
Presenting the Proof-of-Concept NWS Workflow
Management System

A first implementation of high-level recommendations
for a future RFS architecture

September 3, 2003

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 2

Agenda
 The Challenge: New Requirements demand a New

Architecture
 Brief review of the high-level architectural priorities

presented to OHD by Apex on June 13, 2003
 Overview and demonstration: The proof-of-concept NWS

Workflow Management System
 Conclusions & next steps

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 3

The Challenge: New Requirements demand a New
Architecture
 OHD is driving scientific advances and implementing

new forecasting applications on a continuous basis
 Distributed modeling will make a major impact, both

scientifically and functionally on OHD's work in the future
 OHD also faces ever-increasing functional requirements

from its customers
 The existing system architecture presents significant

limitations to continued effective implementation of new
forecasting capabilities

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 4

Key Requirement: Any Candidate Architecture
Must Continue to Support Existing Applications
 OHD must continue forecasting operations at all times.

As a result, the implementation of a new architecture
requires a gradual and evolutionary approach, and must
support existing modes of operation

 The new architecture should be flexible and modular to
improve on the current monolithic system environment

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 5

Brief Review of High-Level Architectural Priorities
In a meeting between OHD and Apex on June 13, 2003,
Apex proposed several architectural priorities to focus and
guide the evaluation process towards specific outcomes in
improving NWSRFS:

A.Standardize data management and data delivery
B.Implement a flexible application configuration

environment
C.Implement active application management
D.Encapsulate existing Fortran applications to operate

within the application configuration and management
environment

The proof-of-concept system presented here successfully
addresses three of the four priorities

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 6

Priority A: Standardize data management and
data delivery
 Current concerns regarding data management:

– Data mostly stored in files, using a variety of data formats,
some of which are binary

– Data files are tightly coupled with applications
– All data management is local to each AWIPS configuration at

RFCs
 Proposed approach:

– Store all data in relational databases
– Use OLTP and OLAP architectures as appropriate
– Implement a transparent framework for delivering data locally

or remotely, i.e., loosely couple data into applications
– Deliver data with platform and device independence using a

newly adopted or designed Hydrologic Markup Language

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 7

Priority B: Implement a flexible application
configuration environment
 Current concerns regarding application configuration:

– Applications are either tightly coupled to each other with explicit launch
calls or completely uncoupled and launched by CRON daemons

– Applications use non-standard control files with typically unique formats
and content based each application

– Applications are compiled into one monolithic AWIPS environment, forcing
the emergence of “in-official” configurations

 Proposed approach:
– Use a managed environment based on an application server
– Architect an environment that supports the structural and process

differences between science development and production uses
– Create an environment that enables and supports rapid, standards-based

reconfiguration of application workflows
– Maintain the power and simplicity of a meta-language such as HCL

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 8

Priority C: Implement Active Application
Management
 Current concerns regarding application management:

– Applications tend to be designed as single executables with less focus
placed on integration into workflows

– Workflow or queue management is “simulated” with CRON daemons
– Logging and application monitoring is relatively unstructured
– Performance is limited due to local program execution and whole-

database locking by each session
 Proposed approach:

– Design and implement applications as workflow components
– Implement workflow or queue management that is location and device

transparent
– Implement structured application event logging and monitoring that is

human and machine readable and can be used in workflow
management

– Enable distributed application execution

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 9

Priority D: Encapsulate existing Fortran
applications for continued functionality
 Current concerns regarding Fortran components:

– Fortran should increasingly be regarded as legacy code
– Fortran is not directly supported in contemporary managed

application frameworks
 Proposed approach:

– Where possible, migrate applications to C or C++
– In other cases, attempt to separate monolithic applications into

smaller functional components, and wrap each component into
a C or C++ wrapper

– Wrap entire programs in C or C++ wrappers and redirect or
reload program output to make it available in the managed
environment

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 10

The Proof-of-Concept System Demonstrates
the Architectural Priorities in Action
 The proof-of-concept NWS Workflow Management

System successfully demonstrates 3 of the 4 priorities:
– Priority B: Application configuration via XML
– Priority C: Active application management
– Priority D: Encapsulated Fortran code

 Improved data management (priority A) will require
further discovery and design work to define the scope
and impact of transitioning data management capabilities
to more structured repositories

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 11

Overview and Demonstration: The Proof-of-
Concept NWS Workflow Management System
 The proof-of-concept challenge
 Overview of system components
 General architectural overview
 Component detail

– Workflow server
– Workflow client
– Messaging-enabled applications
– Logging server
– Message delivery framework

 Example Workflows

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 12

The Proof-of-Concept Challenge

To build a simple runtime environment that supports
distributed, messaging-enabled applications that function in
the context of managed workflows.
Some of the applications must encapsulate existing code,
which must continue to function in a stand-alone fashion.
Further, the proof-of-concept must be a functioning system,
not just a plan.

