided analysis that
the statistical performance measures and skill scores may not.
Fig. 9 may be summarized as follows. Assimilating Q med

E only
(2nd row) does not improve streamflow simulation at Christie
and Dutch. Assimilating hmed

W in addition to Q med
E (3rd row) im-

proves streamflow simulation at Christie and Dutch as well as at
the outlet. Compared to assimilating Q med

E only, assimilating Qmed
ECD

(4th row) improves streamflow simulations at Christie and Dutch
substantially and at the outlet noticeably. Assimilating both Qmed

ECD

and hmed
W (5th row) further improves streamflow simulation.

The results presented above are limited to analysis over the
assimilation window ending at hour 36 and prediction out to Hour
108 in Fig. 9. Because DOF associated with the DA problem vary
according to the state of the system, one may expect the perfor-
mance of DA to vary accordingly. To assess this variability, we made
the same analysis and prediction runs as those seen in Fig. 9 using
different points on the hydrograph as the beginning of the assimi-
lation window. Fig. 10 shows the SS of DA-aided hourly analysis
and prediction of streamflow over the 36- and 72-h assimilation
window and prediction horizon, respectively, at all cells at the pre-
diction times of Hours 12, 26, 45 and 61 for ULS of 0.59 (this corre-
sponds to a high level of uncertainty in the initial model soil
moisture states; see Table 1). The four prediction times correspond
to the early part of the rising limb, the upper part of the falling limb
(controlled by the lower-zone supplemental free water), the
mid- to low part of the falling limb (controlled by the lower-zone
primary free water), and the lower part of the falling limb of the
hydrograph, respectively (see Fig. 9). We may summarize Fig. 10
as follows. Assimilating Q med

E consistently has positive impact on
streamflow analysis for downstream cells. Assimilating hmed

W in
addition to Qmed

E greatly increases the SS for analysis and prediction
of streamflow over all ranges of the contributing area. The positive
impact is greater when the rising limb or the upper part of the
falling limb is being predicted. Assimilating Q med

ECD consistently has
significant positive impact across all ranges of the contribution
area. Assimilating hmed

W in addition to Qmed
ECD has a very large positive

impact, particularly for prediction during the rising limb or the
early part of the falling limb of the hydrograph. These observations
in Fig. 10 suggest that additionally assimilating soil moisture data
improves skill most significantly during the rising limb of the
hydrograph, and that the margin of improvement decreases as
the prediction time moves toward the lower part of the receding
limb.
7. Real-world experiment

In the real world, the models usually have significant structural
and parametric errors. To rigorously assess the value of
assimilating streamflow and soil moisture data in the real-world
conditions, large-scale experiments using multiple basins would
be necessary. Such experiments are, however, a very large chal-
lenge. In the US, there are only a small number of headwater basins
that are unregulated and instrumented for streamflow and in situ
soil moisture observations with sufficient density and quality.
We are currently identifying such basins and collecting data for
multi-basin evaluation of the DA procedure developed in this work,
the results of which will be reported in the near future. Here, we
carried out exploratory evaluation to aid the design of such an
experiment and to gain glimpse into the performance of DA in
the real-world conditions.

7.1. Experiment design

As in the synthetic experiment, we assumed perfectly known
precipitation and PE forcing. Though less than realistic, this
assumption was made to facilitate comparisons with the synthetic
experiment. The simulation period used was September 5, 2001,
through September 5, 2002. We chose 1 and 10 (cms)2 as reason-
able lower and upper bounds, respectively, for the homoscedastic
variance of the streamflow observation error, r2

Q ;l in Eq. (8). The
observation error variance for the in situ soil moisture data, r2

h;i;m

in Eq. (8), was specified as described in Appendix B. The back-
ground model state error variance, r2

B;j;i in Eq. (8), was assumed
to be spatially homogeneous, and specified by the sample variance
of the corresponding simulated SAC states for the 1-yr period
above. This strategy assumes that the uncertainty in the model-
simulated soil moisture states at any time is comparable to the
mean variability of the model-simulated soil moisture over the
1-yr period. Because it uses the same mean error variance for all
situations, the above strategy is likely to under-/overprescribe
the amount of uncertainty in the initial model soil moisture states
in the storm/inter-storm periods, resulting possibly in under-/
overadjustment of the model soil moisture states. In evaluating
the performance of DA in the real-world experiment, we also as-
sumed that the streamflow and in situ soil moisture data are free
of observational errors. This practice in the evaluation process is
clearly at odds with prescribing uncertainty for streamflow and
in situ soil moisture observations in the assimilation process.
While unsatisfactory, the above is unavoidable given that the infor-
mation on the statistical properties of the real observational errors
is lacking.

