
 Products | Downloads | Support | Search | Worldwide | Microsoft

 Microsoft Home

Search for

Advanced Search

All MSDN Go

.NET Architecture Center
Home

Enterprise Architecture

Application Architecture

Systems Architecture

Patterns

Architecture Community

Read Me First: Microsoft
Architecture Overview

What's Next: Upcoming
Architectural Content

Developer

IT Pro

Microsoft Home > .NET Architecture Center Home > Application Architecture

A Guide to Building Enterprise
Applications on the .NET
Framework

Building the Next Generation of Service-
based Software Systems

Microsoft Corporation

September 2003

Applies to:
 Microsoft® .NET Framework
 Microsoft Windows Server™ 2003

Summary: Learn about the technical basis for building enterprise-scale Web-based
applications using the Microsoft .NET Framework and Microsoft Windows Server 2003.
(40 printed pages)

Contents

Introduction
Service Framework
The Unified Class Libraries
Service Presentation
.NET Development
Summary
Glossary
For More Information

Introduction
This document describes the technical basis for building enterprise-scale Web-based
applications using the Microsoft® .NET Framework and the Microsoft Windows Server™
2003 platform. This new generation of applications is needed to meet the demands of
enterprise computing over an Internet standard distributed network infrastructure.

This software model integrates the power of Web-based solutions with the distributed
application model of traditional multi-tier client/server design. While client/server
design has traditionally relied on proprietary technologies to control information flow
between the tiers, current solutions take advantage of industry-standard
communications protocols to harness the power of the Internet. By creating solutions
based on a combination of supplied and created services, more powerful and flexible
applications can be built in a fraction of the time required using previous development
methodologies.

History of Web Development

The Web started as basically a read-only file system, enabling easy content access
using industry standards and protocols.

See This in MSDN Library

Page Options
Average rating:
5 out of 9

Rate this page

Print this page

E-mail this page

Discuss this page

Add to Favorites

Page 1 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distribut...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

The first interactive Web applications were typically outward extensions of existing
two-tier applications that exposed and rendered data in a Web browser. Early Web
development was typically based on the C programming language and the Common
Gateway Interface (CGI), with which very few programmers had experience. As a
result, development costs for dynamic Web applications were high.

In addition, most of these Web applications were built on two-tier architectures,
creating challenges around scalability and application integration. Developers typically
did not design Web applications to be used by anything other than the Web page they
were hosting. In other words, the user interface and the application logic were the
same thing. Consequently, it was difficult to link Web applications together to form
more useful aggregations.

As a result of advances in the Microsoft Component Object Model (COM) and the
release of technologies such as Microsoft's Active Server Pages (ASP) in 1996, Web
sites offered a more interactive user experience. ASP made it easy to call the business
logic and platform services that developers need through simple script languages. COM
support made it easy to write applications through its ability to package this business
logic into modular units that can be written in a wide range of popular programming
languages, particularly Microsoft Visual Basic® and Microsoft Visual C++®.

The Web could now offer richer user experiences and it was taking basic steps to
overcome some of the challenges of application integration with tricks such as using
HTML frames to embed one company's Web site within another, and HTML "screen
scraping" to extract data from Web pages.

These strategies for application integration had shortcomings. Simply put, they were
(and still are) brittle: What happened if the other Web site changed its content, leaving
the page with a broken link?

Advancements in Web development are rapidly moving from this two-tier architecture
to an n-tier design, which enables a richer integration strategy by exposing business
objects and middle-tier logic to Web and partner integration. The challenge with trying
to use encapsulated business logic in this way is that most of these applications are
designed on tightly coupled, proprietary protocols.

Current challenges

In the past, the companies that have tried to offer solutions for enabling a Web site to
expose application integration information and functionality in a modular, scalable, and
Internet-friendly way have encountered significant challenges. Chief among these
challenges are the following:

! Time to market. The length of development time for getting an application or
Web site to market may render the offering no longer viable.

! Scaling to the Web. Existing object models and component designs simply do
not work over Internet protocols. Stateless application development that can be
rerouted and served by any server is a new concept for many developers. Yet
such a design pattern is vitally important to achieve global scalability.

! Lack of end-to-end development tools. Tool sets available today don't
empower organizations with the flexibility necessary to stay ahead of their
competitors. In the rapidly changing world of the Internet, organizations must
exhibit the agility to integrate with new partners, using development tools that
solve the challenges of today's heterogeneous computing environments.

Service-oriented architecture

Perhaps the biggest challenge facing technology professionals today is how to leverage
and manage the diverse IT assets within an organization. Software developers need to

Page 2 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distribut...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

be able to reuse organizational assets to reduce time-to-market and cut code
maintenance costs. IT managers need to understand and permit appropriate access to
network resources, regardless of the platform or programming language used to
deliver those resources. Everyone needs insight into the problems that arise as the
application portfolio is used to drive the organization's business.

Figure 1. Web services

To address these challenges, many organizations are realizing the benefits of exposing
key software components as network-addressable services. In a service-oriented
architecture (SOA), data, logic, and infrastructure assets are accessed by routing
messages between network interfaces. Services encapsulate and componentize
complex processes and systems, permitting controlled change and continuous
improvement of the underlying implementations.

An SOA realizes its full potential when it permits cross-platform integration, so that, for
example, applications written in a variety of languages can all share the same
exception management services. To this end, Microsoft is working with a consortium of
system vendors to develop a platform-independent framework for services around XML
and its related technologies.

In an SOA, applications composed of Web services expose their functionality
programmatically over the Internet or intranet using Internet protocols and standards,
such as HTTP and XML.

Web services are Microsoft's implementation of an SOA. Web services solve the
challenges facing Web developers by combining the tightly coupled, highly productive
aspects of n-tier computing with the loosely coupled, message-oriented concepts of the
Web. Think of Web services as component programming over the Web.

While a single application may be designed, developed, and deployed following the
principles of service orientation, the benefits of an SOA are best realized when an
organization commits to structuring its application portfolio and technology
architecture around reusable, composable services.

Distributed Application Design

Designing a distributed application involves numerous decisions—typically made by
multiple people—about its logical and physical design and the technologies and
infrastructure used to implement it. To help guide this process, it is necessary to have
a conceptual model for the partitioning of functionality in the application. The following
diagram—taken from the Microsoft guide Application Architecture for .NET: Designing
Applications and Services—shows a typical conceptual view, which is appropriate to a
wide range of specific application scenarios:

Page 3 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distribut...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

Figure 2. Layered application: conceptual view

The components in this conceptual view include:

! User Interface (UI) components. Most solutions provide some way for users to
interact with the application. User interfaces are implemented using smart clients
or Web pages to acquire, validate, render and format user data.

! User process components. Many solutions synchronize and orchestrate these
user interactions using separate user process components. This way the process
flow and state management logic is not hard-coded in the user interface elements
themselves, and the same basic user interaction "engine" can be re-used by
multiple user interfaces.

! Business workflows. Many business processes involve long running multi-step
processes that must be performed in the correct order and coordinated with other
services.

! Business components. Virtually all applications and services require components
that implement business rules and perform business tasks. Business components
implement the business logic of the application.

! Service agents. Business components that require functionality provided in
external services must communicate with those services. Service agents isolate
the application from the idiosyncrasies of calling services and can re-map data as
appropriate for the application.

! Service interfaces. In order to expose business logic as a service, service
interfaces must be created that support the communication contract (message-
based communication, formats, protocols, security, exceptions, and so on) that
are needed by its different consumers.

! Data access logic components. Almost all applications and services will need to
access a data store at some point during a business process. Abstracting the data
access logic in a separate layer centralizes data access functionality and makes it
easier to configure and maintain.

! Business entity components: Most applications require data to be passed
between components. For example, in the retail application a list of products must
be passed from the data access logic components to the user interface

Page 4 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distribut...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

components, so that the product list can be displayed to the users. The data is
used to represent real world business entities, such as products or orders. The
business entities that are used internally in the application are usually data
structures provided by the platform, but they could also be implemented using
custom object-oriented classes that represent the real world entities that
applications have to deal with, such as a product or an order.

! Components for Security Operational Management and Communication:
Applications take advantage of platform features for security, exception
management, and communications. Applications must also support a broad
spectrum of operational technologies including administration, management, and
deployment. For more information on these topics, visit the .NET Architecture
Center.

Technical Architecture

Technical architecture is the technology basis for achieving an enterprise-scale Web
service-oriented architecture in an organization. The high-level service technology
diagram shown below illustrates a set of generic layers that provide enterprise-based
services for Web service generation. These levels contain the common elements that
are required by any Web service application or system.

Figure 3. A conceptual view of the technology architecture

! Platform—Forms the base of the conceptual view, providing operating system,
hardware, storage, networking, and the trust and management services for the
whole system. Many of these capabilities may be provided as part of the operating
system.

! Framework—Provides the process and state management, language
interoperability, and common libraries required by a service–based application.
The libraries allow developers to use a higher-level, consistent abstraction of the
underlying platform.

! Delivery—Contains the communications and service interfacing required to
support the location and consumption of Web services. These services can be
consumed by the presentation layer as well as external systems.

The framework and the platform together form the full enterprise application server,
which provides specific support for Web services.

