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Abstract: The National Weather Service has been requested by a variety of users to provide 
hydrologic forecasts that explicitly account for the uncertainty in the forecast.  The Ensemble 
Streamflow Prediction system was constructed to quantify the uncertainty in long range 
forecasts.  It operates using the historical record of precipitation and temperature in combination 
with the current conditions to produce an ensemble of stream flow time series.  This ensemble 
can be analyzed to produce long range probabilistic forecasts of stream flow, volume, and other 
predictands.  However, in order to account for uncertainty in shorter range forecasts, a 
probabilistic quantitative precipitation forecast must be used to construct the precipitation time 
series ingested by the ESP.  Furthermore, post processing must be performed on the output 
ensemble of discharge time series in order to account for biases and errors in the hydrologic 
models or their calibrations.  This paper gives a description of the approach used to construct 
ensembles for short range probabilistic hydrologic forecasts. 
 

INTRODUCTION 
 
The National Weather Service River Forecast System: The National Weather Service River 
Forecast System (NWSRFS) is the software used by the River Forecast Centers (RFCs) to 
produce hydrologic forecasts of river stage, flow, and volume (Fread et al., 1995).  It is a 
deterministic system, meaning that the initial information available to the NWSRFS at forecast 
time is used to produce only a single forecast of the future hydrologic conditions.  To produce a 
probabilistic forecast, the NWSRFS must be run many times using different input data for each 
run.   
 
The Ensemble Streamflow Prediction System: The Ensemble Streamflow Prediction system 
(ESP) is used to construct probabilistic forecasts using the NWSRFS.  Described in Perica 
(1998), the ESP uses historical data in conjunction with the current conditions to produce a 
forecast.  The process is as follows: 
 
1. The NWSRFS is initialized to the conditions at the time the forecast is produced. 
2. Each year of the historical record is used as a precipitation and temperature scenario.   
3. This scenario is then passed to the NWSRFS as forecasts of future precipitation and 

temperature.   
4. The NWSRFS produces a single future hydrograph, or time series of hydrologic data. 
5. This process is repeated until one hydrograph is produced for each year of historical data.  
 
The set, or ensemble, of hydrographs resulting from the ESP can be used to make probabilistic 
statements about the likelihood of future hydrologic events. 
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Problem Statement: With the present system, the input used for each run of the NWSRFS is 
selected using the current conditions in conjunction with historical data and long range forecasts 
of precipitation and temperature.  At no time is the knowledge contained within a short range 
forecast of future precipitation and temperature included in the process.  Such forecasts, which 
are currently made available on a daily basis to the RFCs with a lead time of up to three days, 
may contain useful information about the future, information that should be included.  However, 
the current process will not account for such information. 
 
Furthermore, the current process does not account for uncertainty inherent in the models 
themselves and in the data used to produce the forecasts.  Uncertainty in the models may be due 
to poor calibration.  Uncertainty in the data may be due to poor or incomplete measurements.  
Whatever the source of the uncertainty, the final probabilistic forecast must account for these 
uncertainties in order to maximize its skill and informativeness. 
 
A New Approach: This paper describes an ensemble approach that accounts for both the 
uncertainty in the precipitation forecast and in the model.  The new approach applies Bayesian 
logic similar to that described in Krzysztofowicz (1999) to construct ensemble forecasts of 
precipitation and temperature from a single deterministic forecast.  These ensemble forecasts are 
used in place of the historical data for a run of the ESP.  The output from the ESP is then sent 
through an ensemble post-processor, which modifies it in order to account for model biases and 
uncertainties.  The resulting approach is built around the current components and data streams of 
the NWSRFS and requires only a one-time calibration.   
 
The following sections describe the ensemble pre-processor and ensemble post-processor, and 
provides an example to illustrate the approach.  For the remainder of this paper, it is assumed 
that the ESP is being used to produce river discharge hydrographs.  
 