7.2. Results

Fig. 11 shows the RMSE of simulated streamflow at Eldon,
Christie, and Dutch as a function of lead time. The shaded area
and the two dotted lines represent the RMSE bounds obtained from
assimilating streamflow data with r2

Q ;l of 1 and 10 (cms)2, respec-
tively. For each choice of r2

Q ;l, the upper bound of RMSE is associ-
ated with the lower bounds of the standard deviation of the total
error in soil moisture observation of 0.036 m3/m3 at 25 cm and
0.043 m3/m3 at 60 cm of depth (see Table B.1). The lower bound
of RMSE of the shaded area is associated with a hypothetically
large standard deviation of the total error in soil moisture observa-
tion of 0.25 m3/m3at both 25 and 60 cm depths. This value is over a
half of the porosity at Westville and represents nearly non-infor-
mative soil moisture observation. The following observations
may be made in Fig. 11. Assimilating streamflow data at the outlet
improved analysis and prediction of streamflow at the outlet as ex-
pected, but improved little at the interior locations (mid- and bot-
tom-left plots). Similar results have been obtained also by [17].
Assimilating both the streamflow data at the outlet and the soil
moisture data at Westville tended to deteriorate streamflow anal-
ysis and prediction at the interior locations compared to



Fig. 11. The RMSE of simulated streamflow at all stream gauge locations. In the above, QE, QECD, and hW denote streamflow at Eldon, streamflow at Eldon, Christie and Dutch
collectively, and in situ soil moisture at Westville, respectively. Values of 1 and 10 (cms)2 were used for the variance of the streamflow observation error r2

Q

� �
. ⁄ The lower

small-dotted line and the lower bound of the shaded area were obtained by using 0.25 m3/m3 as the standard deviations of the soil moisture measurement error at both 25
and 60 cm depths. The upper small-dotted line and the upper bound of the shaded area were obtained by using 0.036 and 0.043 m3/m3 as the standard deviation of the soil
moisture measurement error at 25 and 60 cm depth, respectively.
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assimilating streamflow data at the outlet only (mid- and bottom-
left plots). In particular, assimilating soil moisture observations at
Westville did not improve the streamflow results at Christie
(65 km2), whose drainage area includes Westville (see Fig. 3(a)).
As expected, assimilating streamflow data at the outlet and interior
locations improved analysis and prediction of streamflow at the
stream gauge locations (right plots) and also improved streamflow
prediction at the outlet compared to assimilating streamflow data
at the outlet alone (top plots). However, assimilating both the soil
moisture data and the streamflow observations at the outlet and
interior locations tended to deteriorate analysis and prediction of
streamflow at the gauge locations compared to assimilating only
the streamflow data at all gauge locations (right plots). Fig. 12
shows the scatter plots of soil moisture analysis at the prediction
time (i.e., lead time of 0 h) from assimilating streamflow observa-
tions at all gauge locations (left plots) and assimilating both the
soil moisture data and the streamflow observations at all locations
(right plots) with r2

Q ;l ¼ 10 ðcmsÞ2. As expected, assimilating soil
moisture observations improved soil moisture analysis at the mea-
surement location, particularly at 60 cm. However, assimilating all
available streamflow observations showed little impact on soil
moisture analysis at Westville (left plots). Fig. 13 shows soil mois-
ture and streamflow at 6-h lead time for October 9–13, 2001.
Assimilating the soil moisture data in addition to the streamflow
observations improves 60 cm depth soil moisture simulations at
Westville in the early part of the rising limb. The increased soil
moisture conditions, however, result in overestimating the peak
flows, particularly at Eldon and Dutch. Note in the figure that the