! Presentation—Contains the client services that focus on user presentation issues
and technologies, and provides support for all types of clients including devices.
The functionality at this layer may reside on the client and devices, or may be
provided by Web servers that generate HTML presentation. In Web applications,
the presentation may also include processing done by the client browser.

At the same time, two additional conceptual areas are used to express functionality
that encompasses all the other conceptual layers:

! Integration—Provides integration and interoperation between services and
present-day operational systems: legacy applications, commercial applications,
databases, and other Web services. This is commonly called enterprise application

Page 5 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distribut...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

integration (EAI).

! Creation and Deployment—Includes the tools, process, methodologies, and
patterns required to support the entire application life cycle, including the design,
development, testing, deployment, and management of enterprise solutions built
on Web services.

Microsoft Service Framework

The Microsoft platform for service-oriented architecture includes the .NET Framework
running on Windows Server 2003. The balance of this document describes how this
platform can be used to build enterprise-scale Web applications.

Introduction to the .NET Framework

The .NET Framework is an integral Windows component that supports building and
running the next generation of software applications—both client- and server-side—
and Web services. It is based on industry standards and manages much of the
plumbing involved in developing and running a piece of software, enabling developers
to focus on writing the core business logic code. The .NET Framework provides:

! A consistent, language-neutral, object-oriented programming environment.

! A code-execution environment that minimizes software deployment and versioning
conflicts, guarantees safe execution of code, eliminates the performance problems
of scripted or interpreted environments.

! A consistent developer experience across widely varying types of applications—
including smart client applications and Web-based applications and services, all
running on Windows.

The .NET Framework is composed of two key parts: the common language runtime
(CLR) and the class libraries. These will be covered in detail in the next section,
"Service Framework."

Windows Server 2003

The Windows Server 2003 family forms the base platform for an enterprise service-
oriented architecture. At the cornerstone is native-mode Microsoft .NET functionality
through the .NET Framework and standards-based technologies, which will enable
businesses to easily and seamlessly connect information, people, systems, and
devices.

As the platform for a service-oriented architecture, Windows Server 2003 provides the
operating system, storage, networking, security, and management services on which
solutions are built. Windows Server 2003 is the foundation enabling an unprecedented
level of software integration through the use of XML-based Web services.

Service Framework

Page 6 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distribut...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

Figure 4. Service framework

A great deal of the functionality of any software application system is commonly
provided by a framework that supports building solutions. The framework provides
infrastructure functionality—such as reliability, scalability, communications, and so
on—as well as an application model that enables developers to easily construct and
assemble applications using a variety of programming tools and languages. The .NET
Framework provides exactly this functionality for building software solutions based on
the Windows platform.

.NET Framework Applications

The .NET Framework can be used to build many different types of Windows
applications, including those that run on servers—such as Web applications and Web
services—as well as those that run on client side.

In particular, the application server solution—composed of the .NET Framework,
Windows Server 2003, and Microsoft Visual Studio® .NET—can provide the
following .NET Framework applications:

! ASP.NET—Used for building server-based Web applications, ASP.NET is an
evolution of the widely-used Active Server Pages (ASP) programming model.
Using the ASP.NET mobile controls, these applications can target small devices—
such as PDAs and phones—that support a Web browser.

! Web Services—Web services are components which facilitate integration by
sharing data and functionality over the network through standard, platform-
agnostic protocols such as XML, SOAP, and HTTP.

! Server Components—Communication between different objects and services
running on the same or remote machines.

! Other—The application server can also host .NET Framework programs written as
console applications or Windows services.

On the client, the .NET Framework can be used for the following types of applications:

! Smart Client—Programs that run on the familiar Windows desktop that take
advantage of the rich user interface capabilities of these operating systems.

! Smart Client on Smart Devices—Applications that run on the Pocket PC and
Windows CE .NET platforms and use the .NET Compact Framework.

! Other—As with the server, the Windows client can also execute .NET Framework
programs written as console applications or Windows services.

All of these application types make use of the .NET Framework, though the details of
how they are built, their user interfaces, and the functional areas of the .NET
Framework used by the applications will all vary significantly.

.NET Framework Design Goals

The .NET Framework is a set of class libraries and a runtime for rapidly building and
efficiently operating Web services and applications on the Windows operating system.
The vision for the .NET Framework is to combine a simple-to-use programming
paradigm with the scalable, open protocols of the Internet. To achieve this vision
several intermediate goals had to be delivered.

The Common Language Runtime

Page 7 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distribut...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

Figure 5. Major components of the common language runtime (CLR)

The common language runtime (CLR) is a high-performance engine for running
applications built using the .NET Framework. Code that targets the runtime and whose
execution is managed by the runtime is referred to as managed code. Responsibility
for tasks such as creating objects, making method calls, and so on is delegated to the
CLR which enables it to provide additional services to the code as it executes.

While the component is running, the CLR provides services—such as memory
management (including garbage collection), process management, thread
management, and security enforcement—and satisfies any dependencies that the
component may have on other components.

Despite its name, the CLR also has a role in a component's development-time
experiences. Because it automates so much (for example, memory management), the
CLR makes the developer's experience very simple. In particular, features such as
lifetime management, strong type-naming, cross-language exception handling,
delegate-based event management, dynamic binding, and reflection dramatically
reduce the amount of code a developer must write in order to turn business logic into
reusable components.

Runtimes are nothing new for languages; virtually every programming language has a
runtime. Visual Basic has a well known runtime (the aptly-named VBRUN), but
Microsoft Visual C++® also has one (MSVCRT), as do Microsoft JScript®, SmallTalk,
Perl, Python, and Java. The critical role of the common language runtime, and what
really sets it apart, is its provision of a unified runtime environment across all
programming languages.

The key features of the runtime include a common type system (enabling cross-
language integration), self-describing components, simplified deployment and
versioning, and integrated security services.

Common type system and multilanguage integration

To fully interact with other objects regardless of the programming language they were
implemented in, objects must expose to callers only those features that are common
to all the languages with which they must interoperate. The CLR makes use of a new
common type system capable of expressing the semantics of modern programming
languages. The common type system defines a standard set of data types and rules for
creating new types. The CLR understands how to create and execute these types. The
different language compilers for the .NET Framework use the CLR to define data types,
manage objects, and make method calls instead of using tool- or language-specific
methods.

The Common Language Specification (CLS) defines a set of language features to which

Page 8 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distribut...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

programming languages must adhere in order to integrate with the .NET Framework.
This goes beyond the common type system, specifying rules about events, exception
handling, metadata (to be discussed in more detail later), and so on.

The CLS and common type system enable deep multilanguage integration, enabling
the following activities to take place transparently across components written in
different languages, without any additional work on the part of the developer:

! Calling methods on other objects

! Inheriting implementations from other objects

! Passing instances of a class to other objects

! Using a single debugger across multiple objects

! Trapping errors from other objects

This means that developers no longer need to create different versions of their
reusable libraries for each programming language or compiler, and developers using
class libraries are no longer limited to libraries developed for the programming
language they are using or forced to create COM wrappers to facilitate the interaction.

Cross-language integration is useful in several scenarios. For example, development
projects gain access to a larger skills base—project managers can choose developers
skilled in any programming language and join them together on the same team.
Alternately, developers writing components for a distributed application will find it
helpful to know that no matter what language they choose to write their components
in, those components can interact closely with each other and with components
supplied by other developers.

Metadata and self-describing components

The .NET Framework enables the creation of self-describing components, which
simplify development and deployment and improve system reliability. Self-description
is accomplished through metadata—information contained in the binary that
supplements the executable code, providing details about dependencies, versions, and
so on. The metadata is packaged together with the component it describes, resulting in
self-describing components.

A key advantage of self-describing components is that no other files are needed in
order to use a component. This contrasts with typical application development today,
which requires separate header files for class definitions, separate Interface
Description Language (IDL) files, separate type libraries, and separate proxies and
stubs. Since the metadata is generated from the source code during the compilation
process and stored with the executable code, it is never out of sync with the
executable.

Because each application contains a full description of itself, the runtime can
dynamically assemble a cache of information about the components installed on a
system. If that cache becomes damaged somehow, the runtime can rebuild it without
the user even knowing. In addition to solving development challenges, self-description
eliminates the dependency on the Windows registry for locating components. A benefit
of not relying on the Windows registry is the ability to do XCOPY deployment.

Deployment and shared assemblies

Many server applications and services built with the .NET Framework can be deployed
simply by copying the application's files to a target machine, without any registration
of the dynamically-linked libraries (DLLs) or installation scripts. By default, applications
are completely self-contained. An executable lives in an application directory with all
the DLLs and resources it needs. Applications can be copied onto a target server

Page 9 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distribut...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

machine or delivered by common media—CD, DVD, floppy disk—as well as via
application deployment infrastructure such as Microsoft Systems Management Server.
Applications can also be deployed from a remote Web server using HTTP.

Administrators may share DLLs among multiple applications using the .NET Framework
global assembly cache (GAC). The GAC effectively serves as an intelligent store for
DLLs and should be used in place of the system registry when working with DLLs
written using the .NET Framework. It can contain multiple versions of a given DLL.
Each DLL entered into the GAC is entered with a "strong name." This consists of a
digital signature, the name of the DLL, its version number, and the culture for which it
was created (for example, English, German, or Japanese). This information enables the
GAC to differentiate between different versions of a given DLL.

