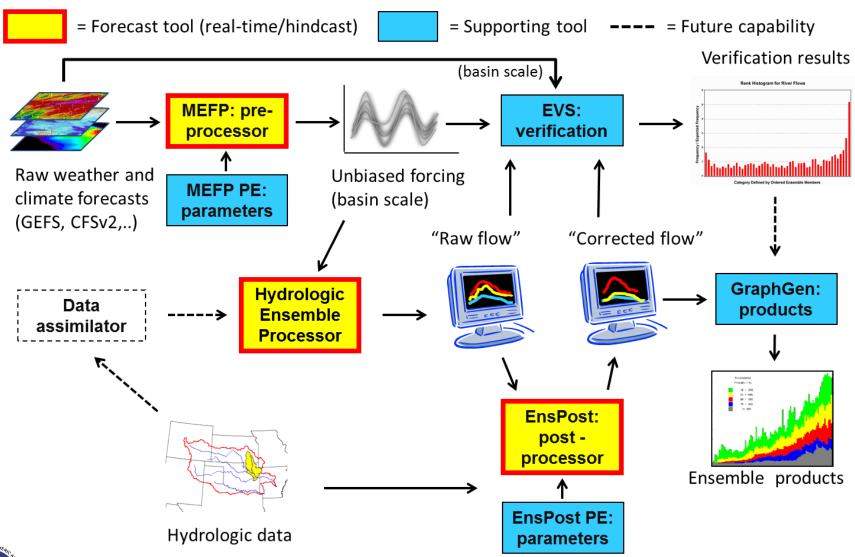
Hydrologic Ensemble Forecasting Service (HEFS)

Seminar H HEFS ConOps Discussion


Mark Fresch

HEFS Training Workshop 5, Silver Spring, MD February 25-26, 2013

HEFS Components

Objective

□ Objective: To get feedback from HEFS RFCs on how to run HEFS in routine CHPS operations

- Project planning for the rollout will be discussed during Seminar I – Project Status and Plans
- o Feedback (seminars H and I) will be included in the HEFS ConOps Document, to guide the rollout
- o ConOps has recommendations and options
- o OHD and HEFS test RFCs will iterate on the document through mid-April
- OHD and all RFCs will finalize the document by the end of May

Outline

□ Outline

- o Implementation
- o Operational Runs
- o MEFP
- o MODs
- o Calibration Parameter Estimation
- Hindcasting and Verification
- o Archiving
- o New Products
- o Training and Out-reach

Implementation

- On average, how much time has your RFC spent per week on HEFS?
 - o 20 hours per week (last six months)
 - o 50% of one person
 - o CN & NE 10-20 hours
- What part of implementation could be improved?
 - o By OHD (training, software, documentation, releases)
 - By you/RFC (more efficient implementation, participation in team)
 - o Strategy of incremental rollout?
 - All points or by Forecast group
 - Records of data available
 - Users in mind
 - Hardware issues & configuration management
 - Keep consistent with operational configuration
 - o Expectations of hindcasting/verification?
 - Not a crazy idea

Implementation

□ Rank the priorities of HEFS software/science tasks (High, Med, Low)

Task	Priority
MEFP – fix probability of precipitation bias	
MEFP – evaluating and adjust for extreme events	
MEFP – use grids after 00Z (for 12Z TØ)	
MEFP – running at TØ other than 12Z	
MEFP – canonical events/Schaake Shuffle concerns (FogBugz 979)	
MEFP – add other forcings sources, e.g. WPC QPF	
MEFP – large day-to-day changes to long range forecasts	
Other MEFP issues?	

Implementation

☐ Rank the priorities of HEFS software/science tasks (High, Med, Low)

Task	Priority
EnsPost – run at 6 hr time steps	
EnsPost – evaluate and improve at regulated points	
EnsPost – enhance to use on ephemeral streams	
Add Data Assimilator (account for uncertainty in initial conditions)	
Run-time issues (MEFP, EnsPost, Parameter Estimators, HEFS, EVS, hindcasting, or ensemble runs in general) ¹	
Usability issues (MEFP, EnsPost, Parameter Estimators, HEFS, EVS, hindcasting, ensemble runs in general)	
Others?	

Implementation - Coverage

After two years:

- □ ABRFC: MEFP at 440 basins for precip. & 103 basins for temp.; streamflow at 239 pts; and EnsPost and GraphGen at ~140 of those pts
- ☐ CBRFC: MEFP at 317 basins & streamflow for ~240 pts and adding EnsPost
- □ CNRFC: MEFP at 319 basins; streamflow at 199 pts.; and EnsPost at 30 pts. Plans to expand EnsPost & add GraphGen
- MARFC: MEFP at ~100 basins and streamflow and GraphGen at 53 pts (the Del. R.) for internal use and a second run of MEFP and streamflow for (14) NYCDEP points
- NERFC: MEFP at 12 basins; streamflow and EnsPost at 6 pts for internal use and a second run of MEFP and streamflow for (8) NYCDEP points

Operational Runs

■ What are the advantages and recommendations?