Fig. 12. Scatter plots of the pseudo soil moisture observations ZP
h

� �
and the simulated soil moisture (hsim) at 25 cm- and 60 cm-depths at Westville for lead time of 0 h. The

left plots were generated by assimilating streamflow at Eldon, Christie and Dutch (QECD) with r2
Q ¼ 10 ðcmsÞ2, and the right plots by assimilating both in situ soil moisture at

Westville (hW) and QECD with r2
Q ¼ 10 ðcmsÞ2. In the above, r2

Q denotes the error variance of streamflow observations and ZP
h denotes the pseudo soil moisture observations at

the HRAP scale converted from the point-scale in situ soil moisture data via probability matching. The grey and black dots denote the DA-less and DA-aided results,
respectively.
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25 cm depth soil moisture observations respond to precipitation
about 2 h later than those at 60 cm depth. This is due to the effects
of preferential flow following cracks formed in the soil after very
dry conditions (Brad Illston, personal communications) which is
not modelled in the SAC. The constant values of soil moisture
observations exceeding 0.35 in Fig. 13 are due to the limited dy-
namic range, i.e., (wilting point, field capacity), of the soil moisture
sensor (see Appendix B for details). These results, jointly with
those from the synthetic experiment, suggest that a combination
of structural and parametric errors in the hydrologic models, less
than accurate uncertainty modeling, and observational uncertain-
ties associated with the in situ soil moisture data used in this work
is responsible for the lack of improvement by DA in this explor-
atory real-world experiment. We note here that modelling of the
measurement error variance for soil moisture at the HRAP scale
is particularly challenging; while probability matching used in this
work reduces statistical biases in situ soil moisture observations
[58,59] relative to the (unknown) soil moisture at the HRAP scale,
we do not know the absolute accuracy of the soil moisture at the
HRAP scale estimated in this way.

8. Summary, conclusions and future research
recommendations

We assess the potential of updating soil moisture states of the
Sacramento model [25] in the National Weather Service (NWS)
Hydrology Laboratory’s Research Distributed Hydrologic Model
(HL-RDHM, [2]) via variational assimilation of streamflow and
in situ soil moisture data for high-resolution analysis and predic-
tion of streamflow and soil moisture. Assimilating streamflow
and soil moisture data into distributed hydrologic models is new
and particularly challenging due not only to large dimensionality
of the inverse problem but also to nonlinearity and scale depen-
dence in uncertainty propagation. To improve understanding of
the problem and to assess the upper bound of the performance
of the data assimilation (DA) procedure developed in this work un-
der idealized conditions, we first designed and carried out a syn-
thetic experiment. The assumptions for the idealized conditions
include no structural and parametric uncertainties in the hydro-
logic models, perfectly known precipitation and potential evapora-
tion (PE), in situ soil moisture observations with full dynamic range
(i.e., from residual soil water content to porosity), and accurately
estimated univariate statistics of the observation errors in stream-
flow and in situ soil moisture. To assess the performance of DA un-
der more realistic conditions, we also designed and carried out an
exploratory real-world experiment. The assumptions for the real-
world experiment include perfectly known precipitation and PE
and, for validation purposes only, observation error-free stream-
flow and in situ soil moisture (i.e., within the dynamic range be-
tween wilting point and field capacity) data. In both
experiments, the control variables, i.e., the variables to be adjusted
(or updated) via DA, are the SAC model states at the beginning of
the assimilation window at each HRAP cell in the basin. The moti-
vation for the simplification in this first phase of the research is to
reduce the complexity of the problem in favour of improved under-
standing and easier interpretation even if it may compromise the
goodness of the results. The basin used in the experiments is Eldon
(ELDO2), a 795-km2 headwater catchment located near the Okla-
homa (OK) and Arkansas (AR) border in the southern plains of
the U.S. The basin has two interior stream gauges at Christie
(65 km2) and Dutch (105 km2) and an in situ Oklahoma Mesonet
soil moisture measurement site at Westville, Oklahoma.