The isolation of DLLs in their own application directories in the XCOPY deployment
scenario and the global assembly cache in the shared DLL scenario enable side-by-side
execution without any conflicts. In fact, this is true of the .NET Framework as well:
different versions of the .NET Framework may be installed and execute on a machine
concurrently.

Side-by-side execution eliminates "DLL hell"—a common scenario in which a new
version of a DLL would replace an older version in the system registry, resulting in
incompatibilities with applications that had been depending upon functionality or
behavior present only in the older version.

Code access security

The .NET Framework takes a major step forward in software security by introducing a
fine-grained, evidence-based security system called code access security. This security
system now gives the systems administrator a wide range of granular permissions that
they can grant to code in place of the "all-or-nothing" or "sandbox" security models
available with many earlier software technologies.

The Unified Class Libraries
The classes of the .NET Framework provide a unified, object-oriented, hierarchical, and
extensible set of class libraries, or APIs, that developers can use from the languages
with which they are already familiar.

Figure 6. The .NET Framework unified classes

Previously, Visual C++ developers used the Microsoft Foundation Classes, Visual J++
developers used the Windows Foundation Classes, and Visual Basic developers use the
Visual Basic runtime. Simply put, the classes of the .NET Framework unify these

Page 10 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distrib...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

different classes, creating a unified set of their features across all languages. The
result is that developers no longer have to learn multiple object models or class
libraries. By creating a common set of APIs across all programming languages,
the .NET Framework enables such powerful features as cross-language inheritance,
error handling, and debugging. In effect, all programming languages—from JScript to
C++—become equal and developers are free to choose the right language for the job
at hand.

The .NET Framework provides classes that can be called from any programming
language. These classes comply with a set of naming and design guidelines to further
reduce training time for developers. Some of the key class libraries are shown in the
figure at above.

The .NET Framework includes a base set of class libraries that developers would expect
in any standard library, such as collections, input/output, data type, and numerical
classes. In addition, there are classes that provide access to all of the operating
system services, such as graphics, networking, threading, globalization, cryptography,
and data access; classes that development tools can use, such as debugging; and a
set of classes that supply the services necessary for building enterprise-scale
applications, such as transactions, events, partitions, and messaging.

We will first take a look at the three high-level namespaces used to build server and
client applications, specifically:

! ASP.NET (System.Web)

! Web Services (System.Web.Services)

! Windows Forms (System.Windows.Forms)

ASP.NET

A set of classes within the unified class library, ASP.NET provides a set of controls and
infrastructure that make it simple to build Web applications.

ASP.NET comes with a set of server-side controls (sometimes called Web forms) that
mirror the typical HTML user interface widgets (including list boxes, text boxes, and
buttons), and an additional set of Web controls that are more complex (such as
calendars and ad rotators). These controls actually run on the Web server and project
their user interface as HTML to a browser. On the server, the controls expose an
object-oriented programming model that brings the richness of object-oriented
programming to the Web developer.

One important feature of these controls is that they can be written to adapt to client-
side capabilities—the same pages can be used to target a wide range of client
platforms and form factors. In other words, ASP.NET controls can sniff the client that is
requesting a page and return an appropriate user experience—HTML 3.2 for a down-
level browser and dynamic HTML for Internet Explorer 5.5. In the case of the ASP.NET
mobile controls, which will be discussed in more detail below, the controls can even
further, returning compact HTML (cHTML) or WML, for example, if required.

ASP.NET also provides features such as cluster session-state management and process
recycling, which dramatically increase application reliability.

ASP.NET works with all development languages and tools (including Visual Basic, C++,
C#, Visual J#, and JScript). How ASP.NET works is covered in the Web forms section
of Service Presentationlater in this document.

Web services

Integrating systems has historically been a daunting and expensive process.

Page 11 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distrib...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

Integration solutions were often point-to-point, minimizing opportunities for code reuse
should one of the systems in question eventually need to integrate with other systems.
Solutions were also often brittle, relying on technology such as HTML "screen-
scraping," which broke down whenever the "client" Web site changed its format.

Web services provide a low-cost, scalable, and flexible solution to the challenges of
integration. Simply put, Web services are components that facilitate integration by
sharing data and functionality over the network through standard, platform-agnostic
protocols such as XML, SOAP, and HTTP.

Web services solve the challenges facing Web developers by combining the tightly
coupled, highly productive aspects of n-tier computing with the loosely coupled,
message-oriented concepts of the Web. Thus, Web services enable Web-based
component programming.

Figure 7. Example of XML being returned from a Web service

Conceptually, developers integrate Web services into their applications by calling the
methods exposed in this manner just as they would call local services. The difference
is that these calls can be routed across the Internet to a service residing on a remote
system. For example, a Web service such as Microsoft Passport provides authentication
functionality to client applications from a remote set of Microsoft-hosted servers. By
programming against the Passport service, a developer can take advantage of
Passport's infrastructure and rely on Passport to maintain the database of users, make
sure that it is up and running, backed up properly, and so on—thus shifting a whole set
of a development and operational chores.

Clearly, a considerable amount of infrastructure is required to make building Web
services transparent to developers and users. The Microsoft .NET Framework provides
that infrastructure in the System.Web.Services classes. There, the .NET Framework
supplies an application model and key enabling technologies to simplify the creation,
deployment, and ongoing evolution of secure, reliable, scalable, and highly available
Web services while building on existing developer skills.

To the .NET Framework, all components can be Web services, and Web services are
just another kind of component. The result is a powerful, productive Web component
system that simplifies program plumbing, deeply integrates security, introduces an
Internet-scale deployment system, and greatly improves application reliability and
scalability.

Windows Forms

Although much attention has been given to the Microsoft .NET Framework as a way to
develop Web services and Web applications, the unified class libraries also offer full
support for developing Windows-based smart client applications (these applications can

Page 12 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distrib...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

use Web services, too).

Developers who write client applications for Windows can use the Windows Forms (in
the System.Windows.Forms namespace) classes to take advantage of all of the rich
user interface features of Windows, resuse existing Microsoft ActiveX® controls, and
harness the graphical capabilities of the GDI+ graphics library. Smart client
applications may consume Web services in the same manner as ASP.NET Web
applications. Overall, developers will find the Windows Forms programming model and
design-time support very intuitive, given their similarities to existing Windows-based
forms packages.

Since it is part of the .NET Framework, Windows Forms can automatically take
advantage of .NET Framework features such as a common type system; strongly typed
code; memory management; and all of the deployment, security, and administration
features of .NET Framework-based applications.

Data access with ADO.NET

Nearly all applications need to query or update persisted data, whether it is contained
in simple files, relational databases, or any other type of store. To fulfill this need,
the .NET Framework includes ADO.NET, a data access subsystem optimized for n-tier
environments. For easy interoperability, ADO.NET uses XML as its native data format,
and thus ADO.NET is interoperable with XML and XML documents. As the name
implies, ADO.NET evolved from ADO (ActiveX Data Objects), and it builds on the huge
library of ODBC drivers already available.

ADO.NET is designed for loosely coupled environments and provides high-performance
stream APIs for disconnected data models, which maximize scalability and are thus
more suitable for returning data to Web applications.

As applications are developed, there will be different requirements for working with
data. In some cases, it may be necessary to simply display data on a form. In other
cases, it may be necessary to devise a way to share information with another
company. No matter what the requirements are, there are a few fundamental concepts
that are key to understanding data handling in the .NET Framework.

Disconnected Data Design—In traditional two-tier applications, components
establish a connection to a database and keep it open while the application is running.
For a variety of reasons, this approach is impractical in many applications:

! Open database connections take up valuable system resources.

! Applications that require an open database connection are extremely difficult to
scale.

! In Web applications, the components are inherently disconnected from each other.

! A model based on connected data can make it difficult to share data between
components, especially components in different applications.

For all these reasons, data access in ADO.NET is designed around a disconnected
design. Applications are connected to the database only long enough to fetch or update
the data. Because the database is not hanging on to connections that are largely idle,
it can service many more users.

Scalability—The Web can vastly increase the demands for data, and scalability has
become critical. Internet applications have a limitless supply of potential users. An
application that consumes resources such as database locks and database connections
will not serve high numbers of users well, because the user demand for those limited
resources will eventually exceed their supply. Applications using ADO.NET employ
disconnected access to data, so database locks or active database connections are not
maintained for long durations, thus improving performance and scalability.

Page 13 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distrib...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

XML and data

Data and XML are tightly integrated in the .NET Framework, where the System.Xml
namespace provides standards-based support for processing XML.

In fact, in ADO.NET, XML is the fundamental format for sharing and remoting data.
When data is shared, the ADO.NET APIs automatically create XML files or streams out
of information in the dataset, and sends them to another component. The second
component can invoke similar APIs to read the XML back into a dataset. In fact, if an
XML file is available, it can be used like any data source and a dataset can be created
out of it.

There are several reasons to use XML:

! XML is an industry-standard format.

! XML is text-based. This enables XML to be sent through any protocol, such as
HTTP.