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 13

Overview of the System Components
 A workflow server
 A workflow client for each workstation in the Workflow

Management System (WMS)
 One or more messaging-enabled applications (“me-apps”)
 A logging server
 A message delivery framework

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 14

Overview of Underlying Technology

 J2EE Application Server:
– Current implementation: BEA WebLogic
– Alternatives: JBoss (open source), IBM WebSphere, Sun ONE

 Database server:
– Current implementation: Oracle
– Alternatives: Informix, PostgreSQL, SQL Server

 Supported Operating Systems:
– Linux
– Windows

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 15

General Architectural Overview

1
Logging
Server

3
Logging

User Interface

8
App 1
(OHD)

9
App 2

(dummy)

App 3
(dummy)

App 4
(dummy)

Centralized Resources

Distributed Resources

4
Workflow

Server

6
Workflow
Manager

User Interface

7
Workflow

Client/Application
Controller

Application Server 1

2
Relational
Database

Oracle

Legend

JSPJavaC, C++,
Fortran

5
Relational
Database

CMD/Shell

JMS (point-to-point)
JDBC

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 16

Component Detail: Workflow Server
 Terminology

– “Workflow”: A set of applications that execute according to a
defined sequence

– “Workflow Template”: a pre-defined workflow that contains a
specific set of applications in a specific order. Templates are
saved and re-used when creating workflows

 The workflow server manages
– Registered workstations
– Registered messaging-enabled applications
– Workflow templates
– Workflows

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 17

Workflow Server, continued

 The workflow server supports
– Creating and editing workflow templates
– Creating workflows based on existing workflow templates
– Starting and stopping workflows
– Viewing workflow status
– Links into the central application log provided by the Logging

Server for specific workflow applications
– Normal and abnormal application termination
– Transmission of application control messages to workflow

client

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 18

Workflow Server, continued

Workflow and
Application State

Manager
(Java)

Workflow
Manager

User Interface
(JSP pages)

Workflow
Database
(Oracle 9i)

Application
Dispatcher

(Java)

The State Manager analyzes
application logging data to

extract workflow-related
information.

The State Manager
processes state change
information by updating
application status data,

which drives the actions of
the Application Dispatcher.

When the status of
application changes, the
Dispatcher evaluates the
next appropriate action and
executes it. Currently, the
Dispatcher only sends “Start”
commands.

Workflow Client

Enables users to manage all
aspects of workflows

Stores all workflow data

Start message identifies the
local application to run, and
provides the required
number of application
parameters

Workflow Server

BEA WebLogic 8.1

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 19

Component Detail: Workflow Client
 Terminology

– “Workflow Client”: A daemon/service application that runs on a
registered workstation, receives messages from the Workflow Server
and launches messaging-enabled applications

– “Messenger API”: A set of standardized logging functions developed
jointly by OHD and Apex. The API has been enhanced to include XML
encoding of log messages as well as JMS transmission

– “Messaging-Enabled Application”: An application that uses the
messenger API to communicate with the logging server

 The workflow client supports
– Receiving XML-encoded start messages from the Workflow Server
– Decoding the start message and comparing start information with

local, XML-based application configuration data
– Starting the indicated application in a child process
– Running on any number of distributed workstations for concurrent

processing

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 20

Workflow Client, continued

 Sample application start message:
<?xml version="1.0" ?>
<COMMAND APPLICATION-ID="2" LOG-SESSION-ID="559" LOG-SESSION-POSITION="3">

