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Office of Hydrologic Development Report to the Radar Operations Center, 2007: 
Executive Summary 

 
This report describes the results of evaluations of dual-polarization quantitative 
precipitation estimation and hydrometeor classification algorithms carried out by the 
Office of Hydrologic Development during the period June 2006-May 2007.  The major 
findings can be summarized as follows: 
 
Task 1.1 Part I:  Evaluation of the NSSL Dual-Polarization Quantitative Precipitation 
Estimation (QPE) Algorithms – Echo Classification (EC) version 2007 
 
This recently revised algorithm appears to improve upon both existing Z-R horizontal 
polarization algorithms and its immediate predecessor “Combined” algorithm, in terms of 
RMS error and percentage of 10-mm errors relative to collocated rain gauge reports.  The 
EC algorithm also features less artificial noise than the Combined algorithm in fields of 
1-hour rainfall;  this feature was manifested as point values of zero rainfall in some 
precipitation areas characterized by hail or melting snow.  
 
Task 1.1 Part II:  Application of EC (Echo Classification) Rainfall Algorithm To NCAR 
S-pol Data from Florida During 1998  
 
In the EC algorithm, the horizontal reflectivity / differential reflectivity rainrate sub-
algorithm, R(Z,Zdr),  is applied in most warm-season rainfall regimes, namely raindrops 
without contamination from melting snow or hail.  This subalgorithm was evaluated over 
a sample of cases observed by the NCAR S-pol unit over the central Florida peninsula in 
summer, 1998.  Though the results did not indicate that the dual-polarization rainfall 
estimates were clearly superior to horizontal-polarization estimates in this regime, the 
dual-polarization algorithm still yielded realistic and reliable results.  It is possible that 
further calibration of the R(Z,Zdr) algorithm parameters based on subtropical data would 
give appreciable improvement over the current operational algorithm. 
 
Task 1.2: Potential Applications Of NSSL Dual-Polarization Hydrometeor Classifier 
Algorithm (HCA) As A Precipitation/No Precipitation Filter 
 
Some events with a common operational problem, namely WSR-88D estimates from a 
single radar featuring both precipitation and return from migrating birds, were examined 
through observations from both the KOUN dual-polarization and KTLX WSR-88D units.   
The data applied here involved an earlier version of the Hydrometeor Classification 
Algorithm (HCA) than is presently available.  However a comparison of precipitation 
estimates from both radar units showed the ability of the HCA to detect and remove large 
regions of apparent light precipitation due to biota, while retaining real precipitation.  The 
results were confirmed with rain gauge reports. 
 
 
 



Task 1.1 Part I:  Evaluation of the NSSL Dual-Polarization Quantitative Precipitation 
Estimation (QPE) Algorithms – Echo Classification (EC) version 2007 
 
Introduction 
 
Evaluations of the dual-polarization QPE algorithms proposed for operational implementation 
were carried out in order to identify potential problems and to develop guidance for end users 
who are expected to adapt their operations to use dual-polarization estimates in place of current 
ones.  Both subjective evaluations of visual imagery and numerical comparisons of point values 
with coincident rain gauge estimates have been prepared. 
 
As reported by NSSL researchers Ryzhkov and Krause in February 2007 (presentations to OHD, 
ROC, and NEXRAD SREC), the NSSL proposed QPE algorithm continues to evolve.  A large 
sample of point values from the most recent version, referred to as the Echo Classification (EC) 
version, was made available to OHD and we have carried out an initial evaluation of 1-h rainfall 
estimates from EC and compared them to the output of Combined, the convective Z-R 
relationship applied to horizontal polarization reflectivity data, and collocated rain gauge reports 
from the Oklahoma Mesonet.  All dual-polarization radar data were collected from the KOUN 
experimental unit in Norman.  This collection of radar and gauge estimates, ~15,800 cases, is 
hereafter referred to as the “statistical” dataset. 
 
In June 2007, NSSL staff provided another sample of 100 hours’ gridded EC and Z-R estimates 
over 6 calendar days in 2004-2005.  We collated the radar estimates from these 1-h, 2-km mesh-
length grids with simultaneous estimates from the KTLX (Twin Lakes) WSR-88D unit, and rain 
gauge reports from the Oklahoma Mesonet.  Mesonet observations from 119 sites were obtained 
from the Oklahoma Climate Survey’s web site. This data collection of ~8,400 cases is hereafter 
referred to as the “gridded” dataset.  
 
Both the statistical and gridded collections of gauge/radar pairs were augmented with operational 
estimates from KTLX primarily as a reference for general skill level.  Since the KTLX unit 
undergoes routine operational calibration, it is possible that its overall calibration is superior to 
that of KOUN, which served as an engineering testbed during much of the study period to date.  
Based on comparisons between Z-R and EC estimates from the KOUN unit, we can still expect 
improvements over current horizontal-polarization Z-R estimates following the dual-polarization 
upgrade to operational WSR-88D units.  
 
A further subjective analysis of the gridded data in imagery format is included here, to 
demonstrate the EC algorithm’s basic consistency with horizontal polarization estimates and to 
determine if certain artifacts that appeared in the earlier Combined dual-pol algorithm had been 
mitigated. 
 
1.1 Analysis of gauge/radar estimate pairs from statistical development and validation dataset, 
2002-2005 
 
An evaluation of the approximately 16,000 radar/gauge report pairs in the dataset provided by 
NSSL indicates that the EC algorithm features lower RMS error than the Z-R algorithm, and that 
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the tendency of the Z-R algorithm to be biased high in the higher range of values is greatly 
mitigated; these properties were reported by Ryzhkov et al. (2007).  These improvements are 
detected at all ranges within the 235-km range umbrella but are most noticeable in the inner 
150-km umbrella, the range zone in which most operational estimates are used.  We carried out 
slightly different analyses to determine potential impacts on hydrologic operations and flash 
flood monitoring. 
 
Specifically, we examined the spectrum of 1-h rainfall values from gauges, EC, and Z-R 
estimates from both KOUN and KTLX, to determine if the range of values is similar.  This 
analysis does not incorporate any consideration of correlation between the radar and gauge 
estimates.  We also compared the gauge correlation of the EC, Z-R, and operational Digital 
Precipitation Array (DPA) algorithms when mean-field bias correction was applied, under two 
assumptions about the density of an operational gauge network.  While the NSSL documentation 
clearly indicates that EC improves on the Z-R method, the operational practice of real-time 
gauge/radar mean-field bias correction alone yields appreciable improvement in some 
verification statistics.  Therefore, we wished to verify that the dual-polarization approach still 
yields improvements over horizontal-polarization when some real-time gauge data is available to 
correct the Z-R estimates. 
 
1.2 Statistical evaluation of EC and Z-R algorithms, relative to rain gauge observations 
 
Our evaluation includes statistics and data stratification not shown in the course of the NSSL 
presentations described earlier, and a comparison between EC and operational Digital 
Precipitation Array (DPA) products from the nearby KTLX WSR-88D unit.  As noted below, we 
cannot expect the overall performance of the KOUN unit, a research and test platform whose 
electronics were modified several times during the study period, to match that of the operational 
KTLX radar.  However, we found that the quality of the Z-R estimates from KOUN was 
comparable to the KTLX estimates, in terms of correlation with matched sets of rain gauge 
reports. 
 