! Interoperability. ADO.NET enables easy creation of custom XML documents
through the use of XSD schemas.

ADO.NET applications can take advantage of the flexibility and broad acceptance of
XML. Because XML is the format for transmitting datasets among components and
across tiers, any component that can read the XML format can process an ADO.NET
dataset. As an industry standard, XML was designed with exactly this kind of
interoperability in mind.

It is not necessary to know XML in order to share data using ADO.NET. ADO.NET
automatically converts data into and out of XML as needed; the developer interacts
with the data using ordinary programming methods.

Interop Services

Interop Services provide a collection of classes useful for accessing the Microsoft
Win32® APIs and COM objects from .NET Framework-based code. This allows
developers to harness the functionality of legacy code as well as functionality not
directly available in the .NET Framework class libraries.

Interop Services' platform invoke enables managed code to call unmanaged functions
implemented in dynamic-link libraries (DLLs), such as those in the Win32 API.

COM Interop allows existing COM types to be instantiated and called from managed
code. To enable this, a managed definition of the COM type is made available to the
managed code by creating an assembly based on the COM component's type library.
The same mechanism can also be used to go the other way. By creating and
registering a COM type library based on the managed assembly, it is possible for COM
components to instantiate and call managed types. The InteropServices namespace
supports COM Interop and provides managed definitions of many common interfaces.
Custom interface definitions can also be used.

The .NET Framework extends the COM model for reusability by adding implementation
inheritance. Managed types can derive directly or indirectly from a COM coclass; more
specifically, from the runtime callable wrapper generated by the CLR. The derived type
can expose all the methods and properties of the COM object as well as methods and
properties implemented in managed code. The resulting object is partly implemented
in managed code and partly implemented in unmanaged code.

InteropServices is also used to indicate how data should be transferred—or
"marshaled"—between managed and unmanaged memory. Finally, InteropServices
manages exceptional circumstances such as errors while performing certain
operations, and serves as a way to bridge COM HRESULTs to .NET Framework

Page 14 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distrib...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

exceptions.

Remoting

.NET remoting (available through the System.Runtime.Remoting namespace) can
be used to enable different applications to communicate with one another, whether
those applications reside on the same computer, on different computers in the same
local area network, or across the world in very different networks—even if the
computers run different operating systems.

The .NET Framework provides a number of services such as activation and lifetime
control, as well as communication channels responsible for transporting messages to
and from remote applications. Formatters are used to encode and decode the
messages before they are sent along a channel. Applications can use binary encoding
where performance is critical, or XML encoding where interoperability with other
remoting systems is essential. Remoting was designed with security in mind, so the
call messages and serialized streams can be accessed in order to secure them before
they are transported over the channel.

The .NET remoting infrastructure is an abstract approach to interprocess
communication. Much of the system functions without drawing attention to itself. For
example, objects that can be passed by value, or copied, are automatically passed
between applications in different application domains or on different computers. It is
only necessary to mark a custom class as serializable to make this work.

The real strength of the remoting system, however, resides in its ability to enable
communication between objects in different application domains or processes using
different transportation protocols, serialization formats, object lifetime schemes, and
modes of object creation. In addition, it is necessary to intervene in almost any stage
of the communication process, for any reason, remoting makes this possible.

Whether implementing a number of distributed applications or simply moving
components to other computers to increase the scalability of the program, it is easiest
to understand the remoting system as a generic system of interprocess communication
with some default implementations that easily handle most scenarios.

Enterprise Services

Using the Enterprise Services classes, developers can create "serviced components"
that take advantage of COM+ services. COM+ provides a services framework for
component programming models deployed in an enterprise environment. Some of
these services available include just-in-time (JIT) activation, synchronization, object
pooling, transactions, and shared property management. In a disconnected
environment typical of Web-based applications, additional COM+ services can use used
such as loosely coupled events, queued components, and role-based security.

Automatic transaction support

One of the most important COM+ features is support for transactions. It is easy to
build applications that use transaction using the .NET Framework through simple
keywords and settings. In fact, the .NET Framework takes advantage of the COM+
transaction infrastructure to provide both manual and automatic distributed
transactions.

Page 15 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distrib...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

Figure 8. Enlisting in a transaction

The beauty of the integration between the .NET Framework and COM+ transactions is
that .NET Framework developers can use the high-performance COM+ transaction
environment without needing to learn COM+. For example, you can simply copy
your .NET Framework components that need COM+ Services such as transactions into
a directory, and the .NET Framework will dynamically add the components to the
COM+ transaction monitor.

Messaging

A number applications use synchronous communication through remote procedure
calls, while Web-based applications rely on HTTP. But many distributed applications
need the non-blocking, asynchronous communication provided by message queuing.
Windows Server 2003, using a component of COM+ Services called COM+ Queued
Components (previously known as Microsoft Message Queue, or MSMQ), provides
applications with exactly this kind of service in. With Queued Components, an
application can send messages to another application without waiting for a response
(in fact, the target application might not even be running). Those messages are sent
into a queue, where they are stored until a receiving application removes them. If a
response is expected, the sender can check a response queue at its leisure—there's no
obligation to block waiting for a message. Message queuing is a flexible, reliable
approach to communication, one that's appropriate for many kinds of applications.

The System.Messaging namespace in the .NET Framework provides classes that
allow you to work with the Queued Components. The two primary classes are the
MessageQueue and the Message. The MessageQueue class is used to monitor and
administer message queues on the network, and send, receive, or peek (examine
without removing) messages. The Message class provides detailed control over the
information you send to a queue, and is the object used when receiving or peeking
messages from a queue. Besides the message body, the properties of the Message
class include acknowledgment settings, formatter selection, identification,
authentication and encryption information, timestamps, indications about using
tracing, server journaling, and dead-letter queues, and transaction data.

Some of the important features of messaging using Queued Components with the .NET
Framework include:

! Managed code access

! Integration with transactions

! Automatic message journaling

! Automatic notification

! Built-in data integrity, data privacy, and digital signature services

! Message priority support

Page 16 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distrib...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

! Support for multiple platforms

Service Presentation

Figure 9. Service presentation

The .NET Framework enables the construction of several different application
presentation models. In addition to providing support for Web-based applications that
run on both traditional and device-based browsers, the .NET Framework provides
substantial support for applications running on smart clients—including smart devices—
that can take full advantage of their specific platform features to provide both a better
user experience as well as increased functionality.

Web Applications with ASP.NET

ASP.NET is a .NET Framework component that can be used on an application server to
build powerful Web applications. ASP.NET offers numerous important advantages over
previous Web development models.

Web forms

The ASP.NET Web forms page framework is a scalable programming model that can be
used on the server to dynamically generate Web pages. Intended as a logical evolution
of ASP (ASP.NET provides syntax compatibility with existing pages), the ASP.NET Web
forms framework has been specifically designed to address a number of key
deficiencies in the previous model. In particular, it provides:

! The ability to create and use reusable UI controls that can encapsulate common
functionality and thus reduce the amount of code that a page developer has to
write.

! The ability for developers to cleanly structure their page logic in an orderly fashion
(avoiding "spaghetti code").

! The ability for development tools to provide strong WYSIWYG design support for
pages (existing ASP code is opaque to tools).

ASP.NET Web forms pages are text files with an .aspx file name extension. They can
be deployed throughout an IIS virtual root directory tree. When a browser client
requests .aspx resources, the ASP.NET runtime parses and compiles the target file into
a .NET Framework class. This class can then be used to dynamically process incoming
requests. (Note that the .aspx file is compiled only the first time it is accessed; the
compiled type instance is then reused across multiple requests.)

An ASP.NET page can be created simply by taking an existing HTML file and changing
its file name extension to .aspx (no modification of code is required).

Inside ASP.NET

Page 17 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distrib...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

At the core of ASP.NET is its HTTP runtime (different from the common language
runtime), a high-performance execution engine for processing HTTP commands. The
HTTP runtime is responsible for processing all incoming HTTP requests, resolving the
URL of each request to an application, and then dispatching the request to the
application for further processing. The HTTP runtime is multithreaded, and it processes
requests asynchronously—which means it cannot be blocked by bad application code
from processing new requests. Furthermore, the HTTP runtime has a resilient design
that is engineered to recover automatically from access violations, memory leaks,
deadlocks, and so on.

Tracing and debugging

When you are developing an application, it is often helpful to be able to insert
debugging print statements into your code to output variables or structures, assert
whether a condition is met, or just generally trace through the execution path of the
application. ASP.NET provides two levels of tracing services that make it easy to do
just that.

Page-level Tracing—At the page level, developers can use the TraceContext
instrinsic to write custom debugging statements that appear at the end of the client
output delivered to the requesting browser. ASP.NET also inserts some helpful
statements regarding the start/end of lifecycle methods, like Init, Render, and
PreRender, in addition to the inputs and outputs to a page, such as form and
QueryString variables or headers, and important statistics about the page's execution
(control hierarchy, session state, and application state). Because tracing can be
explicitly enabled or disabled for a page, these statements can be left in the production
code for a page with no impact to the page's performance. Each statement can be
associated with a user-defined category for organizational purposes, and timing
information is automatically collected by the ASP.NET runtime. The resulting output
can be ordered by either time or category.