ENSEMBLE PRE-PROCESSOR 
 
Overview: The ensemble pre-processor generates future precipitation and temperature scenarios 
for use as input to the ESP.  The scenarios, when taken as a whole, account for uncertainty about 
the future precipitation and temperature conditional on the available forecasts of precipitation 
and temperature.  It has a formulation, application, and calibration component, each of which is 
described below.  Only the precipitation ensemble pre-processor is discussed, as the temperature 
ensemble pre-processor is still under development. 
 
Formulation: Let X be the observed precipitation amount with realization x, and Y be the 
forecasted precipitation amount with realization y.  The goal is to compute the distribution of X 
given the forecast Y = y.  The difficulty arises from the unusual nature of precipitation.  Its 
distribution has a discrete component associated with the probability of precipitation and a 
continuous component associated with the amount that falls in the event that precipitation occurs. 
  
Marginal Distributions of Precipitation Amounts: Let fX be the density of X and fY be the 
density of Y.  In order to account for the probability associated with the observed or forecasted 
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precipitation amount being zero, density fX incorporates the Dirac delta function, *,  (Edwards 
and Penney, 1994) as follows: 
 

fX(x) = (1 - p0X)*(x) + p0XfXC(x | x > 0), 
 
where p0X is the observed probability of precipitation.  Hence, the cumulative distribution 
function, FX, has the form 
 

FX(x) = 1 - p0X + p0XFXC(x | x > 0). 
 
The density fY and cdf FY have similar forms. 
 
Normal Quantile Transform: The normal quantile transform, or NQT, is a probability mapping 
of a variate into a standard normal variate (Kelly and Krzysztofowicz, 1997).  In this case,  
 

zx = Q-1(FX(x)), 
 
where Q is the standard normal cumulative distribution function.  The result is that variate Zx has 
the standard normal distribution.  This transformation is usually applied to variates whose true 
distribution can only be estimated empirically, as is the case with precipitation data, in order to 
acquire normally distributed data that can be more readily analyzed.  The inverse normal quantile 
transform is simply the inverse of the above, or    
 

x = FX
-1(Q(zx)). 

 
Applying  the inverse NQT to a variate that has been transformed via the NQT will result in the 
original variate.   
 
Bivariate Distribution of Observed and Forecasted Precipitation: Computation of the 
bivariate distribution F, with marginals FX and FY, is facilitated by computing a bivariate normal 
distribution.  To begin, variates ZX and ZY are acquired by application of the NQT, described 
above.  Next, the density N(zX, zY), with distribution function M, is modeled as bivariate normal 
with standard normal marginals and with parameter D, which is the Pearson’s correlation 
coefficient between ZX and ZY.  The result of this transformation is that 
 

F(x, y) =  M(zX, zY; D). 
 
Characteristics of D: The correlation coefficient D is dependent on the spatial scale of the 
forecast, the width of the time interval of the forecast, and the lead time of the forecast. Kelly 
and Krzysztofowicz (1997) have also shown that D is the Spearman’s rank correlation coefficient 
between X and Y in the original space, and serves as a measure of the skill of the forecaster, 
being 1 for a perfect forecast and 0 for a completely unskilled forecast.   
 
Conditional Distribution of Observed Precipitation: The conditional density fC(x | Y = y) 
characterizes the probabilistic forecast of precipitation.  Equating F with a bivariate normal 
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density allows for fC(x | Y = y) to be computed as the conditional density NC(zX | ZY = zY; D) 
which is known to be normal with mean : = DzY and variance F2 = (1 - D2).  This form of the 
distribution can be viewed as the climatology shifted by the information contained in the 
forecast, so that as the skill of the forecast decreases (i.e. as D goes to 0), the conditional density 
NC approaches the density of ZX, so that fC(x | Y = y) approaches the marginal density fX(x).  
 
Application: With the formulation in hand, the next step is determining how to apply this 
methodology to construct precipitation scenarios.  These scenarios, which constitute an ensemble 
of precipitation time series, will be used as input to the ESP.   
 