A known problem with current short-period radar estimates based on horizontal polarization and 
a power-law Z-R relationship is that, after correction for bias over the long term, the lowest radar 
values (typically < 5 mm) are underestimates while the higher amounts (> 10 mm) are generally 
overestimates (see for example Ciach and Krajewski 2005).  Expected values of rain gauge 
reports over several sub ranges of radar-estimated values are shown in Fig. 1-1, which is based 
on all radar-gauge pairs in which either the gauge, EC, or Z-R indicated at least 0.25 mm of 
precipitation.  Each plotted point in the figure represents at least 200 gauge/radar pairs, stratified 
by the radar-estimated value.  The Z-R estimates from KOUN appear be biased high for values 
≥ 5 mm h-1, while the EC values show only a slight tendency to overestimate the higher values 
 
This is partly an effect of selective stratification.  We found that the gauge and all radar estimates 
have approximately the same form of statistical distribution, as shown in Fig. 1-2a.   Following 
long-term bias correction (multiplying all radar estimates by the ratio of gauge to radar 
precipitation within the entire sample), differences among the various rainrate spectra become 
still smaller, as shown in Fig. 1-2b. These results suggest that the apparent distortion in Fig. 1-1 
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is due in part to sampling differences between radar and gauge platforms, and/or 
misrepresentation of the drop-size distribution in uncommonly heavy rainfall situations. 
 
The EC output features a much closer general fit to the gauge amount distribution through all 
ranges (Fig 1-1).  It should be noted that the Z-R and EC have approximately the same 
correlation with the gauge amounts, and thus the same information content, but the better overall 
calibration of the EC has some important advantages from a hydrologic viewpoint. 
 
1.3 Radar algorithm performance after real-time mean-field bias correction – statistical 
dataset 
 
Ryzhkov et al. (2007) presented RMS error statistics indicating that EC represented an 
improvement over Z-R estimates when all gauge-radar pair data were pooled for several events 
over several years.  We repeated this analysis under a different set of assumptions, and also 
evaluated algorithm performance in terms of large errors, namely the fraction of critical rain 
events where gauge or radar indicated ≥ 10 mm of rainfall in 1 hour, and the absolute radar error 
was ≥ 10 mm. 
 
The initial analysis did not account for possible advantages gained by real-time mean-field bias 
(MFB;  Seo et al. 1999) correction, either for the Z-R or EC estimates.  We applied such 
corrections, estimating the bias from the current hour’s data and when necessary that from 
previous hours, with data more that 3 hours old receiving a lower statistical weight.  A minimum 
of 10 gauge radar pairs was considered adequate for bias estimation, though more than 10 pairs 
were used when the estimate incorporated data older than 3 hours. 
 
Because the density of the available gauge network in many places is lower than that of 
Oklahoma, and the reporting latency of individual gauge sites is often several hours, the gauge 
reports were randomly thinned to 33% and 25% of the maximum number available.  Error 
statistics are based on data from all gauge locations.  Note that the bias correction factor is based 
on the entire collection of available gauges, and thus the bias information does not contribute 
spatial detail.  Though some of the same gauge information is used in both bias correction and 
verification, our purpose is to compare radar algorithms, and therefore the application of gauge 
data has little effect on the final result. 
 
We stratified the error statistics according to two range criteria.  These were < 150 km, the range 
from which most operational radar estimates are taken, because of network coverage overlap, 
and the generally accepted maximum effective detection range of 230 km.  A few field offices 
are obliged to monitor parts of their warning areas with long-range estimates only, where the 
radar network is less dense or where beam blockages or other factors degrade detection from 
radars that are physically closer. 
 
Within the 150 km range band (results summarized in Figure 1-3), where 6900 cases met the 
minimum precipitation criterion, we found the RMS errors for EC and Z-R with no MFB 
correction were 2 and 3.5 mm, respectively.  As a reference, the error for the KTLX DPA 
estimates was 2.7 mm (Fig. 1-3a).  Applying MFB corrections with 33% of the available gauge 

3



reports substantially reduced the EC, Z-R, and DPA errors to 1.8, 2, and 2 mm, respectively.  
Corrections based on 25% of the gauges yield RMS errors of 1.8, 2, and 2.1 mm respectively.   
 
For many operations, heavier amounts are more critical to operational decisions.  To examine 
algorithm performance in such events, we calculated another error statistic for the cases in which 
at least one of the three estimates (gauge, EC, or Z-R) was ≥ 10 mm.  Though this amount is not 
usually heavy enough to cause flash flooding, it does indicate rain rates high enough to restrict 
visibility and have significant impacts on some activities such as ground transportation.  Here, 
the statistic is the percentage of cases in which the absolute radar-gauge error is ≥ 10 mm, a 
rather substantial amount but not uncommon in Z-R estimates. 
 
As shown in Figure 1-3b, the percentage of radar estimates with large errors, with no real-time 
MFB correction, ranges from 31% for the original Z-R estimates to 20% for KTLX DPA 
estimates to near 10% for EC.  Application of MFB correction led to considerable reduction in 
the error percentage for the Z-R estimates and smaller but appreciable reduction in errors from 
the EC estimates (to near 11% and 8% for either 25% or 33% of the gauge network being used in 
MFB correction).  
 
Thus it appears that gauge data alone, applied only through MFB correction, can substantially 
reduce the error in Z-R estimates toward that of the EC estimates, though the EC estimates 
themselves could benefit from MFB correction.  It must be noted that in many radar umbrellas, 
even less rain gauge data is reliably available, or the gauge network is very unevenly distributed.  
For such field offices, the use of dual-polarization algorithms will still be critical to reducing 
uncertainty in real-time rainfall estimates. 
 
Very similar results were obtained when this analysis was repeated for the entire 230-km radar 
umbrella (Figure 1-4).  Again, the KOUN Z-R and KTLX DPA estimates were substantially 
improved by the incorporation of real-time gauge data, while EC showed smaller but appreciable 
improvements.  The decreased ability of the EC algorithm to improve Z-R is likely due to the 
increased influence of range effects, particularly beam spreading and vertical profiles in 
hydrometeor types and reflectivity patterns.   The present EC algorithm does incorporate some 
compensation for reflectivity profile effects such as radar detection of dry or melting snow; a 
more permanent improvement must involve some form of real-time reflectivity profile 
correction. 
 
1.4 Conclusions based on the 2002-2005 statistical dataset 
 
The EC estimates evaluated were generally lower than the amounts estimated by the standard Z-
R relation.  EC shows markedly lower estimates versus Combined in the convective cores on the 
outer ranges of the radar.  The EC algorithm mitigated areas of apparent bright band 
enhancement at mid ranges during the cool season.  It also eliminated much of the “noise” and 
“zero dropouts” in the Combined estimates.  There is a reduction of precipitation estimates close 
to the center of the radar range on all the output from EC.  This is likely due to excessive clutter 
suppression on the lowest scan.  The inclusion of data from higher tilts in future updates to the 
EC algorithm should mitigate this effect. 
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The EC dual-polarization algorithm improves on Z-R estimates in terms of RMS error and 
number of large errors, relative to 1-h gauge reports, even when substantial amounts of 
coincident rain gauge information is used to bias-correct the Z-R estimates.  In areas with dense 
gauge coverage, there is an advantage to incorporating MFB correction to the EC estimates.   
The addition of the dual-polarization data is roughly equivalent to that of having a dense network 
of rain gauges available for bias correction of current Z-R estimates.  Note that the Oklahoma 
Mesonet, with 92 gauge sites within the KOUN 250-km umbrella, is exceptionally dense when 
compared with most other real-time reporting networks. 
 