The main conclusions from the synthetic experiment are as fol-
lows. In general, the performance of the assimilation procedure



Fig. 13. Soil moisture and streamflow at 6-h lead time for October 9–13, 2001. The
shaded area in the top two plots represents the probability-matched soil moisture
observations at Westville (see Appendix B for details).
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exhibits the expected sensitivity to the amount of uncertainty in
the initial model soil moisture states and in the streamflow and
in situ soil moisture data; the more uncertain the initial states
and/or the more accurate the observations are, the larger the mar-
gin of improvement by DA is. A departure from this pattern was
observed, however, when both the streamflow and the in situ soil
moisture observations assimilated were very accurate, for which
the performance of DA was significantly lower than expected.
The above findings suggest that, under the idealized conditions,
the DA procedure developed is generally capable of assimilating
streamflow and in situ soil moisture data into distributed hydro-
logic models, but that uncertainty modeling needs improvement.
While assimilating streamflow observations alone did not, in gen-
eral, improve analysis and prediction of soil moisture, additionally
assimilating in situ soil moisture observations provided very sig-
nificant improvement under the idealized conditions. The above
result indicates that assimilating streamflow and/or in situ soil
moisture data, as carried out in this work, may pose a significantly
underdetermined inverse problem, and suggests that the dimen-
sionality of the control vector may need to be reduced to improve
underdeterminedness. The main conclusions from the real-world
experiment are as follows. In the real-world conditions considered
in this work, assimilating streamflow or streamflow and in situ soil
moisture data provided little improvement. Comparisons with the
synthetic experiment suggests that a combination of structural and
parametric errors in the hydrologic models, less than accurate
modeling of scale-dependent and heteroscedastic uncertainties,
and large observational uncertainty and microscale variability in
the in situ soil moisture data is primarily responsible for the lack
of improvement by DA. Additional research is necessary to ascer-
tain the relative importance of these contributing factors. The DA
procedure described in this work assumes that the models are
capable of skilfully simulating the joint dynamics of streamflow
and soil moisture over the catchment at the HRAP and 1-h scales.
If this assumption is not met, one may not expect simultaneous
assimilation at that scale of streamflow and soil moisture observa-
tions to be effective [60]. Hence, the future work should also in-
clude diagnosis of the realism of the model dynamics, as
observed through streamflow and soil moisture data, at different
temporal scales of aggregation. Such investigation is also likely to
yield a more effective strategy for assimilating soil moisture data.
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Appendix A. Error models for synthetic observations

To generate ensemble traces of synthetic soil moisture observa-
tions at the HRAP scale at Westville, we used:

hk ¼ hT;k þ rhwk: ðA:1Þ

In the above, hk denotes the synthetically-generated depth-specific
soil moisture observation at the HRAP scale at hour k, hT,k denotes
the assumed true (as generated by HL-RDHM) soil moisture at the
HRAP scale at hour k, where the subscript T denotes the model-gen-
erated assumed truth, rh denotes the standard deviation of the syn-
thetic soil moisture observation at the HRAP scale given the true
soil moisture at the HRAP scale, and wk denotes the temporally-cor-
related random noise of N(0,1) at hour k. We modelled wk in Eq.
(A.1) as AR (1) with a decorrelation time of 10 h. Eq. (A.1) was used
to generate synthetic soil moisture observations at 25 cm and
60 cm depths at the HRAP scale for the grid containing Westville.
Perfect correlation was assumed between wk at 25 cm depth and
that at 60 cm depth based on the observation that the cross-corre-
lation between the Oklahoma Mesonet soil moisture observation at
25 cm depth and that at 60 cm depth for the period of 1997–2002
was 0.97. It is reminded here that, unlike the real-world soil mois-
ture observations from the Oklahoma Mesonet whose dynamic
range is limited between wilting point and field capacity, the syn-
thetic observations from Eq. (A.1) assume the full dynamic range
from residual soil water content to porosity.

To generate synthetic streamflow observations we used:

Qk ¼ Q T;k þ rQ wk; ðA:2Þ

where Qk denotes the synthetically-generated streamflow observa-
tion at hour k, QT,k denotes the assumed true streamflow at time k,
rQ denotes the standard deviation of the synthetic streamflow
observation given the true streamflow, and wk denotes the tempo-
rally-correlated random noise of N(0,1) at hour k. To specify rQ in
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Eq. (A2), we used rQ = CQ QT,k where CQ denotes the multiplicative
factor (see Table 1). The random noise wk in Eq. (A.2) was modeled
as AR (1) with a decorrelation time of 10 h. Eq. (A.2) was used to
generate synthetic streamflow observations at Eldon, Christie and
Dutch.