Constructing an Ensemble: The ensemble of precipitation amounts is constructed using the 
climatological record, where each year of data corresponds to one time series in the ensemble.  
For a given time period and for year k, the process is as follows: 
  
1. The year is ranked according to the amount of precipitation that occurred in that time 

period during that year relative to other years.  For zero events, the ranks are assigned 
randomly with none to exceed the smallest non-zero event rank.  

2. The year has a probability, pk, assigned to it based upon its rank.   
3. The year has a value for variate ZX assigned to it, which is computed as the inverse of the 

conditional distribution: zX,K =  MC
-1(pk | Y = y; D). 

4. The year has a precipitation amount assigned to it by performing the inverse NQT using 
the marginal of the observed values: xk = FX

-1(Q(zX,k)). 
 
Characteristics of this Ensemble Approach: By using the historical record to construct the 
ensemble, the spatial and temporal characteristics of the rainfall is captured.  For example, if 
precipitation over two basins is highly correlated, this characteristic will be captured in the 
climatological record, so that the time series that are constructed will also capture this 
characteristic.  Furthermore, by ranking the zeros and shifting the entire distribution the 
intermittent character of precipitation is preserved: when more rain falls, it falls on more days 
and not just in larger amounts. 
 
Calibration: This formulation requires the estimation of conditional distributions FXC and FYC, 
probabilities p0X and p0Y, and correlation coefficient D.  Each is computed based upon historical 
forecasted and observed data, which first passes through the smoothing process described below. 
 
Smoothed Climatology: The distributions of observed and forecasted precipitation amounts are 
noisy at the daily time step, meaning that the distribution for one day may differ greatly from the 
distribution on the next day.  This is caused by severe storms that are present in the historical 
record but lasted only a day or two, thus skewing the distribution for those days.   
 
Hence, in order to use the historical data to construct distributions FXC and FYC, the statistics 
derived from the daily data are first smoothed.  Three statistics are the objects of the smoothing 
for the observed and forecasted data:  
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• the daily probability of precipitation, or PoP (p0X and p0Y) 
• the daily average of all non-zero events (the conditional average, or CAVGX and CAVGY) 
• the daily coefficient of variation of all non-zero events (the conditional coefficient of 

variation, or CCVX and CCVY)    
 
The smoothing process is two fold.  First, the statistic for a particular day and year is computed 
using the values within a 90 day window centered on that day.  Second, the statistic is smoothed 
with a three component Fourier series.  Figure 1 provides an example of smoothed probability of 
precipitation data. 
 
Calibrated Parameters: Once the above statistics are smoothed, each of the components of the 
formulation is estimated for a particular day as follows: 
  
• p0X and p0Y: extracted directly from the smoothed statistics.  
• FXC and FYC: computed as two parameter distributions estimated using the smoothed CAVG 

and CCV.  Currently, the Weibull or Gamma distribution is used (Evans et al., 1993).   
• D: computed by using the above estimates to calculate FX and FY, and then calculating ZX and 

ZY as described above, and computing their correlation coefficient. 
 
The parameters are computed off-line prior to forecast time and the process is fully automated. 
 

ENSEMBLE POST-PROCESSOR 
 
Overview: The ensemble post-processor adjusts the output time series from the ESP in order to 
account for uncertainty in the hydrologic model contained within the NWSRFS.  These 
uncertainties may be due to errors in the calibration of the model, errors in the initial conditions 
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Figure 1: Example of smoothed probability of precipitation data. 
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of the model, errors in the rating curve, or, in general, any source of error other than future 
precipitation and temperature.  The formulation, application, and calibration components are 
described below. 
 
Formulation: Let Qt be the observed discharge at time t with realization qt and St be the 
simulated discharge at time t under perfectly known future precipitation and temperature with 
realization st.  The goal is to compute the distribution of the observed discharge Qt given the 
simulated discharge, St = st.    
 