It should be noted that many cases in this statistical dataset were part of the sample used to 
develop and calibrate the EC algorithm set (Giangrande and Ryzhkov, personal communication).  
Therefore the superior performance of EC relative to the Z-R algorithm is to some extent 
assured.  However, we were able to confirm that EC yielded a closer approximation to collocated 
rain gauge measurements within another data sample containing independent observations, as 
described below. 
 
1.5 Analysis of gridded dataset, including 6 study days 2003-2005 
 
A sample of gridded data containing ~110 hours’ precipitation estimates was selected by OHD 
and provided by NSSL, as follows: 
 
14 May 2003:  convective rainfall 
11 June 2003:  convective rainfall 
21 April 2004:  convective rainfall with some hail 
3 June 2004:   convective and stratiform rainfall 
9-10 June 2004:  primarily convective rainfall 
15 November 2004:  stratiform rain with bright-band enhancement 
6 February 2005:  stratiform rain with bright-band enhancement; snow possible at a few 

locations 
 
Several hours in which there were more than 11 minutes of missing volume scan data were 
removed.  A total of 95 hours of data remained in which both EC and Z-R estimates, and DPA 
estimates from KTLX, were available. 
 
One preliminary analysis was made to estimate the effect of changing the data format from 
azimuth-range to gridded (2-km rectangular mesh).  A total of 15 hours of data from 3 of the 
days (14 May; 11 June; 15 November) were available from both the statistical and gridded 
datasets; there were 1305 gauge/radar pairs within this sample.  The two sets of radar estimates, 
and rain gauge data, were collated and the respective correlation statistics compared.   
 
We found that the correlation statistics overall were similar: the rank correlation between radar 
and gauge was 0.85 and 0.87 from the gridded and statistical datasets, respectively, and the RMS 
errors were 1.6 and 1.8 mm.  There were some apparently random differences between the 
gridded and azimuth range rainfall estimates, as might be expected given the differing areas for 
spatial averaging.  A final dataset was created by finding the gridded rainfall value closest to the 
azimuth-range value specified for the given gauge location.  The rank correlation and RMS error 
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for this set of cases was 0.88 and 1.6 mm, respectively.  We concluded that there were only 
minor differences in correlation statistics introduced by the differing grid resolutions. 
 
Another preliminary analysis was made to confirm as far as possible that the change from the 
Combined to the EC algorithms lead to consistent improvement in a statistical sense.  Data from 
95 hours on which data from both the EC and Combined algorithms (the latter processed in 
2006) were collated with gauge data, yielding 8936 cases.  The rank correlations for the EC and 
Combined algorithms were 0.69 and 0.71, respectively; the RMS errors were 1.2 mm and 
1.4 mm respectively.  Within the subset of 3416 cases where some rainfall was observed by 
either gauge or radar, the EC and Combined rank correlations were 0.52 and 0.49, while the 
RMS errors were 1.9 and 2.3 mm.  Thus the Combined algorithm appeared to yield more cases 
with large errors than did the EC. 
 
Given these statistics and general improvement in the spatial continuity and physical consistency 
of the rainfall fields as shown in imagery (following section), we believe the improvements 
yielded by the EC algorithm are operationally significant and will be of benefit to end users. 
 
1.6 Radar algorithm performance after real-time mean-field bias correction –gridded dataset 
 
We repeated the analysis of the effects of real-time MFB correction, described in a previous 
section.  For these experiments, approximately 8400 cases were available within the KOUN 
250-km umbrella and 4700 within the 150-km inner umbrella. 
 
While the KOUN Z-R and KTLX DPA estimates were still improved by MFB correction, the 
degree of improvement was less than that seen in the statistical dataset; the EC estimates were 
not consistently improved.  As shown in Figs. 1-5 and 1-6, the use of fewer gauges for bias 
correction sometimes resulted in slightly lower RMS errors and/or a lower percentage of 10-mm 
errors.  This could be due to chance, given that this collection of cases was chosen more for 
rainfall intensity and range of precipitation types than for coverage by rainfall.  Moreover the 
time series was necessarily fragmented, with the case days being separated by weeks or months, 
making bias correction with older data less meaningful.  In operational practice such large 
temporal gaps will be experienced only rarely. 
 
We still found that EC consistently improved on the KOUN Z-R estimates, even after application 
of MFB correction, as was found in the tests on the larger statistical dataset.  Thus it is 
reasonable to expect continued improvement  
 
1.7 Subjective visual analysis of samples cases from 2003-2005 
 
Sample 1-h rainfall estimate fields from each of the study events are shown in Figs. 1-1 to 1-9.  
The events can be characterized as follows: 
 
21 April 2004:  convective rainfall with some hail (Figs. 1-7, 1-8) 
3 June 2004:   convective and stratiform rainfall (Fig. 1-9) 
9-10 June 2004:  primarily convective rainfall (Figs. 1-10, 1-11) 
15 November 2004:  stratiform rain with bright-band enhancement (Figs. 1-12, 1-13) 
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6 February 2005:  stratiform rain with bright-band enhancement (Figs. 1-14, 1-15) 
 
The subjective analysis described below includes output from 3 algorithms and two different 
radar units.  Estimates from the KOUN experiment unit include the “Combined” algorithm 
described in our last report, output from the newer EC algorithm, and estimates from the 
convective Z-R algorithm.  For purposes of comparison, output from the operational KTLX 
WSR-88D unit’s Z-R algorithm is also shown (Figs. 1-8, 1-11, 1-13, 1-15).  Figures 1-7 to 1-11 
show the Combined algorithm estimates (labeled “a” in each figure), EC estimates (labeled “b”) 
and Z-R estimates based on the convective relationship Z=300R1.4 (labeled “c”). 
 
The EC estimates appear to show marked improvement over the Combined in terms of spatial 
continuity; there are fewer data holes in the 2-km analysis grid and fewer unrealistic range-
dependent features that were introduced by the Combined specification that all rainfall estimates 
beyond 200 km were derived from the Z-R algorthm . 
 
The EC estimates associated with convective precipitation (Figs.  1-7 to 1-11) are generally 
lower than the highest amounts indicated by the Z-R estimates.  This is likely a positive attribute 
of the EC algorithm in mitigating likely overestimates due to the presence of hail.  EC is slightly 
lower then Combined estimates in these hail cores. 
 
EC shows markedly lower estimates versus Combined in the convective cores on the outer 
ranges of Fig. 1-7.  This is a positive effect again mitigating likely hail contamination and 
primarily due to Combined defaulting to the horizontal Z-R relationship beyond 200 km while 
the choice between rainfall relations is based on the results of precipitation classification in EC.  
EC removed the residual “noisiness” and “holes” from the Combined estimates. 
 
For both cool season events (Figs. 1-13 to 1-15) there is a suggestion of bright-band 
enhancement.  The EC algorithm mitigated areas of apparent bright band enhancement at mid 
ranges of the radar umbrella.  It also eliminated much of the “noise” and “dropouts” in the 
Combined estimates.   
 
There is a reduction of precipitation estimates close to the center of the radar range on all the 
output from EC, most noticeable on Figs. 1-9, 1-10, and 1-11.  This is likely due to excessive 
clutter suppression on the lowest scan.  The inclusion of data from higher tilts in future updates 
to the EC algorithm should mitigate this effect. 
 