- o Automatic v. interactive
 - What is being done interactively at NE and CN?
 - Manual run (NE & CN)
 - Is it reasonable to do HEFS forecasts interactively (via IFD) one point and step at a time?
- o Configuring workflows advantages to different scenarios
 - Separate runs for MEFP, precip and temp?
 - Separate runs for different HEFS components?
 - Separate runs for small number of points?
 - Up to each RFC's operational needs

Operational Runs

☐ Timing of runs (in red)

Grid downloads

- CFSv2: 4x daily $\{0Z,6Z,12Z,18Z\}$ with 28hr lag to download $(12Z/D1 \rightarrow 16Z/D2)$
- GEFS: 1x daily {0Z} with 8hr lag to download (i.e. 8Z)

Grid ingest into CHPS

- CFSv2: 1-hour lag from download (5Z, 11Z, 17Z, & 23Z)
- GEFS: 1-hour lag from download (9Z)

MEFP ensemble generation

• 1x daily with T0=12Z, but executed at 17:30Z (shifted back); or as early as 9Z, if not using the latest (or any) CFSV2

Streamflow ensemble generation

- 1x daily with T0=12Z, but executed at 17:30Z
- Same time as MEFP ensemble generation
- By Forecast Group (i.e. matches ESP)

Operational Runs

□ Forecast horizon(s)

- o One long range run for all RFCs needs or separate runs for different forecast horizons?
- o If separate runs
 - Short-medium range: daily
 - Long range: to meet RFC needs, ala ESP runs
 - CN 14 day (10 mins) and 365 day
 - · More runs during flooding

MEFP

- ☐ Forcings available forecast horizon: recommendation
 - o RFC QPF (0 to X days): recommended if 'large' archive available
 - o RFC QTF (0 to X days) recommended, but believe there's no supportive archive
 - o GEFS (0 to 15 days) recommended
 - o CFSV2 (0 to 270 days) optional; rarely better the climatology; RFCs should validate for their domain
 - o Climatology
 - MEFP raw climatology or CHPS raw climatology recommended (for operational runs)
 - MEFP resampled climatology not recommended

MODs

- □ Manual changes to ensemble traces and means not recommended□ MODs define modifiersGroup
 - Okay to use; others not used with ensembles (e.g. CN)

MODs used in ESP?

MODs may conflict with EnsPost – do some validation

Calibration - Parameter Estimation

- □ Calibration # of years of archive needed¹
 - Less than 5 years, is not recommended problematic for MEFP or EnsPost.
 - o At least 10 years is highly recommended
 - 25 years should provide a solid calibration
- ☐ Frequency of calibration consistency v. operational use
 - o Changes to CHPS configuration
 - o Recalibration of or changes to hydro. models
 - Changes to ratings or hydrology
 - o New or updated forcings reforecast, e.g. driven by a major updates to models
 - o Some changes to HEFS in release notes; we are trying to minimize these
 - o Anticipated frequency ~ 1-2 years; is this reasonable?

Hindcasting and Verification

- □ Recommend hindcasting/verification at RFCs in partnership with OHD
 - o Provide objective guidance for better implementation
 - o Validate HEFS as the source of public products, such as AHPS OHD/RFCs need to develop criteria and plans
 - o Practical tips already provided & in hindcasting guide

Archiving

- ☐ What to archive recommended at RFCs
 - o Latest 30 days of CFSV2 and GEFS grids (move to NWC?)
 - o RFC QPF (already archived?)
 - o MEFP temperature and precip ensembles
 - Streamflow ensembles based on MEFP with climatological forcing (if produced)
 - o Streamflow ensembles based on your operational ESP
 - o Streamflow ensembles without and with (if produced) EnsPost applied
- ☐ Format recommended (smallest output) for EVS
 - o .fi/.bin fastinfoset / binary

(Public) Products

- ■New product: 10-day streamflow forecast with uncertainty bounds (testing at ABRFC)
- □ Provide streamflow forecasts as data (time series) ? If so, to what forecast horizon(s)?
- **□Others?**
- □ Any new products should have a baseline GG template – agreed? -

o Yes

Training and Out-reach

- □ At your office, besides HEFS focal points, who (other RFC staff, WFOs, stakeholders (e.g. emergency managers) need training on:
 - o HEFS functionality and mechanics (using/implementing HEFS)?
 - o Hydro. ensembles and probabilities (understanding HEFS forecasts)?
- ☐ Assuming they need training, how / who does the training? RFCs, OHD, on-line training/documents?
 - o RFC Staff DOH and HEFS Focal Point?
 - o WFOs
 - o Stakeholders (emergency managers)
 - o Others

Training needs (beyond HEFS focal points)

Group	HEFS use/impl.	Trainer	Hydro. Ens/Prob	Trainer
Other RFC staff			Everyone	HEFS Focal point
WFOs			Yes	RFC/OHD?
Stakeholders				

Questions and comments?

