



## Hydrologic Ensemble Prediction for Risk-Based Water Resources Management and Hazard Mitigation

D.-J. Seo<sup>1,2</sup>, Julie Demargne<sup>1,2</sup>, Limin Wu<sup>1,3</sup>, Yuqiong Liu<sup>1,4</sup>, James Brown<sup>1,2</sup>, Satish Regonda<sup>1,4</sup>, Haksu Lee<sup>1,2</sup>

<sup>1</sup>NOAA/NWS/Office of Hydrologic Development <sup>2</sup>University Corporation for Atmospheric Research <sup>3</sup>Wyle Information Systems, LLC <sup>4</sup>Riverside Technology, inc.

#### Products & Services Goal Seamless probabilistic forecasts for all lead times



## Why hydrologic ensemble forecasting?

- Provide an estimate of the forecast (i.e. *predictive*) uncertainty
  - Confidence information (for the forecasters)
  - For user-specific risk-based decision-making (for the customers)
- Improve forecast accuracy
  - An (optimally weighted) average of two good (or bad) forecasts is better than either of the two
- Extend forecast lead time
  - Weather and climate forecasts are highly uncertain and noisy; they cannot practically be conveyed as single-valued
- <u>Cost-effective improvement of forecast systems, science and process</u>

## NWS Hydrologic Ensemble Forecast System (HEFS)

- <u>An end-to-end hydrologic ensemble forecast system</u> currently under development
- Comprehensive plan developed in 2007 (<u>http://www.weather.gov/oh/rfcdev/docs/XEFS\_design\_gap\_analysis\_report\_fi\_nal.pdf</u>)
- NWS/OHD collaborating with RFCs, Deltares, NCEP, OAR and universities through:
  - Advanced Hydrologic Prediction Service (AHPS)
  - Climate Prediction Program for the Americas (CPPA) Core Project
  - The Observing-System Research and Predictability Experiment (THORPEX)
  - The Hydrologic Ensemble Prediction Experiment (HEPEX)
  - ➢ Research grants
- Field deployment via the Community Hydrologic Prediction System (CHPS)
- Prototype components under testing and evaluation at a number of RFCs
- Additional prototype deployments during the next 2 years

### Current (Seasonal ESP) vs. HEFS

| Feature                   | Current                                                                              | HEFS                                                                             |
|---------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Platform                  | National Weather Service River<br>Forecast System (NWSRFS)<br>(inflexible, outdated) | Community Hydrologic<br>Prediction System (CHPS)<br>(flexible, SOA)              |
| Forecast horizon          | Weeks to seasons                                                                     | Hours to years                                                                   |
| Input forecasts           | Climate outlook forecasts                                                            | Short-, medium- and long-range<br>forecasts (HPC/RFC, GFS,<br>CFS, SREF)         |
| Hydrologic<br>uncertainty | Not addressed                                                                        | Addressed (but w/ room for improvement)                                          |
| Products                  | Limited number of graphical products                                                 | A wide array of user-tailored<br>products via Web-enabled<br>interactive toolbox |

### Uncertainty integration strategy

$$f_1(q_f | q_o) = \int f_2(q_f | q_o, s_f) f_3(s_f | q_o) ds_f$$

Predictive uncertainty in streamflow Residual hydrologic uncertainty Uncertainty in model-predicted streamflow

- where q<sub>f</sub> Streamflow at some future times
  - $q_{n}$  Observed flow up to and including the current time
  - s<sub>f</sub> Model-predicted streamflow at the future times

Krzysztofowicz (1999)

#### $f_{3}(s_{f} | q_{o}) = \iiint f_{4}(s_{f} | b_{f}, i, p, q_{o}) f_{5}(b_{f} | i, p, q_{o}) f_{6}(p | i, q_{o}) f_{7}(i | q_{o}) db_{f} di dp$

Uncertainty in<br/>model-predicted<br/>streamflowConditional hydrologic<br/>model simulationFuture forcing<br/>uncertaintyParametric<br/>uncertaintyInitial condition<br/>uncertaintywherebFuture boundary conditions (precipitation, temperature)IInitial conditions

p Model parameters

Seo et al. (2006)

## Uncertainty integration strategy (cont.)

w/o data assimilator and parametric uncertainty processor

$$f_1(q_f | q_o) = \int f_2(q_f | q_o, s_f) f_3(s_f | q_o) ds_f$$

Predictive uncertainty in streamflow Residual hydrologic uncertainty

Uncertainty in model-predicted streamflow

- where  $q_f$  Streamflow at some future times
  - $q_o$  Observed flow up to and including the current time
  - s<sub>f</sub> Model-predicted streamflow at the future times

$$f_3(s_f | q_o) = \int f_4(s_f | b_f) f_5(b_f) db_f$$

Uncertainty in Conditional Future model-predicted hydrologic model forcing streamflow simulation uncertainty

where  $b_f$  Future boundary conditions (precipitation, temperature)