Acknowledgements 
 
We appreciate the assistance in data acquisition and subject review provided by Alexander 
Ryzhkov, John Krause, and Scott Giangrande. 
 
References 
 
Ciach, G., and W. Krajewski, 2005:  Towards Probabilistic Quantitative Precipitation WSR-88D 
Algorithms: Data Analysis and Development of Ensemble Generator Model: Phase 4.  Report to 
Office of Hydrologic Development, National Weather Service, NOAA, 206 pp. 

7



[Available from: http://www.nws.noaa.gov/oh/hrl/papers/wsr88d/PQPE-FinalReport.pdf ] 
 
Ryzhkov, A., 2007: Graphical presentation to NEXRAD SREC, March 2007 [available from author]. 
 
Seo, D.-J.,  J. P. Breidenbach, and E. R. Johnson,1999:  Real-time estimation of meanfield bias in radar 
rainfall data.  J. Hydrology, 223, 131-147. 
 

8

http://www.nws.noaa.gov/oh/hrl/papers/wsr88d/PQPE-FinalReport.pdf


Figure 1-1.  Expected 1-h rain gauge amount as a function of radar-estimated values,
from 2002-2005 NSSL dataset.  Rain gauge reports are from Oklahoma Mesonet sites,
At ranges 25-230 km from the KOUN radar unit.  Each plotted point on the trace represents
approximately 250-350 gauge-radar pairs.
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Figure 1-2.  1-h rainfall distribution by percentile, mm, from 2002-2005 NSSL dataset.  
Rain gauge reports are from the Oklahoma mesonet, ranges 25-230 km from the KOUN 
radar unit.    EC and Z-R are from KOUN; DPA values are from WSR-88D KTLX. 
Percentiles are within the subset of cases in which precipitation > 0.25 mm.  Original 
radar values are evaluated in (a), values after long-term bias correction in (b).
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Figure 1-3.  Effects of real-time gauge/radar mean-field bias bias correction on (a) root mean 
squared error and (b) percentage of heavy precipitation cases with radar-gauge errors of 10 mm or 
more.  All data are for Oklahoma Mesonet gauge locations between 25 and 150 km from the 
KOUN radar unit.  RMS errors are for 6901 cases within the statistical gauge/radar dataset 
supplied by NSSL;  percent cases with 10-mm errors are from 592 cases in which gauge or a radar 
estimate indicated > 10 mm rainfall.
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Figure 1-4. As in Fig. 1-3, except gauge locations are between 25 and 250 km from the KOUN
radar.  RMS errors are for 13213 cases; percent cases with 10-mm errors are from 953 cases
in which gauge or a radar estimate indicated > 10 mm rainfall
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Figure 1-5. As in Fig. 1-3, except data are the gridded dataset 2003-2005.  RMS errors (a)
are from 4675 cases < 150 km from the KTLX WSR-88D unit; percent cases with 10-mm
errors (b) are from 117 cases with precipitation estimates > 10 mm.

0

0.5

1

1.5

2

2.5

No MFB correction Using 33% gauges Using 25% gauges

R
M

S 
er

ro
r,

 m
m

EC Z-R DPA

a

0

10

20

30

40

50

No MFB correction Using 33% gauges Using 25% gauges

%
 c

as
es

 w
ith

 1
0+

 m
m

 e
rr

or

EC Z-R DPA

b

Gridded radar data, range 0 -150 km

13



Figure 1-6. As in Fig. 1-4, except data are from selected events 2003-2005.  RMS errors (a)
are from 8451 cases < 250 km from the KTLX WSR-88D unit; percent cases with 10-mm
errors (b) are from 171 cases with precipitation estimates > 10 mm.
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a

c

Figure 1-7.  One-hour precipitation within the KOUN umbrella, valid 0000 UTC 22 April 2004.
Images are from (a) dual-polarization “Combined” algorithm QPE1, (b) newer algorithm 
EC and (c) Z-R horizontal polarization relationship.  Range rings are at 50-km intervals.
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Figure 1-8.  (a)  One-hour precipitation (OHP) from the operational KTLX WSR-88D, valid 
0000 UTC 22 April 2004  (b) One-hour precipitation within the KOUN umbrella, newest 
algorithm EC version.
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Figure 1-9.  As in Fig. 1-7 except for 0300 UTC, 3 June  2004.
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Figure 1-10.  As in Fig. 1-7 except for 1600 UTC, 9 June  2004.
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Figure 1-11.  As in Fig. 1-8 except for 1600 UTC, 9 June  2004.
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Figure 1-12.  As in Fig. 1-7 except for 1200 UTC, 15 November  2004.
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Figure 1-13.  As in Fig. 1-8 except for 1200 UTC, 15 November  2004.
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Figure 1-14.  As in Fig. 1-7 except for 0900 UTC, 6 February 2005.
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Figure 1-15.  As in Fig. 1-8 except for 0900 UTC, 6 February 2005.
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Task 1.1 Part II:  Application of EC (Echo Classification) Rainfall 
Algorithm To NCAR S-pol Data from Florida During 1998  
 
Introduction 
 
Prior to the introduction of the proposed EC (or Echo Classification) algorithm in 
February 2007, our effort at validation of the QPEv1 algorithm using Florida NCAR S-
Pol data was concentrated on the difficult problem of deriving rainfall estimates from the 
specific differential phase (Kdp) moment.  As noted by NSSL developers regarding the 
Oklahoma data, this moment might yield more reliable estimates in hail areas, but 
elsewhere tends to produce noisy precipitation fields. 
 
With the incorporation of the latest, EC version for dual-polar precipitation estimation in 
our study, consideration must be given to the fact that the algorithm normally depends on 
the Hydrometeor Classification Algorithm (HCA), to account for the wide range of 
possible hydrometeor and other target types.  In the situation of warm season rainfall in 
the central Florida peninsula, however, melting/freezing processes play very little role, as 
hail is relatively rare and the melting layer is high.  Hence, if biological targets and 
AP/clutter are ignored, we believe we can approximate the EC algorithm to the sub-
component based upon reflectivity/differential reflectivity, or R(Z,Zdr), which should 
cover the majority of environmental circumstances encountered.  Hence, that sub-
component will be used exclusively here, in lieu of the complete HCA/EC evaluation.   
The dual-pol data used in this portion of our study were collected from the NCAR S-Pol 
radar situated about 26 km SSW of the operational WSR-88D station in Melbourne, FL 
(KMLB) during the period July 28 – Sept 26, 1998.  Hereafter, the two datasets are 
referred to as SPOL and KMLB, respectively.  The results to be presented are from a set 
of 60 hours from 21 study days. 
 
Operational characteristics of the S-Pol unit during this period can be found at 
http://www.eol.ucar.edu/rsf/spol/spol.html.  A description of parallel results obtained on 
two study days appears in Dixon et al. (2007). 
 
Our goals in this phase of the dual-polarization study include confirmation that the EC 
algorithm yields realistic and reliable results in an environment outside Oklahoma, that 
the relationship between dual-polarization and horizontal polarization estimates is similar 
in Florida and Oklahoma, and to determine if the absolute accuracy of the estimates is 
improved by the introduction of dual-polarization information. 
 