<ARGUMENT ORDER-ID="0" ARG-TEXT="1"/>
<ARGUMENT ORDER-ID="1" ARG-TEXT="10"/>
<ARGUMENT ORDER-ID="2" ARG-TEXT="1"/>

</COMMAND>

 Sample application configuration file:
<?xml version="1.0" ?>
 <APPS>

 <APP APPLICATION-ID="1" APPLICATION-NAME="Test_App_01" EXE-
LOCATION="/fs/shared/home/sliu/DEMO/APPS" LOG-SESSION-POSITION="2"
 />
 <APP APPLICATION-ID="2" APPLICATION-NAME="Test_App_02" EXE-
LOCATION="/fs/shared/home/sliu/DEMO/APPS" LOG-SESSION-POSITION="3"
 />
 <APP APPLICATION-ID="3" APPLICATION-NAME="Test_App_03" EXE-
LOCATION="/fs/shared/home/sliu/DEMO/APPS" LOG-SESSION-POSITION="4"
 />
</APPS>

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 21

Workflow Client, continued

Workflow Client
(Java)

Workflow Server

Messaging-
enabled

Application 1

Messaging-
enabled

Application 3

Messaging-
enabled

Application 2

Messaging-
enabled

Application n

JMS

Start message identifies the
local application to run, and
provides the required
number of application
parameters

The Workflow Client
launches messaging-
enabled applications as
separate processes via
native C functions

Logging Server

JMS

Linux pipe

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 22

Component Detail:
Messaging-enabled Applications
 Terminology

– “Log Message”: messages that follow the messenger API
standard, and include additional process management data
(see example on following page)

 Messaging-enabled applications support
– Sending all log messages to the logging server via the

messenger API
– Startup either via C native interface or manually from the

command line

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 23

Messaging-enabled Applications, continued
 Sample XML log message:
<?xml version="1.0"?>
<message session-id="544" process-id="32141">

<bytecode event="3" severity="1" dataquality="0" problemstatus="0"
trace="10" />

<timestamp datetime="293864928734" microsecs="142834" />
<workstation hostname="APEXDEMO" IP="172.16.12.145" />
<application name="fcst_ens_compu" version="1.0" type="MEAPP" />
<text>Application fcst_ens_compu finished successfully.</text>

</message>

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 24

Messaging-enabled Applications, continued

Workf low ClientLogging Serv er

Log message sent by
Workf low client upon
receipt, v ia f ile-based pipe,
of message content f rom
Messaging-enabled
Applications. Transmission
is encoded in XML and sent
v ia JMS

Messaging-enabled
Applicat ion 1

(Fortran, C, C++)

Messenger API
(C)

Messaging-enabled
Application 2

(Fortran, C, C++)

Messenger API
(C)

Messaging-enabled
Application 3

(Fortran, C, C++)

Messenger API
(C)

Messaging-enabled
Application n

(Fortran, C, C++)

Messenger API
(C)

Linux Pipe

File-based pipe File-based pipe File-based pipe File-based pipe

JMS

Messaging-enabled
Applications write
messages to standard linux
f ile-based pipes. The
Workf low client reads
messages f rom the pipes.

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 25

Component Detail: Logging Server
 Terminology

– “Log Session”: a continuous session representing log
messages from one messaging-enabled application

 The logging server supports
– Receiving XML-encoded log messages from any messaging-

enabled application running with or without workflow
management support.

– Decoding log messages and storing them in a relational
database.

– Displaying log messages, filtered and sorted by any of the
data elements.

– Alerting the workflow server of events that affect workflow
management.

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 26

Logging Server, continued

Log message sent by the
Workflow Client on behalf of
Messaging-enabled
Applications. Transmission is
encoded in XML and sent via
JMS

Workflow Client

Logging Server
(Java Message-

driven Bean)

JMS Connection
(Java)

Logging
Database
(Oracle 9i)

Receives all log messages
and stores them in the
relational database

Logging
Server User

Interface
(JSP pages)

Enables users to manage all
aspects of log entries,
including sorting and filtering

Logging Server

BEA WebLogic 8.1

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 27

Component Detail:
Message-Delivery Framework
 Terminology

– “J2EE Application Server”: An application management environment
compliant with the Java 2 Enterprise Edition standards. Apex is
currently using BEA WebLogic 8.1 as the application server

– “JMS”: Java Message Service, part of the J2EE specifications
– “JMS Queue”: A message management object managed by the

application server that can receive messages from message producers
in a serial, transacted and persisted fashion, as well as deliver the
same messages to message consumers