### Strategy for forcing ensembles

- Current
  - Generate ensembles statistically from the singlevalued QPF and QTF
    - HPC/RFC, GFS, CFS
    - Ensemble Pre-Processor (EPP)
      - Schaake et al. (2007), Wu et al. (2010)
- Near-term plan
  - (Post-processed) Multi-model ensembles
    - Currently in experimental operation at some RFCs using MMEFS
  - Include potential evaporation

## Strategy for hydrologic uncertainty modeling

- Current
  - Lump all hydrologic uncertainties into one and model it stochastically (Seo et al. 2007)
- Near-term plan
  - Uncertainty modeling of regulated flows
  - Initial condition uncertainty via ensemble data assimilation
  - Parametric uncertainty via the parametric uncertainty processor
  - Multimodel ensembles

#### Verification Results: EPP-ESP-EnsPost flow forecast compared to climatological ESP

- Skill Score for Mean CRPS (CRPSS): GFS-based flow generated by <u>EPP-ESP-EnsPost</u> compared to GFS-based flow (EPP-ESP) and climatology-based flows (<u>climatological ESP</u>)
- Very large improvement by EPP-ESP over climatological ESP
- Significant improvement by EPP-ESP-EnsPost over EPP-ESP



# Operational hydrologic ensemble forecasting - Challenges

- Appropriately model and integrate uncertainties introduced from data, model, and human sources
- Combine ensemble forcing for short, medium, and long ranges from multiple sources
- Maintain spatiotemporal relationships across different scales
- Include forecaster skill in short-term inputs (QPF, temperature, etc.)
- Include forecaster guidance of hydrologic model operation
- Maintain coherence between deterministic and ensemble forecasts
- Provide uncertainty information in a form and context that is easily understandable and useful to the customers
- Reduce the cone of uncertainty for effective decision support
  - Improve accuracy of meteorological and hydrologic models
- Improve uncertainty modeling and observations of rare and extreme events (e.g. record flooding, drought)
  - Extreme conditions may be outside of model limits and without historical analog
    Adapted from
- Greatly improve computing, database and data storage capabilities

Hartman (2007)

# Collaborative R&D and RTO in the CHPS environment







## Thank you

## For more information: julie.demargne@noaa.gov





## Hyperlinked slides

# Provide an actionable estimate of the forecast (i.e. *predictive*) uncertainty



In single-valued forecast process, "hydrologic error-tolerable" lead time for QPF is very limited



## Uncertainties in hydrologic forecast



#### Hydrologic Ensemble Forecast System (HEFS)



HEFS will enable seamless hydrologic ensemble prediction from weather to climate scales and translate weather and climate prediction into uncertainty-quantified water information





#### **EPP-generated precipitation ensembles**

Reliability diagrams for ensemble hindcasts of 6-hr precipitation for all 6-hr periods in Day 1 for Huntingdon in central PA. The vertical bars denote 95% confidence interval.



#### EPP-generated precipitation ensembles (cont.)

Mean CRPS for ensemble hindcasts of 6-hr precipitation for all 6-hr periods in Day 1 for Nov through Apr. The results are for the North Fork of the American River in CA, with upper and lower areas combined. The vertical bars denote the 95% confidence intervals.





## Post-processed streamflow ensembles daily flow

**KRMC2 1985 KRMC2 2003** 300 400 250 FLOW (CMS) FLOW (CMS) 300 200 200 50 8 OBSERVED SIMULATED MULATED 8 ENS MEAN ENS MEAN ENS TRACES 4025 4035 4035 4020 4030 4040 4045 4050 4020 4025 4030 4040 4045 4050 TIME ELAPSED (DAYS) TIME ELAPSED (DAYS)

In general, the post-processed ensemble members consistently encompass the verifying observation, and the ensemble mean closely resembles the single-valued forecast

#### Verification of post-processed streamflow ensembles – daily flow



#### Verification of post-processed streamflow ensembles – monthly flow



In general, post-processed streamflow ensembles are reliable and as skillful, in the mean sense, as the operational singlevalued forecast over a range of temporal scale of aggregation



#### Errors in Climatological ESP Forecast (Day 1)



#### Errors in GFS-based EPP-ESP-EnsPost Flow Forecast (Day 1)







## End of slides