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Reliable and skillful precipitation ensemble forecasts are necessary to produce reliable and skilful hydro-
logic ensemble forecasts. It is well known that, in general, raw precipitation ensemble forecasts from the
numerical weather prediction (NWP) models are not very reliable and that, for short-range prediction,
human forecasters add significant skill to the NWP-generated single-valued quantitative precipitation
forecasts (QPF). In this paper, we describe and evaluate a statistical procedure for producing precipitation
ensemble forecasts from single-valued QPFs. The procedure is based on the bivariate probability distribu-
tion between the observed precipitation and the single-valued QPF. The distribution is modeled as a
mixed-type in which the relationship between the positive observed precipitation and positive forecast
precipitation is assumed to be bivariate meta-Gaussian. We also describe and comparatively evaluate a
generalized meta-Gaussian model in which the model parameter is optimized by minimizing the mean
Continuous Ranked Probability Score. The performance of these procedures is assessed through depen-
dent and cross validation using data for selected river basins in the service areas of the Arkansas-Red
Basin, California-Nevada and Middle-Atlantic River Forecast Centers of the National Weather Service.
The validation results show that, overall, the precipitation ensembles generated by the proposed proce-
dures are reliable and capture the skill in the conditioning single-valued forecasts very well.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Reliable and skillful ensemble forecasts of precipitation and
temperature are needed for reliable and skillful hydrologic ensem-
ble forecasts (Demargne et al., 2007, 2010; Seo et al., 2006). Today,
ensemble forecasts from numerical weather prediction (NWP)
models are widely available from many sources. For example, the
National Weather Service’s (NWS) National Centers for Environ-
mental Prediction (NCEP) issues short-, medium- and long-range
ensemble forecasts from a suite of regional and global models, such
as the Short-Range Ensemble Forecast (SREF) System, the Global
Ensemble Forecast System (GEFS) and the Climate Forecast System
(CFS). However, it is well known that, in general, the raw ensemble
forecasts from NWP models are biased in the mean and spread.
Also, even if they may not be biased at the model grid scale, they
may be biased at the catchment scale, depending on the size of
the basin. Correcting such biases, often referred to as post-
ll rights reserved.

East-West Hwy., 8th Floor,
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processing or statistical calibration, is an active area of research
(Eckel and Walters, 1998; Gneiting et al., 2005, 2007; Hamill and
Whitaker, 2006, Hamill et al., 2008). Bias correction for precipita-
tion ensemble forecasts, however, has proven very challenging
due to the large space–time variability of precipitation. It is
expected that significant additional efforts will be needed to
produce operational ensemble forecasts that are sufficiently
reliable for hydrological applications, particularly for large precip-
itation amounts.

In the single-valued forecast process, human forecasters play an
important role in improving the quality of hydrometeorological
forecasts. For example, in the NWS, there are at least three places
where human forecasters may add value to single-valued fore-
casts: the NCEP’s Hydrometeorological Prediction Center (HPC),
the Weather Forecast Offices (WFO) and the River Forecast Centers
(RFC). At short ranges, such forecaster-modified forecasts are often
considerably better than the raw NWP forecasts (Charba et al.,
2003). Given the above state of operational forecasting of hydro-
meteorological variables, there is a need for techniques that can
generate, from the forecaster-modified single-valued forecasts,
ensemble forecasts that are reliable at the river basin scale for
hydrologic applications.

http://dx.doi.org/10.1016/j.jhydrol.2011.01.013
mailto:limin.wu@noaa.gov
http://dx.doi.org/10.1016/j.jhydrol.2011.01.013
http://www.sciencedirect.com/science/journal/00221694
http://www.elsevier.com/locate/jhydrol
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Recently, Schaake et al. (2007) developed such a technique; it
generates ensemble forecasts of precipitation from single-valued
quantitative precipitation forecasts (QPF) based on the lead-
time-specific probability distribution of observed precipitation
conditional on the single-valued QPF (hereafter referred to as
QPF for brevity). The random numbers sampled from the condi-
tional probability distributions for all lead times are then ‘‘shuf-
fled’’ (Clark et al., 2004) to generate ensemble members that
possess the spatiotemporal structure in the historically-observed
precipitation in the ranked correlation sense. Referred to as the
Ensemble Pre-Processor (EPP) in NWS, this technique, which is de-
scribed in Schaake et al. (2007), has been used experimentally at a
Table 1
Differences among the methods.