2.1 Overview of Findings 
 
Initial indications are that, while the EC logic was developed and optimized for the NSSL 
KOUN dual-pol radar in the predominantly convective environment of the central U. S. 
Great Plains, the application of the analogous logic of the R(Z,Zdr) algorithm to the 
NCAR S-Pol, dual-pol dataset yields consistent and comparable results in the tropical 
environment of central Florida.  In both systems/locations, the statistical relationship of 
dual pol-derived precip to traditionally derived (i.e. Z-R) estimates is comparable; 
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likewise for the relationship of dual pol-derived hourly precipitation estimates to hourly, 
co-located rain gage reports.  And in individual case studies, rainfall amounts and 
patterns revealed in images from the dual-pol experimental radar against analogous 
images from the nearby WSR-88D operational system (SPOL vs. KMLB); KOUN vs. 
KTLX (Oklahoma City, OK), are, overall, similar. 
 
Some regional differences were observed.  While both the dual-pol radars in Oklahoma 
and Florida give lower, overall estimates of precipitation than their counterpart 
WSR-88D systems, the Florida (S-Pol) system underestimates to a greater degree, 
particularly with regard to the EC (or analogous R(Z, Zdr)) field.  Paradoxically, radar-
based rainfall accumulation images from the dual-pol radars generally reveal greater areal 
precipitation coverage (though in the very light ranges) than do their counterpart images 
from the WSR-88D radars.  These issues will be discussed below. 
 
2.2  Dual-Pol vs. Single Pol Behavior in Florida (SPOL) and comparison to Oklahoma 
(KOUN) 
 
Fig. 2-1a shows the relationship between dual-polarized (i.e. EC) and horizontally-
polarized (i.e. R(Z)) hourly precip estimates from the experimental radar KOUN in 
Norman, OK, while Fig. 2-1b shows the same relationship (with R[Z;Zdr] substituting for 
the EC as discussed above) from the experimental SPOL radar in Melbourne, FL, for all 
estimates throughout the July 28 – Sept 26, 1998 period.  The two scatter diagrams are 
very similar in that they both consistently show lower estimates for the dual-pol based 
rainfall than that from the traditional, R(Z) relationship, though a little less so for the 
SPOL radar.  Here, Multiplicative Bias (MB)=0.89; Arithmetic Bias (additive bias, B)= 
-0.38.  These were lower than for the KOUN radar (MB=0.72; B= -1.25).  Note that a 
negative value of Arithmetic Bias here indicates dual-pol estimates are less than single 
pol, on average.  There are some differences, however: the KOUN radar shows wider 
scatter, in general, and more datapoints where the dual-pol estimate exceeds the single-
pol estimate in the lower precip ranges (up to about 6 mm), while the SPOL radar shows 
more points where the dual-pol estimate exceeds the single-pol estimate in the higher 
precip ranges (above 6 mm). 
 
Fig. 2-2 is analogous to Fig. 2-1b for the SPOL radar in Florida, although it now 
compares the dual-pol (R(Z;Zdr))-based estimates to the those from the Hourly Digital 
Precipitation Data Array (DPA) product of the nearby KMLB, after the SPOL estimates 
have been translated to the same, 4-km HRAP grid as the DPA.  Here, we see a 
somewhat greater, negative departure of the dual-pol based rainfall (MB=0.75; B= -1.08) 
than when compared to the single-pol estimates from the same radar (i.e. MB=0.89; B= -
.39).  Indeed, the greater portion of the relative underestimation of the SPOL R(Z;Zdr) vs. 
the KMLB DPA is attributable to inherent differences between the SPOL and KMLB 
radars, as opposed to differences resulting from the use of a dual-pol R(Z;Zdr) vs. single 
(horizontal) pol estimation.  These inherent differences may have several explanations, 
one of which may be that the SPOL radar registered lower than KMLB during all or part 
of the period July 28 – September 26, 1998.  In a calibration check conducted on the S-
Pol radar during the July-September 1998 experiment, it was estimated that the radar 
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reflectivity was, on average, 0.65 dB too low (range: 0.45-0.85 dB).  This average 
calibration difference was added back to the reflectivity measures before processing in 
NCAR’s experiments (Brandes et al. 2002). 
 
2.3 Individual Florida Cases: Examination of Radar (SPOL) vs. Radar (KMLB) 
Scatter Diagrams 
 
Next, SPOL-based estimates are compared to KMLB-based DPA estimates (as in 
Fig. 2-2), but for six, individual cases. Note that the six cases, or individual hours, were 
chosen because they had widespread or substantial precipitation or were indicative of a 
situation that persisted for several hours, but with no a priori knowledge of the relative 
QPEs of the SPOL vs. KMLB radars. 
 
Fig. 2-3a shows the distribution of DPA for the hour ending 8/20/98 19:00 UTC against 
the analogous, SPOL-based R(Z), while Fig. 2-3b shows the DPA against the SPOL-
based R(Z; Zdr).  Note that in this instance, the agreement between DPA and SPOL is 
very close, with SPOL R(Z) just slightly exceeding DPA (MB=1.02; B= +.07) and SPOL 
R(Z;Zdr) just slightly under it (MB=.95; B= -.18). 
 
In Figs. 2-4a-b, we see the same comparisons for the hour ending 9/05/98 20:00 UTC 
with almost an identical outcome, i.e. with SPOL R(Z) just slightly exceeding DPA 
(MB=1.06; B= +.22) and SPOL R(Z;Zdr) just slightly under it (MB=.93; B= -.26).  Then 
in Figs. 2-5a & b, we see the comparisons for the hour ending 9/19/98 19:00 UTC, with 
the opposite result now seen as in the bulk analysis of Fig 2-2 – i.e. the SPOL estimates 
exceeding – indeed, well exceeding - the DPA for both R(Z) (MB=1.41; B= +.99) and 
R(Z;Zdr) (MB=1.34; B= +.81).  And in Figs. 2-6a-b for the hour ending 9/20/98 19:00 
UTC (i.e. exactly one day later), we still see the SPOL estimates exceeding the DPA for 
both R(Z) (MB=1.09; B= +.33) and R(Z;Zdr) (MB=1.01; B= +.05), though not by as 
much. 
 
Of these six cases, in only two did the results turn out in the same sense as they did in the 
bulk analysis of the Melbourne cases – i.e. with the SPOL-based R(Z;Zdr) estimate being 
significantly less than the DPA.  In Figs. 2-7a-b for the hour ending 7/28/98 23:00 UTC 
(note: a case with not very widespread precip), we have (MB=.84; B= -.53) for R(Z) and 
(MB=.65; B= -1.14) for R(Z;Zdr), while in Figs. 2-8a-b for the hour ending 9/25/98 
23:00 UTC, we have very sharp underestimations of (MB=.58; B= -2.18) for R(Z) and 
(MB=.54; B= -.2.35) for R(Z;Zdr). 
 
So, overall, the six individual cases show a fairly wide range of behavior, with the SPOL-
based estimates (both R(Z) and R(Z;Zdr) exceeding the DPA in one instance (i.e. 9/19/98 
19:00 UTC (Figs. 2-5)); with the opposite being true in two instances (i.e. 7/28/98 23:00 
UTC (Fig. 2-7) and, particularly, 9/25/98 23:00 UTC (Fig. 2-8)); and with both sets being 
fairly equivalent in the other three cases.  In all instances except the two extreme cases, 
the SPOL estimates exceed the DPA at low precip rates but are less than the DPA at the 
higher rates (and with SPOL R(Z;Zdr) always being less than the SPOL R(Z)).  Thus, 
what we may be seeing here is that the SPOL estimates - particularly the R(Z;Zdr) - are 
yielding a somewhat different distribution of rainfall across the intensity spectrum, which 
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may or may not be more realistic than the estimates provided by the operational 
WSR-88D. 
 