To generate synthetic SAC states of UZTWC, UZFWC, LZTWC,
LZFSC and LZFPC (see Section 3 for explanation) at the beginning
of the assimilation window, we used:

XS;j;i;K�L ¼ XS;j;i;T;K�L þ Xmax
S;j;i expðaÞ � 1ð Þ; ðA:3Þ

where

a ¼ �0:5 ln 1þ CSXmax
S;j;i

� �2
	 


þ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ CSXmax

S;j;i

� �2
	 
s

; ðA:4Þ

In Eqs. (A.3) and (A.4), XS,j,i,K�L denotes the synthetic observation of
the jth SAC state, XS,j, at the ith grid at the beginning of the assim-
ilation window (i.e., k = K � L), K denotes the current hour, L denotes
the size of the assimilation window (hrs), Xmax

S;j;i denotes the upper
bound of XS,j,i, XS,j,i,T,K � L denotes the assumed true SAC state (as
generated by HL-RDHM) at k = K � L, a denotes the random noise

of N �0:5 ln 1þ ðCSXmax
S;j;i Þ

2
� �

; ln 1þ CSXmax
S;j;i

� �2
	 
	 


where CS speci-

fies the amount of perturbation (see Table 1). Note that exp (a) in

Eq. (A.3) follows LN 1; CSXmax
S;j;i

� �2
	 


where LN ( ) denotes the lognor-

mal distribution. In Eq. (A.4), b denotes the spatially-correlated ran-
dom noise of N(0,1). We used the Turning Bands Method (TBM,
[61]) with the exponential correlation function and a decorrelation
length of 10 HRAP cells to generate traces of b. With the above,

XS,j,i,K�L in Eq. (A.3) follows Ln XS;j;i;T;K�L; C
2
S Xmax

S;j;i

� �4
	 


. Eqs. (A.3)

and (A.4) were used to generate the synthetic observations of the
SAC states at the beginning of the assimilation window.

Appendix B. Observation model for in situ soil moisture and
estimation of its observation error variance

To assimilate the in situ soil moisture observations at Westville
in the Oklahoma Mesonet into the gridded SAC, we need an obser-
vation equation that relates the point-scale in situ observations at
a single location to the grid-scale model soil moisture states at all
cells. Recall in the DA formulation that the SAC states are adjusted
at each cell whereas the soil moisture observations are available
only within a single cell, and that only the vertical soil moisture
dynamics is modeled in SAC. Note also that variational assimilation
does not model propagation of the second-order moment of the
state variables, and hence does not provide information on the
Table B.1
Error standard deviations of the pseudo soil moisture observations at the HRAP scale and
moisture (m3/m3) estimated by the CSI 229-L soil moisture sensor at Westville.

Error type

DT-to-h conversion error
0.25 6 h 6 0.42 at 25 cm depth
0.21 6 h 6 0.36 at 60 cm depth

Data numerical precision error

Data representativeness error due to scale difference between point and HRAP grid

Spatial variability error due to inter-grid variability of soil moisture at HRAP scale

Total error
0.25 6 h 6 0.42 at 25 cm depth
0.21 6 h 6 0.36 at 60 cm depth
spatial dependence among grid-specific model soil moisture. As
such, direct variational assimilation into gridded SAC of the soil
moisture observations at Westville would result in adjustment of
the SAC states only at that cell. Below, we describe how we formu-
late Eq. (7) to spread the effects of assimilating soil moisture obser-
vations at Westville to all cells. The soil moisture observation
equation, Eq. (7), is rewritten as Eq. (B.1):

ZP
hi;m;k ¼ Hhi;m;kðXS;kÞ þ VP

hi;m;k for i ¼ 1; . . . ;nC ;

m ¼ 1; . . . ;nD; k ¼ K � Lþ 1; . . . ;K; ðB:1Þ

where ZP
hi;m;k;Hhi;m;kðXS;kÞ and VP

hi;m;k denote the pseudo (see below for
explanation) soil moisture observation at the HRAP scale, the obser-
vation equation that maps the model soil moisture states XS,k to
in situ soil moisture at the HRAP scale, and the zero-mean observa-
tion error associated with ZP

hi;m;k at the ith cell, mth depth and k-th
hour in the assimilation window, respectively, nC denotes the num-
ber of cells in the basin, nD denotes the number of depths where the
in situ soil moisture observations are available, K denotes the cur-
rent hour, and L denotes the size of the assimilation window
(hrs). The pseudo observation ZP

hi;m;k at the HRAP cell containing
Westville is obtained by probability-matching the point-scale
in situ soil moisture observations with the SAC-simulated soil mois-
ture at the HRAP cell containing Westville (see below for details).