Application-level Tracing—Application-level tracing provides a view of several
requests to an application's pages at once. Like page-level tracing, it also displays
inputs and outputs to a page, such as form and QueryString variables or headers, as
well as some important statistics (control hierarchy, session state, and application
state). Application-level tracing is enabled through the ASP.NET configuration system,
and accessed as a special mapped URL into that application (Trace.axd). When
application tracing is enabled, page-level tracing is automatically enabled for all pages
in that application (provided there is no page-level directive to explicitly disable trace).

Application configuration

A central requirement of any Web application server is a rich and flexible configuration
system—one that enables developers to easily associate settings with an installable
application (without having to "bake" values into code) and enables administrators to
easily customize these values post-deployment. The ASP.NET configuration system has
been designed to meet the needs of both of these audiences. It provides a hierarchical
configuration infrastructure that enables extensible configuration data to be defined
and used throughout an application, site, and/or machine. It has the following qualities
that make it uniquely suited to building and maintaining Web applications:

! ASP.NET allows configuration settings to be stored together with static content,
dynamic pages, and business objects within a single application directory
hierarchy. A user or administrator simply needs to copy a single directory tree to
set up an ASP.NET framework application on a machine.

! Configuration data is stored in plain XML text files that are both human-readable
and human-writable by administrators and developers and can be accessed using
any standard text editor, XML parser, or scripting language.

Page 18 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distrib...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

! ASP.NET provides an extensible configuration infrastructure that enables third-
party developers to store their own configuration settings and participate in their
processing

! Changes to ASP.NET configuration files are automatically detected by the system
and are applied without requiring any user intervention.

! Configuration sections can be locked down and can be prevented from being
overridden.

Updating applications

ASP.NET uses the Microsoft .NET Framework deployment technologies, thus gaining
benefits such as XCOPY deployment and side-by-side deployment of applications.

Another major benefit of ASP.NET is support for live updating of applications. An
administrator does not need to shut down the Web server or even the application to
update application files: Application files are never locked, so they can be overwritten
even when the application is running. When files are updated, the system gracefully
switches over to the new version.

Extensibility

Within an ASP.NET application, HTTP requests are routed through a pipeline of HTTP
modules, ultimately to a request handler. HTTP modules and request handlers are
simply managed .NET classes that implement specific interfaces defined by ASP.NET.
This modular architecture makes it very easy to add services to applications: Just
supply an HTTP module. For example, security, state management, and tracing are
implemented as HTTP modules by ASP.NET. Higher-level programming models, such
as Web services and Web forms, are also implemented as request handlers. An
application can be associated with multiple request handlers—one per URL—but all
HTTP requests in a given application are routed through the same HTTP modules.

State management

The Web is a fundamentally stateless model with no correlation between HTTP
requests. This can make writing Web applications difficult, since applications usually
need to maintain state across multiple requests. ASP.NET enhances the state
management services introduced by ASP to provide three types of state to Web
applications: application, session, and user. ASP.NET session state is stored in a
separate process and can even be configured to be stored on a separate machine or
persisted to a Microsoft SQL Server™ database. This makes session state scalable even
when an application is deployed across the largest Web farms.

User state resembles session state, but generally does not time out and is persisted.
Thus user state is useful for storing user preferences and other personalization
information. All the state management services are implemented as HTTP modules, so
they can be added, extended, or even removed from an application's pipeline easily. If
additional state management services are required beyond those supplied by ASP.NET,
they can be provided by a third-party module.

Caching

TheASP.NET programming model provides a cache API that enables programmers to
activate caching services (on enterprise software) to improve performance. An output
cache saves completely rendered pages, and a fragment cache stores partial pages.
Classes are provided so that applications, HTTP modules, and request handlers can
store arbitrary objects in the cache as needed.

Aggressive caching capabilities will be provided as part of ASP.NET. ASP.NET is
designed to provide a robust Web application environment capable of running mission-

Page 19 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distrib...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

critical projects for long periods of time.

ASP.NET is delivering some significant improvements in Web application performance—
a throughput improvement of up to three times over existing ASP-based applications,
and even more dramatic productivity improvements.

See the Microsoft guide Caching Architecture Guide for .NET Framework Applications
for an in-depth analysis of .NET applications caching.

Security

An important part of many Web applications is the ability to identify users and control
access to resources. The act of determining the identity of the requesting entity is
known as authentication. Generally, the user must present credentials, such as a
name/password pair in order to be authenticated. Once an authenticated identity is
available, it must be determined whether that identity is permitted to access a given
resource. This process is known as authorization. ASP.NET works in conjunction with
IIS to provide authentication and authorization services to applications.

An important feature of COM objects is the ability to control the identity under which
COM object code is executed. When a COM object executes code with the identity of
the requesting entity, this is known as impersonation. ASP.NET Framework applications
can optionally choose to impersonate requests.

Some applications also want to be able to dynamically tailor content, based on the
requesting identity or based on a set of roles that a requesting identity belongs to.
ASP.NET Framework applications can dynamically check whether the current
requesting identity participates in a particular role. For example, an application might
want to check to see whether the current user belongs to the manager's role, in order
to conditionally generate content for managers.

Web Application for Mobile Devices

ASP.NET mobile controls (previous known as the Microsoft Mobile Internet Toolkit, or
"MMIT") let you easily target cell phones and PDAs (over 80 mobile Web devices) using
ASP.NET. You write your application just once, and the mobile controls automatically
generate WAP/WML, HTML, or iMode as required by the requesting device.

Over the past few years, the world has seen an explosion of new wireless devices, such
as cell phones, pagers, and personal digital assistants (PDAs), which enable users to
browse Web sites at any time from any location. Developing applications for these
devices is challenging:

! Different markup languages are necessary, including HTML for PDAs, wireless
markup language (WML) for wireless application protocol (WAP) cell phones, and
compact HTML (cHTML) for Japanese i-mode phones.

! Devices have different form factors. For example, devices have varying numbers
of display lines, horizontal or vertical screen orientation, and color or black and
white displays.

! Devices have different network connectivity, ranging from 9.6 KB cellular
connections to 11 MB Wireless LANs.

! Devices have different capabilities. Some devices can display images, some can
make phone calls, and some can receive notification messages.

Page 20 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distrib...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

Figure 10. Cell phone with a WAP browser

The ASP.NET mobile controls address these challenges by isolating them from the
details of wireless development. Thus, developers can quickly and easily build a single,
mobile Web application that delivers appropriate markup for a wide variety of mobile
devices.

Mobile Web Forms Controls—The mobile Web Forms controls are ASP.NET server-
side controls that provide user interface elements such as list, command, call,
calendar, and so on. At execution time, the mobile controls generate the correct
markup for the device that makes the request. As a result, you can write a mobile
application once and access it from multiple devices.

Because these mobile controls are based on the ASP.NET controls, you can leverage
your current desktop development skill set when creating mobile applications. You can
also reuse the same business logic and data access code that you use in your desktop
application. Mobile and desktop Web forms can reside in the same Visual Studio .NET
project. This makes an application faster to develop and lowers your maintenance cost.

The ASP.NET mobile controls also enable you to customize the markup that is
generated by mobile controls for a specific device. You can designate templates and
styles for a specific device within the mobile page.

Smart Client Applications

Software developers targeting the corporate environment have faced a difficult tradeoff
when deciding between the browser-based, thin client application model and its rich
client counterpart.

The browser-based application is easy to install and maintain, can target many
desktops, and has no impact on the state of the client computer. Yet in spite of these
advantages, the browser-based model is far from perfect. Rich client applications
provide a richer user interface (UI) along with access to the local disk and local

Page 21 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distrib...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

application programming interfaces (APIs), further empowering the developer and
resulting in a more productive user experience. Because they run locally on the client
computer, rich client applications also make for more efficient use of available
resources, eliminate the issue of network latency, and enable the user to work offline.
And because there is a similar programming model for the .NET Compact Framework,
developers can easily transfer their skills to developing applications for smart devices.

Overall, relative to the smart client, the browser-based model is wonderful for
information technology (IT) administrators, but leaves much to be desired for both
developers and end users. The Microsoft .NET Framework programming model serves
the interests of all three parties. Its smart client application model combines all the
power and flexibility of the rich client model with the ease of deployment and stability
of the browser-based model.

We will now provide an overview of the .NET Framework's smart client application
model, explaining how it works from a high-level point of view, and elaborating on how
this style of application compares with the browser-based model.

No more versioning conflicts

As mentioned previously, components built using the .NET Framework are not subject
to versioning conflicts. By default, .NET Framework applications are self-contained and
isolated, resolving assemblies (the .NET version of components) from the local
application directory rather than from a global or shared location. With this approach,
multiple versions of the same assembly can coexist on the same system without
conflict.

It remains possible to share assemblies, using a central repository known as the global
assembly cache. Each assembly registered here is assigned a strong internal name,
derived from its file name, version, culture (such as English, German, or Japanese),
digital signature, and public key. Thus, each shared assembly is uniquely identifiable.
This allows multiple versions of a given assembly to coexist in the global assembly
cache and even run concurrently without conflict, a scenario known as side-by-side
execution.

