

State Updating of Distributed Hydrologic Model via Variational Data Assimilation for Real-time Analysis and Prediction of Streamflow

Haksu Lee^{1,2}, Dong-Jun Seo^{1,2}, Paul McKee³, Robert Corby³

¹NOAA / NWS / Office of Hydrologic Development
²University Corporation for Atmospheric Research
³NOAA / NWS / West Gulf River Forecast Center

Predicting Floods to Droughts In Your Neighborhood

Models used

- Hydrology Laboratory's Research Distributed Hydrologic Model (HL-RDHM, Koren et al. 2004)
 - Gridded (~4x4 km²) soil moisture accounting models (SAC)
 - Kinematic-wave routing
- The prototype DA assimilates (Seo et al. 2003, Lee et al. 2010¹):
 - Streamflow (outlet, interior)
 - In-situ soil moisture
 - Precipitation
 - Potential evaporation (PE)

¹Submitted to the Journal of Hydrology

Background SAC states

Approach

- 3 cases
 - Case 1: Assimilate outlet flow only
 - Case 2: Assimilate interior flow only
 - Case 3: Assimilate streamflow at both outlet and interior locations
- Varying size of control vector
 - Spatial discretization : Grid, sub-basin, basin
 - temporal discretization: 1hr, 6hr, length of the assimilation window
- High flow events only

Study basins

4 basins in Arkansas-Red Basin River Forecast Center(ABRFC) service area: TIFM7, WTTO2, ELDO2, BLUO2

5 basins in West Gulf River Forecast Center(WGRFC) service area: HNTT2, KNLT2, ATIT2, GBHT2, HBMT2

	Area (km²)	Interior gauges	Sub- basins	Assimilation window (hr)	Simulation period	No. Events (streamflow threshold (m³/s))
ELDO2	795	2	3	36	8 yrs 1996/1–2004/1	17 (200)
WTTO2	1645	3	3	48	2 yrs 2000/4–2002/1	7 (200)
TIFM7	2258	2	5	60	6 yrs 2000/5–2006/9	15 (200)
BLUO2	1232	1	5	60	3 yrs 2003/10– 2006/9	7 (100)
HBMT2	246	1	3	42	13 yrs 1997/1–2009/7	20 (400)
GBHT2	137	1	3	48	10 yrs 2000/1–2009/7	16 (150)
ATIT2	844	11	3	36	13 yrs 1997/1–2009/6	23 (100)
KNLT2	904	2	5	36	11 yrs 1997/10–2008/9	15 (200)
HNTT2	769	1	3	30	12 yrs 1998/1–2009/6	9 (200)

ABRFC

WGRFC

percent reduction in RMSE in streamflow analysis

Blue: Outlet flow results **Red:**

Red: Interior flow results

A: ATIT2 B: BLUO2 E: ELDO2 G: GBHT2 Hb: HBMT2 Hn: HNTT2 K: KNLT2 T: TIFM7 W: WTTO2

Percent reduction in RMSE of simulated hourly streamflow

- Simulation is w/ and w/o DA for each high-flow event for all 9 basins.
- The results are over the entire assimilation window (i.e. the analysis period).

	Assim. outlet flow only	Assim. interior flow only	Assim. outlet & interior flow
Verified at outlet	48 %	19 %	46 %
Verified at interior	Verified at interior 16 %		36 %

- Assimilating outlet flow improved analysis of interior flow approximately 16% in terms of RMSE
- Assimilating interior flow improved outlet flow analysis approximately 19% in terms of RMSE
- Improvement in prediction is smaller than in analysis, and dissipates rather quickly as the lead time increases
- No clear optimum spatio-temporal scale for adjustment was found
 - Varies from basin to basin and depends on the location of the stream gauges
- For events with timing errors, the assimilation results have limited skill

Thank you