To propagate the pseudo observation ZP
hi;m;k at the HRAP cell

containing Westville to other cells, one may model the spatial cor-
relation function of the soil moisture observation error in the
observation equation and solve the resulting Fisher estimation
problem [41]. As shown below, however, the soil moisture obser-
vation error is a combination of a number of different types of er-
rors of which we do not know the spatial correlation structures
very well. For this reason, we assume in this work that the zero-
mean soil moisture observation error is spatially independent so

that E VP
hi;m;kVP

hj;m;k

h i
¼ 0 holds for i – j. We then assign ZP

hi;m;k at

the cell containing Westville to all other HRAP cells as pseudo
observations, and prescribe the error variances associated with
them in such a way that they reflect the spatial variability of soil
moisture. Such an approach has also been used in rainfall estima-
tion [62]. Below, we describe how the variance of VP

hi;m;k, or r2
h;i;m;k, is

estimated.
To estimate r2

h;i;m;k for all HRAP bins in the basin we identified
five different types of uncertainty in the in situ soil moisture obser-
vations from the Oklahoma Mesonet in reference to the true soil
moisture at the HRAP scale at Westville: (1) uncertainty in estimat-
ing soil moisture, h, from temperature change, DT, due to the lim-
ited accuracy in measuring DT and in converting DT to h, (2)
uncertainty due to the limited numerical precision in the soil mois-
ture data, (3) uncertainty due to point-vs.-HRAP scale difference
their estimated values (see Appendix B for details). In the table, h denotes in situ soil

Standard deviation (m3/m3)

25 cm-Depth soil moisture 60 cm-Depth soil moisture

0.008 0.007

0.010 0.010

0.033 0.037

0.008–0.083 0.006–0.075

0.036–0.090 0.043–0.086
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(i.e., microscale variability of soil moisture), (4) uncertainty due to
spatial variability of soil moisture at the HRAP scale within the ba-
sin, and (5) uncertainty due to the limited dynamic range of the
sensor. Below we describe how these uncertainties are estimated
or accounted for in the assimilation process.

The CSI 229-L soil moisture sensor used in the Oklahoma Mes-
onet measures the temperature change in the thermocouple [63].
The measured temperature difference, DT, is used to estimate the
matric potential of the soil via the van Genuchten equation
[64,65], which is then converted to soil moisture, h, via the van
Genuchten equation [63,65]. According to Flint et al. [64], over
the range of �0.01 to �35 MPa, the mean percentage error of mat-
ric potential estimated from the measurements of DT against the
measured matric potential is about 22.8%. To estimate the variance
of the error associated with converting DT to h, we designed a
small numerical experiment to generate via the van Genuchten
equation soil moisture estimates with 22.8% of the assumed true
soil moisture as the error standard deviation given different values
of matric potential within the range observed in the Westville data.
We then calculated the sample variance of the difference between
the above-generated soil moisture estimates and the assumed true
soil moisture. The sample variance then represents that uncer-
tainty associated with the DT-to-h conversion. Note that the above
procedure implicitly assumes that the matric potential-to-soil
moisture relationship is known perfectly. This assumption is rea-
sonable because we are only interested in the uncertainty spread
of the conversion rather than the absolute accuracy of the conver-
sion itself.

For the data precision error, the numerical precision of the
Westville data, 0.01 m3/m3, was assumed as its standard deviation.