– “Point-to-Point Queue” (PTP): A JMS queue between two and only two
points. One message consumer can write read one message at a time
to the PTP queue, and one message consumer can read the same
message from the queue. Any message that is read in this manner is
deleted from the queue. PTP messages are delivered once and only
once

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 28

Message-Delivery Framework, continued

 The Message-Delivery Framework supports
– Stable, operating system-independent, transacted exchange of

messages
– The capability to exchange messages with servers inside and

outside the local network
– A standard, vendor-neutral API that can run on a variety of

commercial and open-source platforms

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 29

Example Workflows

Test_App_01
(Apex_Demo)

Test_App_02
(Apex_Demo2)

Test_App_03
(Apex_Demo)

Test_App_04
(Apex_Demo2)

Test_App_05
(Apex_Demo)

Test_App_06
(Apex_Demo2)

Test_App_07
(Apex_Demo)

Example 1: Simple Sequential Workflow, Running on 2 Different Workstations

Test_App_01

Test_App_02

Test_App_06

Test_App_07

Test_App_08

Test_App_09

Test_App_10Test_App_04

Test_App_03

Test_App_05

Example 2: Sequential and Concurrent
Workflow

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 30

Conclusions and Next Steps

 Strengths and limitations of the proof-of-concept NWS
Workflow Management System

 Strengths and limitations of the underlying architecture
 Next steps

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 31

Strengths and Limitations of the Proof-of-
Concept WMS
 Strengths

– Demonstrates functionality of most high-level architectural
priorities

– Built on leading commercial J2EE platform
– Built according to production-level design concepts
– Enables multiple deployment scenarios:

• One centralized logging and workflow server for all RFCs
• Multiple, distributed logging and workflow servers for some

or all RFCs
• One logging and one workflow server for each RFC

– Enables organic, gradual upgrade of applications to
messaging-enabled protocol, allowing continuous operation

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 32

Strengths and Limitations of the Proof-of-
Concept WMS
 Limitations

– As a proof-of-concept system, several areas of the system
need further development or rebuilding, specifically

• Security
• Error handling and recovery
• Time-out management by workflow client
• Integration of workflow management tools with applications

that are managed from a user-interface (non-batch
applications)

• Scalability

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 33

Strengths and Limitations of the Underlying
Architecture
 Strengths

– Fully distributed, operating system-independent workflow
environment

– Workflows can replace CRON or manual startup of individual
applications

– Flexible workflow configuration
– Integrated, consolidated logging capability
– Uses existing applications with only minor modification
– Integrates relational databases for operation

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 34

Strengths and Limitations of the Underlying
Architecture
 Limitations

– More complex operating environment
– Remote connections can fail
– Stability and performance of high-volume JMS traffic needs to

be established

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 35

Next Steps
 Establish run-time environment at NWS OHD to enable

testing and test development by HSEB staff
 Upgrade several applications for messaging-enabled

operation and test such operation extensively
– Show that multiple applications can run in the proof-of-concept

environment
– Perform timing studies

 Evaluate the suitability of the proposed architecture for
future improvements to NWSRFS

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 36

Next Steps, cont.

 Plan, design, and implement improved data management
capabilities
– Implement enhanced data management routines to improve

record locking capabilities
– Transition one or two repositories to management by a

relational database management system
 Expand the workflow server to include hydrology-driven

workflow model
– In addition to application workflows, it will be important for the

architecture to support dynamically created workflows that are
based on hydrologic objects. E.g., this might involve
processing forecast points along river flow in the proper
sequence

– Hydrology-driven workflow processing can function as a basis
for dynamic, automated forecasting in a distributed modeling
environment

NOAA – OHD/HL Presenting a Proof of Concept Architecture for a future RFS

September 3, 2003 Page 37

Implications of the Proof-of-Concept WMS for
the future of NWSRFS
 Enables implementation of a comprehensive application logging

system
 Enables implementation of concurrent processing using existing

applications
 Improves application performance and data locking challenges

due to workflow-driven process control
 Enables RFC developers to test new code against standard

workflows without requiring full application recompilation
 Lays groundwork for improved data and lock management via

data services or thin-client database connections to relational
databases

 Lays groundwork for highly flexible, dynamic distributed modeling
capabilities which will likely require concurrent processing on
multiple workstations.