Smart client versus browser-based

With these smart client technologies, it's easy to see how the platform-specific
application model reflects a practical approach to software development. But how does
it compare with the browser-based model? Consider the following:

Work Offline—One obvious but critical advantage that smart client applications have
over browser-based applications is the capability to work offline. Practical Internet
access is still anything but ubiquitous. According to IDC, at the end of 2002,
approximately 38.9 percent of U.S. households will engage in some form of home-
office activity. At that time, according to The Yankee Group, only 16 percent of those
households are expected to have any form of high-speed connectivity to the Internet.
This means that, assuming a remote worker has access to the Internet (not a given for
those traveling and seeking to work from hotels, airports, or airplanes), chances are he
or she will be forced to endure an irritatingly slow dial-up connection every time an
attempt is made to access or manipulate data using a browser-based application. Even
if high-speed access is available, what happens when the server goes down? With
smart client applications, these problems can be avoided. Once the necessary
assemblies are downloaded to the local disk, the user can work productively offline.

Use Resources Efficiently and Safely—Web-based applications are often designed
so that all processing is handled by the servers. The advantage of placing the entire
burden on the server is that it makes it easier to push an application to multiple

Page 22 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distrib...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

different types of clients. The disadvantage is that, for even the simplest request, the
client-side user must endure both network latency and the amount of time it takes the
server to queue up the given request and process it.

Performing some or all of the work locally with smart client applications means quicker
response time and reduced network and server workload, making for more scalable
infrastructure. A smart client application can run without any interaction with the
network and the server, completely freeing up that infrastructure, or it can go to the
server as needed to dynamically download an assembly or to invoke a Web service.
The fact that even some of the work will be done locally—loading and implementing
the UI controls, for example—results in a more dynamic user experience and much
more efficient use of the infrastructure available, both client and networked.

Web-based applications can be designed to offload some of the processing to the client
using scripting or ActiveX controls, but both have limitations when compared with the
smart client application model. By default, Web-based script essentially runs in a
"sandbox" and is prevented from accessing local resources. Scripted applications
cannot read from or write to a client user's local disks, so all data must be stored on a
remote server. Again, this causes problems when the user is faced with a slow Internet
connection or wishes to work offline. Scripted applications are also unable interact with
applications housed on the client computer, such as Microsoft Excel or the Microsoft
Outlook® messaging and collaboration client. They can certainly offload some of the
work from the server, but they do not have the crucial flexibility of smart client
applications when it comes to interacting with the local computer. Furthermore, they
are incredibly difficult and expensive to develop well. Dynamic Hypertext Markup
Language (DHTML) applications can replicate some of the look and feel of a Microsoft
Windows®-based application.

Smart client applications built on the .NET Framework have the best of all possible
worlds. The Windows Forms libraries enable quick and easy Windows-style UI
development that can be implemented either by hand-coding or by dragging and
dropping controls onto a form in Visual Studio .NET. Smart client applications can
access the local system, but only to the extent that they are allowed by the .NET
Framework's evidence-based security policies, as described above.

Security

Again, security is no longer an all-or-nothing security decision but a fine-grained
determination that can permit some operations but forbid others. The burden of this
decision is taken off the user and handled transparently by the CLR, using either the
default security settings or those configured by the system administrator.

Access Local APIs

Smart client applications can leverage powerful Windows-based APIs that are
unavailable to non-ActiveX browser-based applications. For example, smart client
applications can use the graphical power of the GDI+ libraries. Smart client
applications can tie into the Microsoft Office APIs, enabling developers to manipulate
Microsoft Word, Microsoft Access, Excel, Outlook, and Microsoft PowerPoint® through
their own applications. Smart client applications also have the ability to listen for
incoming network requests, thus enabling peer-to-peer connectivity. This example, in
particular, deserves a section all its own.

Use peer-to-peer technology

In a peer-to-peer scenario, a computer can act as both client and server, making
requests of other peer computers and responding to requests placed on it by these
peers. One example of this is a file-sharing system, in which an application running on

Page 23 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distrib...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

one computer can search for and retrieve a desired file from a peer computer while
making its own files available in reciprocation. Another example is an application
running on one computer that can seek out those computers on the network with
spare processor power and disk space and harness these unused resources for its own
use, enabling a corporation to more fully leverage the infrastructure available to it.

Peer-to-peer technology represents a powerful paradigm with tremendous promise,
but it can only be implemented using smart client applications. Web browsers, being
user-driven by design, do not have the necessary capacity to listen for and respond to
spontaneous requests made by other clients on the network.

Consume Web services

Just like browser-based applications, with just a few lines of code, .NET Framework
smart client applications can consume functionality provided by Web services. Web
services provide a model for distributed computing based on standard, platform-
neutral protocols such as SOAP, XML, and HTTP. Web services allow applications to
interact regardless of what underlying platforms they may be running on and provide a
perfect way to integrate new applications with legacy code.

When to implement smart clients

The smart client design is not ideal for every scenario. In situations such as e-
commerce, where user platforms are unknown or diverse, the browser-based model
continues to represent the most practical approach. However, in the context of a
corporate computing environment, where clients are known to be running the Windows
operating system, the smart client model is the design of choice, combining the power
and flexibility of rich client applications with the stability and ease of deployment
associated with browser-based applications.

Smart Devices

The .NET Framework has built-in support for two different forms of mobile device
applications: Those that are capable of hosting a compact version of the .NET
Framework and those that support a Web browser for accessing Web sites that can
provide content tailored for devices.

.NET Compact Framework

The Microsoft .NET Compact Framework is a version of the .NET Framework for rapidly
building and securely deploying and running distributed Web services and applications
on smart devices, such as cellular telephones, enhanced televisions, and personal
digital assistants (PDAs). The .NET Compact Framework supports a large subset of
the .NET Framework class libraries and common language runtime.

Supported devices include the Pocket PC 2000, Pocket PC 2002, Pocket PC 2002 Phone
Edition, and custom-designed embedded devices built with the Windows CE .NET 4.1
operating system. Earlier versions of Windows CE .NET are not supported.

Page 24 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distrib...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

Figure 11. .NET Compact Framework application on a smart device

The .NET Compact Framework provides the following key features:

! A compact common language runtime that brings the benefits of managed code,
such as memory management, code reliability, and programming language
neutrality, to devices

! Consistency with desktop and server programming models

! Seamless connection with Web services

! Rich enterprise-class data access features with XML classes and ADO.NET

! Classes to program applications that access data using Microsoft SQL Server 2000
Windows CE Edition 2.0

! Full access to native platform features through platform invoke

! Just-in-time (JIT) compilation for optimal performance

The Smart Device Projects for Visual Studio .NET are used to develop applications that
target the .NET Compact Framework. Smart Device Projects enhance Visual Basic .NET
and Visual C# .NET with device-specific project types and a form designer to
implement .NET Compact Framework Windows Forms controls. You can debug and
deploy directly to a device or to Pocket PC and Windows CE .NET emulators.

Microsoft Office

Microsoft Office XP is a widely used tool for knowledge workers (such as financial
analysts and production planners) to use for productivity applications that help with
organizing and analyzing information. Workflow applications—based on the routing of
documents throughout the enterprise—can be constructed that leverage the unique
capabilities of the Microsoft Office XP suite.

Using the Microsoft Office XP Web Services Toolkit 2.0, it is possible for developers to
integrate the power of Web services with custom Office XP applications.

Visual Studio tools for Office

"Visual Studio Tools for Office" is the code name for a new technology that will bring
the power and productivity of Visual Studio .NET and the Microsoft .NET Framework to

Page 25 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distrib...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

business solutions built on the next versions of Microsoft Word and Microsoft Excel.
With this technology, developers using Visual Studio .NET 2003 can use Visual
Basic .NET and C# to write code behind Word- and Excel-based applications. "Visual
Studio Tools for Office" provides developers with full access to the Word and Excel
object models, as well as the benefit of Microsoft IntelliSense® statement completion
when developers write code against these object models.

Microsoft Office System

The Microsoft Office System helps enable developers to create intelligent business
solutions that address today's demanding business requirements while giving
information workers a powerful user interface. Using the support for customer-defined
XML schemas and Web services in the Microsoft Office System, developers can more
easily build documents and applications that connect with business processes and
data. In addition, new tools in the Microsoft Office System help you build managed
code for the Microsoft .NET Framework and take advantage of the ease and security of
deploying solutions from a server.

.NET Development

Figure 12. Creation and deployment

As has been discussed elsewhere in this document, a platform and a framework are
required to support the creation of an enterprise-scale service orient architecture. At
the same time, it is important to have a comprehensive set of tools to support the
design and development phases of the life cycle of these systems.

Design and development are typically accomplished by a diverse team of specialists.
These specialists require integrated tools that enable application modeling, rapid
application development (RAD), and integrated database support.

Data-driven development

With the .NET Framework, Microsoft provides ADO.NET, a set of intuitive interfaces
that enable developers to manage and interact with a variety of data sources. Tools
that take advantage of this rich database functionality should provide support for data-
driven development, including visual data designers that streamline the development
process.

Working with servers

In a service-oriented architecture, the majority of development typically occurs on
servers. For this reason, it is important to have visual design tools for the creation,
testing, and deployment of server-based solutions. These tools make it easy to
integrate platform and framework features—such as message queues, remote servers,
and Windows services—into complete server solutions. And these tools need to be able

Page 26 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distrib...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

to support multiple common development languages.

