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Why hydrologic ensemble forecasting?

• Provide an estimate of the forecast (i.e. predictive) uncertainty

– Confidence information (for the forecasters)

– For user-specific risk-based decision-making (for the customers)

• Improve forecast accuracy

– An (optimally weighted) average of two good (or bad) forecasts is 

better than either of the two

• Extend forecast lead time

– Weather and climate forecasts are highly uncertain and noisy; they 

cannot practically be conveyed as single-valued

• Cost-effective improvement of forecast systems, science and process
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NWS Hydrologic Ensemble Forecast 

System (HEFS)
• An end-to-end hydrologic ensemble forecast system currently under 

development

• Comprehensive plan developed in 2007 

(http://www.weather.gov/oh/rfcdev/docs/XEFS_design_gap_analysis_report_fi

nal.pdf)

• NWS/OHD collaborating with RFCs, Deltares, NCEP, OAR and universities 

through:

�Advanced Hydrologic Prediction Service (AHPS)

�Climate Prediction Program for the Americas (CPPA) Core Project

�The Observing-System Research and Predictability Experiment (THORPEX)

�The Hydrologic Ensemble Prediction Experiment (HEPEX)

�Research grants

• Field deployment via the Community Hydrologic Prediction System (CHPS)

• Prototype components under testing and evaluation at a number of RFCs

• Additional prototype deployments during the next 2 years
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Current (Seasonal ESP) vs. HEFS

Feature Current HEFS

Platform National Weather Service River 

Forecast System (NWSRFS)

(inflexible, outdated)

Community Hydrologic 

Prediction System (CHPS)

(flexible, SOA)

Forecast horizon Weeks to seasons Hours to years

Input forecasts Climate outlook forecasts Short-, medium- and long-range 

forecasts (HPC/RFC, GFS, 

CFS, SREF)

Hydrologic 

uncertainty

Not addressed Addressed (but w/ room for 

improvement)

Products Limited number of graphical 

products

A wide array of user-tailored 

products via Web-enabled 

interactive toolbox
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Uncertainty integration strategy

)|(1 of qqf

where qf Streamflow at some future times

qo Observed flow up to and including the current time

∫∫∫= dpdidbqifqipfqpibfqpibsfqsf fooofoffof )|(),|(),,|(),,,|()|( 76543

Seo et al. (2006)

Krzysztofowicz (1999)

Initial condition 
uncertainty

Parametric 
uncertainty

Future forcing 
uncertainty

Conditional hydrologic 
model simulation

Residual hydrologic 
uncertainty

Predictive 
uncertainty in 
streamflow

Uncertainty in 
model-predicted 
streamflow

Uncertainty in 
model-predicted 
streamflow

where bf Future boundary conditions (precipitation, temperature)

I Initial conditions

p Model parameters

∫= foffof dsqsfsqqf )|(),|( 32

sf Model-predicted streamflow at the future times
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Uncertainty integration strategy (cont.)

∫= ffffof dbbfbsfqsf )()|()|( 543

w/o data assimilator and parametric uncertainty processor

∫= foffofof dsqsfsqqfqqf )|(),|()|( 321
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where qf Streamflow at some future times

qo Observed flow up to and including the current time

sf Model-predicted streamflow at the future times

where bf Future boundary conditions (precipitation, 

temperature)
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Strategy for forcing ensembles

• Current

– Generate ensembles statistically from the single-

valued QPF and QTF

• HPC/RFC, GFS, CFS

• Ensemble Pre-Processor (EPP)

– Schaake et al. (2007), Wu et al. (2010)

• Near-term plan

– (Post-processed) Multi-model ensembles

• Currently in experimental operation at some 

RFCs using MMEFS

– Include potential evaporation
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Strategy for hydrologic uncertainty modeling

• Current

– Lump all hydrologic uncertainties into one and 

model it stochastically (Seo et al. 2007)