Another finding that needs to be addressed is the rather wide departure of the two 
“extreme” cases, with R(Z;Zdr) well exceeding DPA across the intensity spectrum for 
9/19/98 19:00 UTC, but the opposite being observed for 9/25/98 23:00 UTC.  This brings 
a couple of possible explanations to mind: one is that the meteorological/environmental 
conditions were different on these two days, in such a way that the differences between 
the two radars/algorithms were accentuated (in opposite directions on the two occasions); 
another possibility is that the two radars were calibrated differently on these days, with 
the experimental SPOL radar being the one more likely to be experiencing swings in its 
calibration.  It is also possible that drop-size distributions never encountered in the 
KOUN development dataset appeared here. 
 
When we revisit Fig. 2-2, we see that for all the SPOL R(Z;Zdr) vs. KMLB DPA hourly 
estimates considered “en mass”, the SPOL estimates were lower, with an MB of 0.75 and 
an Arithmetic Bias of -1.08 mm.  This may indicate that atmospheric/ 
hydrometeorological conditions which supported the KMLB radar yielding higher precip 
estimates than the SPOL predominated during the period of record (i.e. July 28 – 
September 26, 1998). 
 
2.4 Examination of Radar (SPOL) vs. Radar (KMLB) Hourly Accumulation Images 
 
To gain more insight, coincident hourly accumulation images from the two radars were 
next compared (after translation to the same, HRAP grid).  Our aim was to confirm that 
the overall precipitation patterns were similar, and to identify any persistent patterns of 
differences between the two radars. 
 
In Fig. 2-9a-d, we see the estimates for a) KMLB DPA; b) SPOL R(Z); c) SPOL 
R(Z;Zdr); and d) Comparison of a and c, respectively, for the case 8/20/98 19:00 UTC 
(i.e. corresponding to Figs. 2-3a&b).  In the Comparison image (Fig. 2-9d),  areas where 
both radars perceived measurable precipitation are shown in blue; areas where only 
SPOL R(Z;Zdr) perceived it are shown in violet, and areas where only KMLB DPA 
perceived it are shown in green.  The first thing to notice is that areas with measurable 
precipitation only in KMLB DPA occur exclusively at the outer ranges.  This is, indeed, 
because the coverage range for precip analysis of the operational KMLB is greater than 
that for the SPOL (i.e. 230 km vs. 171 km).  On the other hand, within the 171 km range 
ring, areas where both radars or only SPOL R(Z;Zdr) reveal measurable precipitation are 
predominant, whereas areas where only KMLB DPA reveal it are very rare.  The reason 
for this apparent discrepancy within the (171 km) range of mutual coverage – except right 
near the respective radars - is primarily a consequence of a disparity in the manner by 
which the two sets of images are processed, whereby the cutoff for the lowest 
“displayable” (i.e. non-background black) value of the DPA products is higher than that 
for the SPOL (i.e. ~.3 mm vs. .1 mm).  Another way of perceiving this is that the SPOL 
images reveal “trace” accumulation amounts whereas the DPAs do not.  So unfortunately, 
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not much can be surmised from these difference fields.  It should be noted that above this 
lowest precip level, the quantizations of the remaining levels (i.e., colors) are the same. 
 
In comparing the remaining sets of images for the 8/20/98 19:00 UTC case, it is seen that 
Figs. 2-9a & b (i.e. KMLB DPA vs. SPOL R(Z), with both being derived from the R(Z) 
relationship) yield comparable patterns and amounts except near the respective radars, 
where the SPOL image reveals echoes – often spiky – while the DPA image does not.  
This is, in part, because our processing of the SPOL accumulations does not have the 
benefit of the many quality control procedures contained in the operational, WSR-88D 
algorithm, and hence, AP and ground clutter are much more likely to be retained.  
Meanwhile, Figs. 2-9b & c (i.e. SPOL R(Z) vs. SPOL R(Z;Zdr)) yield a very close match 
in coverage and amount – which is to be expected since both are from the same radar and 
the latter is a function of the former – except with regard to the heaviest cores (i.e. > .50”, 
appearing as oranges and reds), which are reduced in Fig. 2-9c at middle and outer 
coverage ranges compared to Fig. 2-9b, but are enhanced near the radar.  The diminishing 
of the peaks at middle and outer ranges is a well known consequence – and likely, benefit 
– of the application of the R(Z;Zdr) dual-polar formulation vs. the single-polar R(Z).  (No 
attempt will be made to explain the relative enhancement at close ranges this time.) 
 
Analogous comparisons of the four panels for the other cases yield very similar results to 
the above, and so are not all shown.  But it may be instructive to look at them for the two 
“extreme” cases., so as to perhaps gain additional insight. 
 
Figs. 2-10a-d show the 4-image comparison for the case in which the SPOL estimates 
most exceeded the DPA (i.e. the hour ending 9/19/98 19:00 UTC, corresponding to 
Fig. 2-5, above).  What stands out here is the very strong echoes right near the SPOL 
radar (and just SSW of the KMLB radar) which are considerably stronger in both the 
SPOL images (Figs. 2-10 b,c) – particularly R(Z;Zdr) – than they are in the KMLB DPA 
image (Fig. 2-10a).  The most likely explanation is that heavy rainfall, as well as ground 
clutter, indeed existed in the immediate vicinity of the two radars and – for the reasons 
mentioned above (i.e. better quality control and more filtering near the operational 
WSR-88D) – the SPOL radar accentuated these echoes considerably more so than did the 
KMLB.  And since accumulations are comparatively modest in the remainder of the 
mutual coverage area of the two radars, these stronger echoes near the SPOL radar 
predominate the statistics, resulting a mean-field bias exceeding one and a positive value 
of arithmetic bias (i.e. MB=1.34; B= +.81 for the R(Z;Zdr) vs. DPA radar-radar 
comparison). 
 
Figs. 2-11a-d show the 4-image comparison for the case in which the SPOL estimates 
were the most below the DPA (i.e. the hour ending 9/25/98 23:00 UTC, corresponding to 
Fig. 2-8, above).  Here, what stands out are two W-E aligned bands, one northwest to 
northeast of the radars and another south of them, which are much stronger in the DPA 
image than in either of the SPOL images.  Since these bands are not too close to the 
radars, speculation here is that the DPA product from the WSR-88D radar, which scans 
up to 3.5 degrees elevation in its precip processing, is picking up strong echoes aloft – 
perhaps due to hail – that are not observed by the SPOL radar, which only processes 
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rainfall at 0.5 degrees elevation in the analysis system used for this study.  (Thus this 
may, indeed, be a situation where our analysis of the SPOL precipitation – both R(Z)  and 
R(Z;Zdr) – was hindered by our assumption that hail is rare in late summer, tropical 
Florida, and that we could forego preceding our QPE analysis with an HCA 
determination.) 
 