Marginal Distributions of Discharge: Let gQ be the density of Qt and gS be the density of St.  
Both densities have a lower bound and are strictly continuous, having no discrete component.  
Furthermore, the process is assumed to be stationary within a season so that the density functions 
are constant for all t within the current season.  Next, let zQ,t = Q-1(GQ(qt)) and zS,t = Q-1(GS(st)), 
so that ZQ,t is the NQT applied to Qt and ZS,t is the NQT applied to St.   
 
Regression: At time t, the information available consists of the simulated value St and the 
previous observed value Qt-1, as well as other earlier values.  After applying the NQT to get ZS,t 
and ZQ,t-1, the following auto-regression model with lag 1 is used in the Gaussian space to 
estimate ZQ,t: 
 

zQ,t = azQ,t-1 + bzS,t + g;  g~N(0, Fg2) 
 
Once again, under the assumption that the process is stationary within a season, coefficients a 
and b and residual one-step variance Fg2 are constant for all t within the current season.   
 
Conditional Distribution of Observed Discharge: By the nature of the NQT, its is true that 
 

P(Qt # qt | St, Qt-1) = P(ZQ,t # zQ,t | ZS,t, ZQ,t-1) 
 
and, using the regression above,  
 

(ZQ,t | ZS,t, ZQ,t-1) ~ N(azQ,t-1 + bzS,t, Fg2). 
 
These equations allow us to compute the distribution of discharge at time t given the simulated 
value at time t and the observed value at time t - 1. 
 
Application: It remains to determine how to apply the formulation to the ensemble of 
hydrographs, or time series, produced by the ESP.  Let one such time series be denoted by qt, t = 
1,...,n.  There are two possible application models: a deterministic model and a stochastic model.  
Both are applied independently to each times series within the ensemble of hydrographs, with 
each application resulting in an adjusted times series, qt*, t = 1,...,n. 
 
Deterministic Model: The deterministic model consists of computing the expected value of the 
observed discharge conditional on the expected value of the observed discharge in Gaussian 
space, as calculated using the formulation above.  The model is applied recursively as follows: 



  

 7

  
1. For time t = 1, compute the expected value  
 

zQ,1 = E[ZQ,1 | ZS,1, ZQ,0] = azS,1 + bzQ,0 ,  
 
 where zQ,0 is the NQT transformed observed value at the time the forecast is produced. 
2. For times t = k, k = 2,...,n, compute the expected value  
 

zQ,k = E[ZQ,k | ZS,k, ZQ,k - 1 = zQ,k-1] = azS,k + bzQ,k-1 ,  
 
 where zQ,k - 1 is the expected value computed at time previous time step, k - 1. 
3. For all times t, t = 1,...,n, the adjusted time series value is computed as the expected value of 

the observed discharge conditional on the simulated and previous observed values in 
Gaussian space, or  

 
qt* = E[Qt | ZS,k, ZQ,k - 1] .   

 
This computation makes use of the expected value computed in step 2, but is not closed form, 
requiring numerical integration to complete.  

 
Stochastic Model: The stochastic model is similar to the deterministic model, except that the 
adjusted time series value is the inverse NQT applied to a single random sample drawn from the 
distribution of the observed value in Gaussian space.  Hence, the stochastic model follows the 
same first two steps as the deterministic version, with step 3 being as follows: 
  
3. For all times t, t = 1,...,n, compute a random realization, zr,t, of the variate (ZQ,t | ZS,t, ZQ,t-1) ~ 

N(zQ,t, Fg2), and apply the inverse NQT to this realization to acquire the adjusted time series 
value: qt* = GQ

-1(Q(zr,t)).     
 
Implications: For the stochastic model, the recursive nature of the application leads to the 
following: 

( )Z |Z ,Z ~ N a z b a z , aQ,k S,k Q,k 1
k
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k 1
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j 0

k 1

− −
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−
−

=

−
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 . 
Thus, the forecast distribution at time t = k, k > 0, is a weighted sum of the observed value at the 
time the forecast is produced, the simulated value at time t = k, and all of the simulated values 
preceding time t = k.  Note that, under the constraint that 0 < a < 1, as the lead time of the 
forecast increases, the weight on the observed at the time the forecast is produced decreases, as 
does that for the earlier simulated values. 
 