To reconcile the difference in spatial scale between the soil
moisture observations at point scale and the modeled soil moisture
at the HRAP scale [58,59], we used probability matching as de-
scribed below. We used the in situ soil moisture observations at
Westville and the HL-RDHM simulations of soil moisture for the
period of 1997–1999 to derive the empirical cumulative distribu-
tion functions (CDF) at each depth. The in situ soil moisture data
were then converted to pseudo soil moisture observations at the
HRAP scale in the model soil moisture space via probability match-
ing. For the period of 2000–2002, the pseudo soil moisture obser-
vations at the HRAP scale in the model space obtained from the
in situ soil moisture data via probability matching were compared
to the model soil moisture. The difference between the two may be
attributed to the point-vs.-HRAP scale difference and the sampling
variations between the two periods. Assuming that the latter is rel-
atively small, the sample variance of the above difference may be
Fig. B.1. The maps of the error standard deviation (m3/m3) of the pseudo soil moisture o
The pseudo soil moisture observations are probability-matched in situ soil moisture da
stream gauge and soil moisture measurement locations, respectively, and the solid line
considered representative of the uncertainty due to the representa-
tiveness error.

For the uncertainty due to spatial variability of soil moisture at
the HRAP scale, we compared the model-simulated soil moisture at
the HRAP cell containing Westville to that at each of the other
HRAP cells in the basin for the period of 1997–2002. We then con-
sidered the sample variance of the inter-grid difference to repre-
sent the added uncertainty in the pseudo soil moisture
observation due to spatial (i.e., cell-to-cell) variability of cell-aver-
aged soil moisture.

The dynamic range of soil moisture observation is estimated di-
rectly from the Oklahoma Mesonet data. At Westville, the observa-
tions are bounded by wilting point and field capacity of 0.25 and
0.42 m3/m3 at 25 cm and 0.21 and 0.36 m3/m3 at 60 cm, respec-
tively. In the data assimilation process for the real-world experi-
ment, whenever the observed soil moisture hit either bound, we
prescribed a very large error variance to the observation to reflect
that the actual soil moisture may be greater or smaller than the
upper or the lower bound, respectively. In the synthetic experi-
ment, on the other hand, no such bounds were assumed and the as-
sumed ‘‘true’’ soil moisture observation at the HRAP scale (see
Appendix A) ranged from residual soil moisture content to
porosity.

Table B.1 summarizes the individual error standard deviations
for the first four uncertainty sources contributing to the total error
standard deviation associated with the pseudo soil moisture obser-
vations at the HRAP scale at both depths, i.e., ZP

hi;m;k in Eq. (B.1).
Assuming independence among the different errors considered,
we obtain the total error variance for VP

hi;m;k in Eq. (B.1) by summing
all contributing error variances. The lower bounds of the total error
standard deviation in Table B.1 correspond to that for VP

hi;m;k at the
HRAP cell containing Westville. It is worth nothing that they are
close to the maximum error bound of 0.05 cm3/cm3 reported by Ill-
ston et al. [63] for soil moisture estimates from the Oklahoma Mes-
onet. In the synthetic experiment, the first three errors in Table B.1
and the cell-to-cell variability of soil moisture at the HRAP scale
are accounted for via Eq. (A1) and via the observation equation
as described above, respectively. The first three errors in
Table B.1 amount collectively to an error standard deviation of
0.036 m3/m3 at 25 cm depth and 0.043 m3/m3 at 60 cm depth.
Accordingly, the low level of uncertainty of rh of 0.01 (see Table 1)
represents an idealized situation where the soil moisture observa-
tions are free from errors due to DT-to-h conversion or microscale
variability. The medium level of uncertainty of rh of 0.03, on the
other hand, represents an uncertainty level close to the collective
uncertainty due to the first three errors in Table B.1. It is reminded,
bservations at the HRAP-grid scale for (a) 25 cm- and (b) 60 cm-depth soil moisture.
ta at Westville (see Appendix B for details). The white and black circles denote the
depicts the channel network.
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however, here that, in the synthetic experiment, the dynamic range
of soil moisture observation is assumed to be unlimited whereas,
in reality, that of the Oklahoma Mesonet soil moisture observa-
tions is bounded by wilting point and field capacity. Hence, the
medium level of uncertainty in Table 1 is likely to be an
underestimate.

In the real-world experiment, the total error standard deviation
estimates in Table B.1 were used. Fig. B.1 shows the maps of

VP
hi;m;k

� �1=2
used in the real-world experiment (see Section 7) as

estimated from the above steps.
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