• Near-term plan

– Uncertainty modeling of regulated flows

– Initial condition uncertainty via ensemble data 

assimilation

– Parametric uncertainty via the parametric 

uncertainty processor

– Multimodel ensembles
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Verification Results: EPP-ESP-EnsPost flow 

forecast compared to climatological ESP

• Skill Score for Mean CRPS 

(CRPSS): GFS-based flow 

generated by EPP-ESP-EnsPost 

compared to GFS-based flow 

(EPP-ESP) and climatology-based 

flows (climatological ESP)

• Very large improvement by EPP-

ESP over climatological ESP

• Significant improvement by EPP-

ESP-EnsPost over EPP-ESP

Higher scores: better

gain from EPP

gain from EnsPost
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Operational hydrologic ensemble 

forecasting - Challenges

• Appropriately model and integrate uncertainties introduced from data, model, and 

human sources  

• Combine ensemble forcing for short, medium, and long ranges from multiple 

sources

• Maintain spatiotemporal relationships across different scales

• Include forecaster skill in short-term inputs (QPF, temperature, etc.)

• Include forecaster guidance of hydrologic model operation

• Maintain coherence between deterministic and ensemble forecasts

• Provide uncertainty information in a form and context that is easily 

understandable and useful to the customers

• Reduce the cone of uncertainty for effective decision support

– Improve accuracy of meteorological and hydrologic models

• Improve uncertainty modeling and observations of rare and extreme events (e.g. 

record flooding, drought)

– Extreme conditions may be outside of model limits and without historical 

analog

• Greatly improve computing, database and data storage capabilities
Adapted from 

Hartman (2007)
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Community Hydrologic Prediction 
System (CHPS)

Collaborative R&D and RTO in the 

CHPS environment
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broader scientific 
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Thank you

For more information:

julie.demargne@noaa.gov
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Hyperlinked slides
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Provide an actionable estimate of the 

forecast (i.e. predictive) uncertainty

With ensemble forecasting

Current product
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In single-valued forecast process, “hydrologic 

error-tolerable” lead time for QPF is very limited
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Uncertainties in hydrologic forecast

Flow regulations - A large challenge

Ensemble pre-processor

Parametric 
uncertainty processor

Data assimilator

Structural uncertainty, 
residual uncertainty

Forecaster role

Ensemble post-processor, 
multimodel ensemble
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Hydrologic Ensemble Forecast System (HEFS)

HEFS will enable seamless hydrologic ensemble prediction from weather to climate scales 
and translate weather and climate prediction into uncertainty-quantified water information

Weather 
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Water 
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HEFS Field Testing

Ensemble Pre-Processor

� Hydrologic Model Output 
Statistics (HMOS) 
Ensemble Processor

� Ensemble Post-Processor

� Ensemble Verification 
System

�
�

�

�
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EPP-generated precipitation ensembles
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Reliability diagrams for ensemble hindcasts of 6-hr precipitation for all 6-hr periods in 
Day 1 for Huntingdon in central PA. The vertical bars denote 95% confidence interval. 

From Wu et al. (2010)
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EPP-generated precipitation ensembles (cont.)
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Mean CRPS for ensemble hindcasts of 6-hr precipitation for all 6-hr periods 
in Day 1 for Nov through Apr. The results are for the North Fork of the 
American River in CA, with upper and lower areas combined. The vertical 
bars denote the 95% confidence intervals. 

From Wu et al. (2010)
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Post-processed streamflow ensembles 

daily flow

In general, the post-processed ensemble members 
consistently encompass the verifying observation, and the 
ensemble mean closely resembles the single-valued forecast
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Verification of post-processed streamflow 

ensembles – daily flow

Reliability Diagram Relative Operating 
Characteristics 

(ROC)
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Verification of post-processed streamflow 

ensembles – monthly flow

In general, post-processed streamflow ensembles are reliable 
and as skillful, in the mean sense, as the operational single-
valued forecast over a range of temporal scale of aggregation
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Observed daily flow (CMS)
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26Observed daily flow (CMS)
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End of slides