In summary of the (6) individual cases, the hourly accumulations from the two radars 
(KMLB and SPOL) are generally quite similar in pattern, and usually in amount, as well.  
Differences are more discernible between the single-pol KMLB images and (both) the 
SPOL images than they are between the single- and dual-pol SPOL images, themselves.  
This is because: a) the DPA images from KMLB cut off “trace” levels of accumulation 
from the display; while the SPOL images do not; b) The WSR-88D algorithm has quality 
control steps which filter AP and clutter – particularly near the radar, while our 
processing method used for the SPOL accumulations does not; and c) The WSR-88D 
algorithm processes its precipitation based upon a “Hybrid Scan” composite of the lowest 
four elevations (i.e. 0.5 to 3.5 degrees) while the SPOL algorithm is based only upon the 
0.5 degree elevation scan.  In the cases where the accumulation from one system is 
significantly different than the other, statistically, it appears that a small area or areas of 
heavy echoes predominated, and that these echoes were far more enhanced in one system 
than the other, for the reasons stated above. 
 
2.5 Comparison between Radar and Rain Gage Observations 
 
In order to determine which estimates may have been closer to “ground truth”, the results 
from all the precip events in the vicinity of Melbourne, FL during the study period of July 
28 – Sept 26, 1998 were next compared to hourly rain gage reports.  Gages that were 
employed in the Tropical Rainfall Measuring Mission (TRMM) for use in Ground 
Validation of experimental satellite precip estimates (i.e. TRMM-GV gages) were 
obtained from the website http://trmm-fc.gsfc.nasa.gov/trmm_gv/index.html and 
collocated with the radar estimates.  A total of 1566 “gage-radar pairs”, for which both 
the gage report and the nearest HRAP gridpoint estimate had non-zero precip, were found 
during the above period. (See Fig 2-12 for the locations of these gages.) 
 
In Fig. 2-13, we see scatter diagrams of one-hour precip estimates from (a) KMLB DPA 
(based on R(Z)); and (b) SPOL dual pol estimates (R(Z,Zdr)), each compared to the 
TRMM-GV one-hour gage report set.  It is seen that in both instances, the radar precip 
estimates, in sum, were less than the gage reports, with MB substantially less than 1.00 
and Arithmetic Biases (B) negative.  Of these estimates, though, the KMLB DPA were 
closer to the gage reports (i.e. MB=.74; B= -1.31), than the SPOL dual pol (i.e. MB=.61; 
B= -1.95) 
 
It is obvious that differing biases between the two radars have some effect on the overall 
interpretation.  For most hydrologic applications, however, it is possible to estimate and 
then partially correct these biases by applying a multiplicative correction factor based on 
a set of recent gage-radar pairs.  To facilitate our analysis, we therefore estimated a 
mean-field bias (MFB) correction for each hour’s data for both radars, in a manner 
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analogous to that described in Section 1.  The MFB was calculated as the mean gage 
amount divided by the mean radar amount at some gage locations where both radar and 
gage were nonzero; to approximate operational conditions where some gage reports are 
time-delayed, we employed only half the available gage sites, chosen at random. 
 
The results of this correction are shown in Fig. 2-14 (which is analogous to Fig. 2-13).  It 
is now seen that, while all the radar sets are still underestimating precipitation, in the 
mean, compared to the gages, they are now considerably closer, with statistics for KMLB 
DPA of (MB=.92; B= -.41) and for SPOL dual pol of (MB=.93; B= -.35).  Note that the 
performance of the SPOL dual pol is now slightly better than that of the KMLB DPA 
(although single pol estimates provided by SPOL (not shown) now provide an even 
closer match to the TRMM gages, with (MB=.95; B= -.25)).  An MB of unity is not 
achieved because not all gage/radar pairs were used in the MFB calculations. 
 
A consideration of interest in hydrologic modeling is the degree to which the statistical 
distribution of the radar estimates approximates that of the coincident gage data, 
regardless of the correlation between the two sets of estimates.  Since some hydrologic 
models are calibrated or designed based on gage observations, it is important that real-
time input is statistically similar to that which would be supplied by gages.  Therefore a 
percentile breakdown of all four of these datasets (i.e. the TRMM-GV gage and the three 
radar sets, above) was constructed, using the values obtained after MFB correction.  In 
the traces shown in Fig. 2-15, it is apparent that the distribution of values in all four sets 
is fairly similar up to about the 80th percentile.  For the highest percentiles, the KMLB 
DPA estimates are closest to the gauge values, while the SPOL estimates are not as high 
as the gauge.   
 
In this rather small sample of < 1600 gage/radar pairs, we cannot expect the gage and 
radar distributions to match at the very highest percentiles, where there are only a few 
cases.  However, it is apparent that both the SPOL and KMLB estimates fairly well 
approximate the gage estimates up to about the 80th percentile, and the KMLB estimates 
up to about the 90th percentile.  The SPOL output, for either single- or dual-polarization 
algorithms, appears to produce too few of the largest values, even after bias correction.  It 
should be possible to adjust this feature through recalibration of the algorithm to better fit 
the regional rainfall climatology and radar unit calibration. 
 
From this result, it becomes apparent that – at least in this study – the radar and its 
calibration, characteristics, etc., have a major impact in determining the precip estimate 
than does the fact of whether a single pol (R(Z)) or dual pol (R(Z,Zdr)) formulation is 
employed.  It is also apparent that the biggest differences in the radar vs. rain gage 
estimates are provided by the heaviest rainfall samples. 
 
2.6  Summary and Conclusions 
 
In summary, we conclude that: 
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The EC algorithm will produce reliable, realistic results when ported to a subtropical 
regime; 
 
The relationship between EC and standard convective Z-R estimates from the same radar 
unit is similar in Oklahoma and Florida, i.e., the dual-polarization algorithm tends to 
reduce the magnitude of the higher-rain rate Z-R estimates; 
 
When comparing estimates from the neighboring KMLB and SPOL units, differences in 
amount and distribution of precipitation estimates in this study are largely attributable to 
inherent differences between the two radars and their operational characteristics, quality 
control procedures, etc..  These functional differences partially obscure differences 
between the EC algorithm and the Z-R algorithm; 
 
The largest differences in the dual-pol radar vs. rain gage estimates appear in the heaviest 
rainfall events; 
 
Recalibration of the multiplicative and exponential parameters in at least the R(Z,Zdr) 
component of EC, and possibly others, will be necessary to achieve maximum benefit 
from the dual-polarization upgrade in all locations. 
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a

b

Fig. 2-1: Intra-radar (dual pol vs. horizontal pol) one-hour precipitation comparisons for each 
of experimental radars (a) KOUN, Norman, OK (i.e. EC (QPEv2) vs. R(Z) for 46 precip 
events during 2002-2005) and (b) SPOL, Melbourne, FL (i.e. R(Z,Zdr) vs. R(Z) for 21 events 
during July-Sept 1998). 32



Fig. 2-2: Inter-radar (dual pol vs. horizontal pol) one-hour precipitation 
comparison for SPOL (i.e. R(Z,Zdr)) vs. KMLB (i.e. DPA product, 
derived from R(Z)), for 21 events during July-Sept 1998, Melbourne, 
FL. (Note: analogous to Fig. 2-1B, though dual pol SPOL R(Z,Zdr) 
now compared to single pol, operational WSR-88D DPA)
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A

Fig. 2-3: Inter-radar precipitation comparisons of (a) SPOL R(Z) and (b) 
SPOL R(Z; Zdr), both against operational KMLB estimate for one hour 
period ending Aug. 20, 1998, 19:00z.