Calibration: Calibration of the ensemble post-processor requires estimation of the marginal 
distributions GQ and GS, and regression parameters a, b, and Fg2.  The estimation is performed 
using historical records of the observed discharges and corresponding simulated discharges.  
Such a historical simulation can be produced via ESP. 
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Estimating  GQ and GS: GQ and GS are estimated empirically.  Simply collect all of the 
observed and simulated data to be used in the calibration, sort them, rank them, and assign 
probabilities accordingly. 
 
Estimating a, b, and Fg2: As opposed to a typical linear regression, parameters a and b are 
estimated by minimizing the errors relative to Qt, not relative to ZQ,t.  Hence, an optimization 
must be performed in which the variables that are being optimized are a and b, and the objective 
is to minimize an error measure between samples of Qt and the inverse NQT transformed values 
of zQ,t computed using the regression equation.  Regardless of how a and b are estimated, the 
residual variance, Fg2, is always computed using the values in the Gaussian space. 
 
Seasonal and High Flow Dependency: The behavior of a river may be dependent on the time of 
the year.  As such, it may be desirable to derive seasonal estimates of the parameters, so that the 
parameters used to apply the ensemble post-processor depend on the day the forecast is being 
produced.   
 
Furthermore, the quality of the model often depends on the discharge level.  Hence, it may be 
desirable to derive the regression parameters separately for high and low discharges.  However, 
the empirical estimates of GQ and GS should be the same for both. 
 

EXAMPLE 
 
Overview: The example provided below illustrates both the ensemble pre-processor and post-
processor.  It is a real-life example, generated at the Mid-Atlantic River Forecast Center on April 
24, 2002, for the station in Huntingdon, PA. 
 
Description: The details of the calibration and application of the ensemble pre-processor and 
ensemble post-processor are provided below. 
 
Ensemble Pre-Processor Calibration: The parameters for the ensemble pre-processor were 
calibrated at 6 hour time steps using a record consisting of two years of observed and forecasted 
precipitation data.  The forecasts are those generated for the RFCs via the standard NWS 
quantitative precipitation forecast process.  Table 1 provides the statistics CAVGX, CAVGY, 
CCVX, and CCVY, the values of p0X and p0Y, and the correlation coefficient D.  Figure 2 is a plot 
of the distributions FX and FY. 
 
Ensemble Pre-Processor Application: The forecast of 6 hour precipitation amounts for the 
period from April 24 at 12 UTC to April 26 at 12 UTC was all zeros except for the time period 
from 6 UTC to 12 UTC on April 25, which had a value of 0.26 in.  For that 6 hour time period, 

 PoP CAVG CCV ρ 
X (Obs.) 0.216 0.172 1.825 ----- 
Y (Fcst.) 0.313 0.116 1.015 0.853

Table 1: Parameters of ensemble pre-processor. 
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Figure 3 provides plots of the historical, unsmoothed distribution of observed precipitation and 
the distribution of precipitation amounts resulting from the ensemble pre-processor.  Both are 
empirical estimates. 
 
Ensemble Post-Processor Calibration: The parameters for the ensemble post-processor were 
calibrated using a record consisting of 37 years of observed and simulated mean daily discharge.  
Calibration was performed for the season consisting of April and May, and the discharge values 
were broken down based on those below 400 CMS and above 400 CMS.  Table 2 provides the 
parameters a, b, and Fg2 for both above and below 400 CMS.  Figure 4 provides the empirical 
estimates of distributions GQ and GS. 
 
Ensemble Post-Processor Application: Figure 5 provides the ensemble of hydrographs that was 
produced by ESP, the adjusted ensemble produced by application of the deterministic model, and 
the ensemble produced by application of the stochastic model. 
 