Team development

Source control is a significant requirement in team-based development. It allows an
organization to protect and manage their valuable code assets. Developers must be
able to perform all source control operations without ever leaving their tool suite. Many
features trigger automatically, such as when a file is about to be changed, providing a
safety net for team members and ensuring the protection of the project.

Creating Web Services

As discussed above, Microsoft is making Web-based development easier and more
reliable than ever before. With the .NET Framework, developers can make an object
Internet-accessible simply by marking it with the WebMethod keyword.

The following Visual Basic code shows how to create a Web service that exposes a
function to Web requests. As we mentioned previously, this functionality can be found
in the System.Web.Services namespace, which we first import into our project. This
then allows us to specify both the WebService attribute on the class (which is
inherited from System.Web.Services.WebService) as well as the WebMethod
attribute on the appropriate function (in this example CalcTemp, for converting
degrees Fahrenheit into Celsius):

Imports System.Web.Services
<WebService(Namespace := _
 "http://tempuri.org/Test/Service1")> _
 Public Class Service1
 Inherits System.Web.Services.WebService
 ...
 <WebMethod(Description:="Converts F to C")> _
 Public Function CalcTemp(ByVal dF As Double)_
 As Double
 CalcTemp = ((dF - 32) * 5) / 9
 End Function
End Class

Testing Web Services

Developers can use the WSDL.exe utility to discover how to call a Web service. This
utility takes the path to a WSDL file and a language (C#, Visual Basic, JScript, or
Visual J#) as input arguments and then generates a single source file as output. This
file contains the source code for a proxy class that exposes methods for each of the
corresponding methods exposed by the Web service. Each proxy method contains the
appropriate network invocation and marshaling code necessary to invoke and receive a
response from the remote service. Visual Studio .NET makes this even easier by
providing an explorer interface to Web services. Running this utility against our simple
Web service creates a test page for developers to use.

Page 27 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distrib...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

Figure 13. Auto-generated Web service test client

This test page contains test entry points for all of the service's members given the
WebMethod attribute as well as additional documentation about working with Web
services including sample data for SOAP, HTTP GET, and HTTP POST requests and
responses and pointers to online reference material. Invoking the test page for a
specific method generates an XML-formatted response.

Using Web Services

Accessing a Web service from managed code is also a straightforward process. First, a
Web reference is added to the project for the Web service to be accessed. The Web
reference creates a proxy class with methods that serve as proxies for each exposed
method of the Web service. Next, the namespace for the Web reference is added to
the project. Finally, an instance of the proxy class is created and then the methods of
that class are accessed as with the methods of any other class.

By default, adding a Web reference also adds methods to the proxy class for accessing
the Web service asynchronously.

To access a Web service in managed code a developer simply needs to:

! Create the application that needs to access a Web service. This application could
even be another Web service.

! Add a Web reference for the Web service.

! Create an instance of the proxy object in the client code where the Web service
needs to be accesed.

! Access the methods of the Web service as with any other component.

An important aspect of Web service programming is that this code can actually run
anywhere in an application: it could be part of an ASP.NET application, part of a smart
client application, or even called from some other form of server-based application that
has Web access to the Web service.

Visual Studio .NET 2003

Microsoft Visual Studio .NET 2003 provides a comprehensive set of development tools
for building all types of applications using the .NET Framework. In addition to proving
an integrated design, development, test, and debugging environment with such
powerful features as IntelliSense for code development and designers for Web,

Page 28 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distrib...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

Windows, and device applications, Visual Studio features numerous advanced
capabilities that will be of interest to enterprise application developers.

Integrated tools for data

Visual Database Tools—Visual Studio .NET maximizes the productivity of developers
working with databases. Instead of requiring multiple external tools for creating
database schemas, stored procedures, indexes, triggers, and other items, developers
can perform all of these tasks within the Visual Studio .NET IDE:

The Visual Studio .NET integrated Database Designer provides Oracle, SQL Server, and
other database users a visual view of their schema and lets them directly add, modify,
or remove tables, columns, indexes, views, stored procedures, and other database
objects. In addition, relationships between tables can be viewed and modified,
providing complete control over the physical database design.

The Query Designer enables developers to visually create complex SQL queries and
directly edit the corresponding SQL script. The results from the query can be viewed to
verify accuracy, making it much faster for developers to work with data.

The Script Editor enables programmers to work with stored procedures, triggers, or
any SQL script. Color-coded syntax makes it easy to view SQL keywords while the
Query Designer can be invoked for visually designing a code block by right-clicking a
Select statement.

Seamless stored procedure debugging for developers using Microsoft SQL Server
version 6.5 or higher makes it easier to diagnose errors in database code.

RAD for the server

To simplify multiple-tier development, Visual Studio .NET extends the RAD principles of
visual design to the creation, testing, and deployment of server-based solutions. So-
called "RAD for the Server," these features enable programmers to drag and drop
visual representations of server components, such as message queues, remote
servers, Windows services, and more, onto a design surface. Once placed on the
design surface, code can be written in any language to connect the server applications
together.

Server Explorer—One of the biggest challenges in writing a middle-tier component is
simply discovering what application services are available on the corporate network,
and then integrating these services into an application. In Visual Studio .NET, the
Server Explorer displays all available server-side resources on a given computer
including databases, message queues, event logs, Windows services, and performance
counters.

Page 29 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distrib...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

Figure 14. The Server Explorer provides easy access to server-based
resources.

Component Designer—Together with the Server Explorer, the Component Designer
provides a design surface on which developers can build new middle-tier business logic
components. In the same way that forms designers enable rapid creation of client
applications, the Component Designer provides the means for graphically constructing
server-side components. Rather than manually writing low-level server-based code,
developers simply drag and drop server components to a design surface, write event-
handling code to integrate the server functionality, and then use Visual Studio .NET to
deploy and execute the component on the server.

You can find out more about Visual Studio .NET on the MSDN site in the .NET
Development area.

Enterprise lifecycle support

Microsoft offers enterprise versions of Visual Studio .NET which incorporate an
integrated set of technologies for building complex, enterprise-scale applications.
These features are delivered in the Enterprise Architect and Enterprise Developer
versions of Visual Studio .NET.

Visual Studio .NET Enterprise Architect edition provides a full range of design and
modeling capabilities with the included and integrated Microsoft Visio® toolset.
Through the use of industry standard modeling methodology, Unified Modeling
Language (UML), Visual Studio .NET helps senior developers and architects visually
design applications and requirements. Visual Studio .NET Enterprise Architect
combines conceptual and physical database modeling using Visio to deliver powerful

Page 30 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distrib...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

Object Role Modeling (ORM) functionality to architects.

Visual Studio .NET helps software architects and senior developers who lead large
development teams better communicate and enforce their design decisions. Enterprise
Templates jump-start the process of creating new applications, and allow architects to
limit the options available from within Visual Studio .NET using XML-based Template
Description Language (TDL) to define development policies.

Instrumentation allows software or hardware to publish or be queried for relevant
information during its execution. Visual Studio .NET 2003 includes the new Enterprise
Instrumentation Framework (EIF), providing unified tracing and eventing services for
enterprise applications. The framework allows decoupled and distributed enterprise
applications to be monitored and diagnosed by Microsoft and third-party tools for
overall application health, faults, or other internal conditions.

Figure 15. Integrated Visio modeling with Visual Studio .NET Enterprise
Architect

Team development with Visual Studio .NET

Visual Studio .NET reduces the complexity of source control by making it an extension
of project file management. Developers may perform all source control operations
without ever leaving the IDE or opening another application. The Microsoft Visual
SourceSafe® version control system also enables development teams to automatically
protect and track their most valuable source code, documentation, binaries, and all
other file types as they change throughout the software life cycle.

Other .NET Development Tools

A large number of tools are available to support .NET application development. These
tools are provided both by Microsoft and by third party tool vendors, some of which are
available at no charge.

Developers may wish to start with the .NET Framework Software Development Kit
(SDK), which is free. This SDK comes with comprehensive documentation on the
Framework, including all of the namespaces and types within. The SDK also includes
several hundred samples—in Visual Basic, C#, and often JScript or C++—that illustrate
how to work with the major features of the Framework. There are even several
complete tutorials to help developers get up to speed on writing and debugging
programs, using resources, and packaging and deployment. Finally, the SDK also
includes a large number of tools for debugging, managing, and securing .NET
Framework programs. Since several programming language compilers are included
with the .NET Framework distribution, this might be all you need to get started.
The .NET Framework SDK can be found at the .NET Framework Home page.

However, most developers will want to make use of an integrated development
environment (IDE) tailored specifically for writing .NET Framework applications. The

Page 31 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distrib...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

ASP.NET Web Matrix is primarily targeted at developing Web applications and is a
small (1.2 megabytes), free, community-supported tool for building applications with
the ASP.NET class libraries. It features a page designer, integrated database
management, support for Web services, mobile applications, and even a personal Web
server for development and testing.

