Verification of Probability Forecasts

4/21/04 RFC Ensemble Workshop

Reliability and Resolution Two Key Characteristics

- Reliability
 - Do the forecast probabilities correctly reflect the future uncertainty?
- Resolution
 - Do the forecasts distinguish between upcoming events?

A Reliability Example

And Now with Resolution

Reliable Stage

Measuring Reliability

Rank Histograms

- Evaluate the frequency the observed falls into probability intervals.
- We usually compute a
 Rank Histogram using
 the Cumulative
 Distribution Function
- Call it a "Cumulative Rank Histogram".

Reliability Diagrams

- Evaluate the frequency the observed falls into probability intervals given a forecast for a specific event.

Rank Histograms

We Need to Look at Forecasts of Something

Forecasts of Flooding

Reliability Diagrams

Forecasts of Flooding

Forecast chance of a Flood

< 33 %: 6 fcsts, 1 obs

33% to 66 %: 2 fcsts, 1 obs

>66%: 1 fcst, 1 obs

Measuring Resolution

- Discrimination Diagrams
 - Like Reliability Diagrams, but sorting by the observation
 - Look at what the forecast was, before a flood.
- Relative Operating Characteristics (ROC) Diagrams
 - Connects to theory to assess value and to deterministic scores.
- Ranked Probability Score and Brier Score
 - Consist mostly of Resolution

Discrimination Diagrams

Flood and No Flood Events

Relative Operating Characteristics (ROC) Diagrams for Flood Forecasts

Ranked Probability Score (RPS) for Flood Forecasts

RPS =
$$\acute{O}(f_k - o_k)^2$$

Where f=0 if the event did not occur and 5=1 if the event did occur and k is the category number

RPS =
$$((0 - 0.05)^2 + (0 - 0.25)^2 + (1 - 0.60)^2 + (1 - 0.85)^2 + (1 - 1.00)^2)$$

= 0.25

For multiple forecasts, take the average RPS. If K=2; RPS = The Brier Score