Discussion: Two observations that can be made pertaining to this example will now be 
discussed.  First, from Figures 2 and 3, it is seen that, at the six hour time scale, the probability 
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Figure 2: Marginal distribution FX (black) and FY (gray) used in 
ensemble pre-processor. 

 a b Fg2 
Below 0.734 0.281 0.042 
Above 0.104 0.883 0.076 

Table 2: Parameters of ensemble post-processor. 
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of precipitation is typically less than 30%.  Thus, the impact of how the zero precipitation events 
are ranked, which is currently randomly, is strongly felt.  So a more intelligent “nearest 
neighbor” ranking technique is needed, in which the zero events are ranked based on proximity 
to non-zero events both in time and in space.  Such a technique is being researched at this time.  

Figure 4: Empirical estimates of marginal discharge distributions GQ 
and GS. 
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Figure 3: Empirical distribution of original precipitation data for hours 
6 – 12 UTC on April 25 (hollow circles) and distribution resulting from 
application of ensemble pre-processor (black dots). 
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Figure 5: The original ESP output hydrographs (top), the deterministic model adjusted 
hydrographs (middle), and the stochastic model adjusted hydrographs (bottom). 
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Second, both the deterministic and stochastic models of the ensemble post-processor adjust the 
output time series from the ESP.  This adjustment is calculated in such a way that a time series 
adjusted by the ensemble post-processor is useless when considered individually, as it will not 
represent an actual feasible event.  This fact is visible in Figure 5 for the stochastic model.  
Hence, you must take all of the time series as a whole in order to understand the statistical 
properties of the future event. 
 
In general, the real life example above illustrates how the methodology described herein is 
applied to generate an ensemble of precipitation amounts that accounts for meteorological and 
model uncertainty. 

 
CONCLUSION 

 
At this time, the NWS is advancing the hydrologic science used to forecast rivers by enhancing 
the ensemble forecast process.  Substantial work has been done to develop pre-processing and 
post-processing algorithms.  The algorithms developed use existing NWS data streams and have 
proven successful over the Juniata river basin in Pennsylvania.  The pre-processor captures 
meteorological uncertainty, or uncertainty about future precipitation and temperature, perhaps 
the most significant source of uncertainty in forecasting hydrological events.  As meteorology 
improves, the pre-processing algorithm will incorporate new forecasts with longer lead times.  In 
this way, the hydrologic forecasts will be able to take full advantage of any advancement in the 
skill of meteorological forecasts.  The post-processor captures the non-meteorological 
uncertainty, or model uncertainty, which is a major source of uncertainty for short term forecasts.  
It is these short term forecasts that end users are demanding.  Further refinements of both 
algorithms will be directed by the results of the developing implementation efforts.      
  

REFERENCES 
 
Edwards, Jr., C. H, Penney, D. E., 1994, Elementary Differential Equations.  Prentice Hill, 

Englewood Cliffs, NJ        
Evans, N., Hastings, N., Peacock, B., 1993, Statistical Distributions, Second Edition.  John 

Wiley & Sons, New York, NY  
Fread, D. L., Shedd, R. C., Smith, G. F., Farnsworth, R., Hoffeditz, C. N., Wenzel, L. A., Wiele, 

S. M., Smith, J. A., Day, G. N., 1995, Modernization in the National Weather Service River 
and Flood Program. Weather and Forecasting, 10(3), 477-484 

Perica, S., 1998, Integration of Meteorological Forecasts/Climate Outlooks Into an Ensemble 
Streamflow Prediction System.  14th Conference on Probability and Statistics in Atmospheric 
Sciences, preprints, 130-133 

Kelly, K. S., Krzyszofowicz, R., 1997,  A Bivariate Meta-Gaussian Density for Use in 
Hydrology.  Stochastic Hydrology and Hydraulics, 11, 17-31 

Krzysztofowicz, R., 1999, Bayesian Theory of Probabilistic Forecasting via Deterministic 
Hydrologic Model.  Water Resources Research, 35(9), 2739-2750 

 
 