In addition to Microsoft's tools for developing with the .NET Framework, other
application tools vendors have announced their support for this new programming
model. Developers wishing to program with some of the languages not implemented
directly by Microsoft may purchase the compilers from vendors and integrate those
compilers into the Visual Studio .NET shell (you can find third-party Visual Studio .NET
tools at the Visual Studio Industry Partners Web site). Ultimately, you can use the
same IDE for developing with each of the programming languages supported by
the .NET Framework.

Summary
This document describes the technical basis for building enterprise-scale Web-based
applications using the Microsoft .NET Framework and Windows Server 2003. This new
generation of applications is needed to meet the demands of enterprise computing
over an Internet standard distributed network infrastructure utilizing a highly flexible,
standards-based, powerful software infrastructure for integrating existing investments
with next-generation applications and services.

The .NET Framework is an integral component of the Windows Server platform, the
end-to-end Internet platform built on the Windows operating system for rapidly
building and deploying enterprise applications. These applications include Web services
and Web applications that integrate customers, businesses, and applications. The .NET
Framework enables developers to rapidly create Web services and Web applications
through the use of developer productivity features, such as multiple-language support,
adherence to public Internet standards, and the use of a loosely coupled, scalable
architecture. Microsoft is delivering a comprehensive set of application services fully
integrated into the Windows operating systems and available through the .NET
Framework.

Glossary
Term Definition
.NET Framework The .NET Framework is a component of the Windows operating

system that provides the programming model for building,
deploying and running Web-based applications, smart client
applications and Web services. The .NET Framework consists of
the common language runtime (CLR) and a unified class library.

Active Directory The Windows directory service that provides a unified, hierarchical
view of complex networks.

ADO.NET The suite of data access technologies included in the .NET
Framework class libraries

ASP.NET The development component for building server-based Web
applications. An evolution of ASP into the .NET Framework.

assembly The primary building block—also the unit of deployment and
versioning—of a .NET Framework application. An assembly
includes an assembly manifest, which describes the contents of
the assembly

C# A new ECMA-approved programming language designed for
the .NET Framework. C#, which is an evolution of C and C++, is
type safe and object oriented. Because it is compiled as managed
code, it benefits from the services of the common language
runtime, such as language interoperability, enhanced security,
and garbage collection.

class library, .NET A library of classes, interfaces, and value types that are included

Page 32 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distrib...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

Framework in the Microsoft .NET Framework and can be used from any CLS-
compliant language. The .NET Framework class library provides
access to system functionality and is designed to be the
foundation on which .NET Framework applications, components,
and controls are built.

common language
runtime (CLR)

The engine at the core of .NET Framework-managed code
execution. The runtime supplies managed code with services such
as cross-language integration, code access security, object
lifetime management, and debugging and profiling support.

Common Language
Specification (CLS)

A subset of .NET Framework features that are supported by a
broad set of compliant languages and tools. CLS-compliant
languages and tools are guaranteed to interoperate with other
CLS-compliant languages and tools.

ECMA A European standards body created in 1961. Internationally
accredited ECMA has fast-track approval for ISO and is the forum
for successful standards such as ECMAScript.

evidence-based
security

The .NET Framework introduces the concept of evidence-based
security, referring to inputs to the security policy about code—
such as from what site, security zone, or URL was an assembly
obtained, what is its strong name, and whether it has a digital
signature and from whom. Based on these and other answers—
which can come from multiple sources depending on where the
code is run—the appropriate security policy can be applied, and
the appropriate permissions may be granted to the assembly..

Extensible Markup
Language (XML)

A subset of Standard Generalized Markup Language (SGML) that
is optimized for delivery over the Web. XML provides a uniform
method for describing and exchanging structured data that is
independent of applications or vendors.

garbage collection
(GC)

The process of transitively tracing through all pointers to actively
used objects to locate all objects that can be referenced and then
arranging to reuse any heap memory that was not found during
this trace. The CLR garbage collector also compacts the memory
that is in use to reduce the working space needed for the heap.

HTTP Hyper Text Transfer Protocol is a standard Internet protocol for
transfer of information between servers and between clients and
servers.

IDL Interface Definition Language. A language used by applications to
specify the various interfaces they intend to offer to other
applications.

Microsoft
intermediate
language (MSIL)

A language used as the output of a number of compilers and as
the input to a just-in-time (JIT) compiler, which produces native
code. MSL defines an abstract, stack-based execution model.

JIT An acronym for "just-in-time", a phrase that describes an action
that is taken only when it becomes necessary, such as just-in-
time compilation or just-in-time object activation.

loosely coupled
architecture

A distributed application in which you can change the
implementation of one tier without affecting any of the other tiers.
Contrast tightly coupled architecture.

managed code Managed code supplies the metadata necessary for the CLR to
provide services, such as memory management, cross-language
integration, code access security, and automatic lifetime control of
objects. All code based on MSIL executes as managed code.

manifest An integral part of every assembly that renders the assembly self-
describing via metadata. The metadata describes which modules
and resource files are part of a particular assembly, which types
are exported, and which other assemblies are referenced. It also
specifies which security permissions are required to run, what
additional permissions are optionally requested, and what
permissions the assembly refuses.

metadata Data (or information) about data. Many different systems use
metadata—for example, type libraries in COM provide metadata
and databases have schemas. In the CLR, metadata is used to
describe assemblies and types. It is stored with them in the
executable files, and is used by compilers, tools, and the runtime

Page 33 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distrib...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

to provide a wide range of services. Metadata is essential for
runtime type information and dynamic method invocation.

native code Code that has been compiled to processor-specific machine code.
n-tier System architecture that separates presentation, business logic,

data access, and database (or other persistence mechanism)
tiers.

reflection .NET Framework technology that allows you to examine metadata
that describes types and their members. Reflection can be used to
create, invoke, and access type instances at run time.

serviced
component

The mechanism that enables COM+ services to be available
to .NET Framework classes.

side-by-side
execution

The ability to run multiple versions of the same assembly
simultaneously. This can be on the same computer or in the same
process or application domain. Allowing assemblies to run side-
by-side is essential to support robust versioning in the common
language runtime. Side-by-side is also used to describe to
describe two versions of the .NET Framework running
simultaneously on the same computer.

SOAP Simple Object Access Protocol, a W3C standard. A lightweight
protocol for exchange of information in a decentralized,
distributed environment. It is an XML-based protocol for
exchanging structured and type information on the Web. The
SOAP protocol contains no application or transport semantics,
which makes it highly modular and extensible.

tightly coupled
architecture

A distributed application where a change to any tier affects some
or all the other remaining tiers. Contrast loosely coupled
architecture.

UDDI Universal Description, Discovery, and Integration (UDDI)
specification. An initiative that creates a global, platform-
independent, open framework to enable Web service providers to
advertise the existence of their Web services and for Web service
consumers to locate Web services of interest.

unmanaged code Code that was created without knowledge for the conventions and
requirements of the .NET Framework. Unmanaged code executes
in the .NET Framework environment with minimal services (for
example, no garbage collection, limited debugging, and no
declarative security).

Web forms The ASP.NET page framework, which supports server-side
controls that render HTML user interface on Web browsers.

Web services A programming model that provides the ability to exchange
messages in a scalable, loosely coupled, and platform-neutral
environment using standard protocols such as HTTP, XML, XSD,
SOAP, and WSDL. The SOAP-based XML messages exchanged
between a Web service and its clients can be structured and
typed, or loosely defined. The flexibility of using a text format
such as XML enables the message exchange to evolve over time
in a loosely coupled way. Because they are based on standard
protocols and are platform neutral, Web services enable
communication with a broad variety of implementations,
platforms, and devices.

Web Services
Description
Language (WSDL)

An XML-based contract language for describing network services
offered by a server.

Windows Forms A rich Windows client library that encapsulates native Win32 APIs
and exposes secure, managed classes for creating smart Windows
client applications. The Windows Forms class library provides
many controls, such as buttons, check boxes, drop-down lists,
combo boxes, data grid, and others, that encapsulate user-
interface and other client-side functionality.

Windows
Management
Instrumentation
(WMI)

A component of the Windows operating system that provides
management information and control in an enterprise
environment using industry-wide standards.

Page 34 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distrib...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

For More Information

The .NET Architecture Center

For the latest information on .NET, please see the Microsoft .NET home page.

Developer information on the .NET Framework can be found at the .NET Framework
home page.

Design patterns and guidance for developing and administrating .NET can be found at
patterns and practices.

WSDL (see Web Services Description Language)

XML (see Extensible Markup Language).
XML Schema
Definition (XSD)

A W3C Recommendation that specifies how to formally describe
the elements of an XML document. The schema can be used to
verify the conformance of elements in an XML document.

How would you rate the quality of this content?

1 2 3 4 5 6 7 8 9

Poor nmlkj nmlkj nmlkj nmlkj nmlkj nmlkj nmlkj nmlkj nmlkj Outstanding

Tell us why you rated the content this way. (optional)

Submit

Average rating:
5 out of 9

1 2 3 4 5 6 7 8

108 people have r

 Contact Us | E-mail this Page | MSDN Flash Newsletter | Legal

 ©2003 Microsoft Corporation. All rights reserved. Terms of Use | Privacy Statement

Page 35 of 35A Guide to Building Enterprise Applications on the .NET Framework (Building Distrib...

12/31/2003http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/en-us/dnbd...