a

b
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Fig. 2-4: Same as Fig. 2-3, for one hour period ending Sept. 05, 1998, 
20:00z. 35



a

b

Fig. 2-5: Same as Fig. 2-3, for one hour period ending Sept. 19, 1998, 19:00z.
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Fig. 2-6: Same as Fig. 2-3, for one hour period ending Sept. 20, 1998, 19:00z.
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Fig. 2-7: Same as Fig. 2-3, for one hour period ending July 28, 1998, 
23:00z.
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Fig. 2-8: Same as Fig. 2-3, for one hour period ending Sept. 25, 1998, 23:00z.
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b
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A B

C D

Fig. 2-9: One hour precip estimates from (A) KMLB DPA product; (B) SPOL radar, 
horizontal pol (R(Z)) algorithm; (C) SPOL radar, dual pol (R(Z;Zdr)) algorithm; and (D) 
comparison of A vs. C, for hour ending Aug. 20, 1998, 19:00z.  Note: in (D) regions in 
green = only KMLB measurable precipitation; magenta = only SPOL measurable 
precipitation; blue = both.
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C D

Fig. 2-10: Same as Fig. 2-9, for hour ending Sept. 19, 1998, 19:00z.
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A B

C D

Fig. 2-11: Same as Fig. 2-9, for hour ending Sept. 25, 1998, 23:00z.
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Fig. 2-12:  Locations of all TRMM-GV gages.  Note: only those gages within the 
coverage area of the SPOL radar (gray) were used in this study.
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Fig. 2-13: Radar vs. rain gage precipitation comparisons from: (A) KMLB DPA 
product; and (B) SPOL R(Z; Zdr) estimate, both against TRMM-GV one-hour gage 
reports, for all events in the period July 28-Sept. 26, 1998.
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Fig. 2-14: Same as Fig. 2-13, after MFB correction applied to radar estimates.
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Fig. 2-15: Percentile breakdown of hourly rainfall estimates from TRMM-GV gages 
(solid trace); SPOL R(Z); SPOL R(Z,Zdr); and KMLB DPA.
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Task 1.2: Potential Applications Of NSSL Dual-Polarization Hydrometeor Classifier 
Algorithm (HCA) As A Precipitation/No Precipitation Filter 

 
A need currently exists for better identification and removal of nonprecipitation features 
from the radar estimates currently supplied to River Forecast Centers (RFCs).  
Particularly during the spring and autumn bird migrations, extensive areas identified as 
light precipitation appear in circular regions roughly concentric about radar sites.  On 
occasion, return from insects is also high enough to cause anomalous light precipitation 
accumulations.  The evolving WSR-88D dual-polarization quantitative precipitation 
estimation (DP-QPE) (Ryzhkov et al. 2005a,b) algorithm and Hydrometeor Classification 
Algorithm (HCA) (Ryzhkov et al. 2005a) could mitigate this problem.  The examples 
shown below demonstrate the ability of HCA to identify and eliminate anomalous rainfall 
from estimates of the KOUN dual-polarization prototype unit, in cases where the nearby 
KTLX WSR-88D showed extensive light anomalous precipitation.   
 
Note that this analysis used version 1 of the NSSL’s DP-QPE algorithm and HCA, 
hereafter designated Combined and HCA1, respectively.  Although we only considered 
QPE1 and HCA1 in this analysis, work on a newer version with the same benefits is 
underway (Ryzhkov, personal communication).  The rainfall estimates themselves are 
from QPE1, but we are not considering the precision of the estimates themselves, only 
the representation of the rainfall pattern. 
 
It appears that the HCA1 successfully identifies biota and eliminates anomalous 
reflectivity features associated with them.  An opportunity exists to either apply the 
HCA1 directly to horizontal polarization rainrate estimates, or to apply dual-pol QPE 
itself as a mask to eliminate areas of spurious precipitation.  To examine the latter 
possibility, we identified several cases in which operational QPEs from the KTLX 
WSR-88D unit appeared to have both true precipitation and anomalous accumulations 
from biota.  The dual-pol Combined fields were then examined to determine if those 
areas with anomalous accumulations were eliminated.  Though this evaluation is partly 
subjective, we included rain gauge reports from the Oklahoma Mesonet as an additional 
form of ground truth. 
 
A combination of precipitation- and biota-based accumulations over Oklahoma during 
the early morning hours of 13 May 2005 is shown in Figs. 3-1,2.  In both figures, data in 
(a) are from operational KTLX One Hour Precipitation products, overlaid on Mesonet 
gauge reports.  Note that the maximum range of the estimates is slightly greater for the 
KOUN dual-pol estimates, 250 km vs. 230 km for KTLX. 
 
In Figs. 3-1,2, a large area of echoes concentric on the radar site led to light precipitation 
accumulations in both images, while a mesoscale convective complex approaches from 
the west.  The zero gauge reports clearly identify the area near the radar as anomalous 
precipitation, probably from a combination of migrating birds and insects.  The KOUN 
representation of the convective complex in (b) closely resembles that of the KTLX unit, 
while only some small areas of clutter-induced anomalous precipitation appears near the 
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KOUN radar itself.  Clutter suppression was generally not available for the KOUN data 
processing suite. 
 
Similar results held for the case of 30 May 2004, shown in Fig. 3-3, where an isolated 
intense storm cells near the two radar units was embedded in an area of biota return. 
 
We noted that in both cases, some lighter, probably high-altitude, precipitation appeared 
at longer ranges in the KTLX data but not in the KOUN estimates.  In all cases coincident 
gauge reports were zero.  While these accumulations appear to be hydrometeors, it is 
possible that the HCA1 indicated only an ambiguous classification and thus the area was 
dropped from accumulations.  The lack of reported surface rain could be due to subcloud 
evaporation.  We did note that the HCA1 did not appear to miss any gauge-reported 
precipitation. 
 
Depending on the results of further analysis, we will propose that end-users be given the 
option of using the DP-QPE1 precipitation accumulations as a quality-control mask as 
soon as the product is available.  Such a mask utility could be applied within AWIPS 
through the D2D and MPE packages, to accumulations from the existing WSR-88D 
precipitation processing system, or to estimates from radars. 
 
Acknowledgements 
 
Dual-polarization QPE1 fields were supplied by John Krause and Alexander Ryzhkov of 
NSSL.  Rain gauge reports were supplied by the Oklahoma Climate Survey.  
 
References 
 
Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. 

S. Zrnic, 2005a:  The Joint Polarization Experiment: Polarimetric rainfall 
measurements and hydrometeor classification.  Bull. Amer. Meteor. Soc., 86, 
809-824. 

 
Ryzhkov, A. V., S. E. Giangrande, T. J. Schuur, 2005b: Rainfall Estimation with a 

Polarimetric Prototype of WSR-88D.  J. Appl. Meteor., 44, 502-515. 

48



 

Figure 3-1.  One-hour precipitation ending 0500 UTC, 13 May 2005, from (a) WSR-88D KTLX (OHP) and 
(b) KOUN “Synthetic” dual-pol algorithm, incorporating Hydrometeor Classification Algorithm Version 1. 
Rain gauge reports in inches are shown in (a). 

a

b
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Figure 3-2.  As in Fig. 1, except for 0700 UTC, 13 May 2005.

a

b
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Figure 3-3.  As in Fig. 1, except for 0300 UTC, 30 May 2004.
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b
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