Method 1 Method 2 Method 3

Mixed-type bivariate structure No Yes Yes
Generalized meta-Gaussian model No No Yes
Parameter optimization No No Yes

Table 2
Data archive for the study river basins.

Basin ID MAP QPF (Days 1 and 2)

HUNP1 1 Oct 1948–12 Jul 2008 1 August 2002–12 Jul 2008
TIFM7 1 Jan 1961–30 Jun 2008 1 Jul 2003–30 Jun 2008
NFDC1 1 Oct 1960–30 Sep 2004 1 Oct 2000–30 Sep 2004
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Fig. 1. (a) Scatter plots of 6-h MAP and QPF for Day 1 for HUNP1 (1 August 2002–12 July 2
2004). (b) Same as (a) but on base 10 log–log scales.
number of RFCs for several years, from which substantial experi-
ence has been gained, and areas of improvement have been identi-
fied. The primary purpose of this paper is to describe the improved
procedures for statistical generation of precipitation ensemble
forecasts from QPFs, and to present validation results from the per-
spective of operational hydrologic ensemble forecasting at the
RFCs. Statistical techniques usually require large amounts of data
for parameter estimation or calibration. The larger the calibration
dataset, the smaller the sampling uncertainty will be in the mod-
eled joint distribution of the single-valued forecast and verifying
observation, all other factors being equal. Hamill et al. (2008) re-
ports that a small training dataset was adequate for calibration
of short-lead temperature forecasts but that, for precipitation, cal-
ibration using a 20-year dataset of weekly reforecasts greatly im-
proved forecast skill when compared with calibration using a 30-
day dataset. The historical archive at the RFCs of the forecaster-
modified single-valued forecasts typically goes back only a few to
several years. Therefore, we are particularly interested in assessing
the data requirements for parameter estimation of the procedures
described in this paper. This assessment is conducted through
cross validation experiments. Dependent validation experiments
are also carried out to assess the goodness of the statistical models
used in the improved procedures under negligible sampling
uncertainty.

The new contributions made by this work comprise: (1) an im-
proved procedure based on a mixed-type bivariate meta-Gaussian
distribution model for statistical generation of precipitation
ensemble forecasts from QPF, and its evaluation; (2) a parameter
optimization procedure for a generalized meta-Gaussian
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Fig. 1 (continued)
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distribution model, and its evaluation; (3) new expressions for the
conditional distributions associated with the mixed-type bivariate
distribution of Herr and Krzysztofowicz (2005); and (4) an alterna-
tive formulation for the precipitation intermittency approximation
of Schaake et al. (2007) in the form of the meta-Gaussian model.

This paper is organized as follows. Section 2 describes the prob-
lem and the solution approaches. Section 3 describes the study riv-
er basins and the data used. Section 4 describes the estimation
procedure for the statistical parameters. Section 5 presents the
dependent and cross validation results. Section 6 summarizes the
conclusions and future research recommendations.
2. Description of the procedures

For a deterministic hydrologic forecast system, it is known that
the uncertainty in the QPF is a primary source of forecast error. In
this work, we develop statistical procedures to capture this uncer-
tainty. The resulting precipitation ensemble forecasts are used to
drive the hydrologic model to produce hydrologic ensemble fore-
casts. In single-valued hydrologic forecasting with lumped hydro-
logic models at the RFCs, 6-h QPFs are input to the hydrologic
models to produce streamflow forecasts at basin outlets. The input
QPF values are the Mean Areal Precipitation (MAP) amounts pre-
dicted to fall within the basin, which is referred to as the Forecast
Mean Areal Precipitation (FMAP). If the historical relationship be-
tween the forecast precipitation and the corresponding observed
precipitation is known, stationary in time, and representative of
the future, the uncertainty in the QPF may be modeled via the his-
torical relationship between the forecasts and the verifying obser-
vations under similar conditions. The idea then is to generate, for
each 6-h period of lead time, an ensemble precipitation forecast
from the conditional distribution of observed precipitation given
the 6-h QPF. Because of intermittency, we model precipitation as
a binary-continuous variable. The joint distribution of the forecast
and observed precipitation amounts is then of mixed-type (Herr
and Krzysztofowicz, 2005). The continuous–continuous part can
be modeled as bivariate meta-Gaussian (Kelly and Krzysztofowicz,
1997), which supplies a simple mathematical structure and analyt-
ical expressions for the above conditional distribution. Below, we
describe the development in Herr and Krzysztofowicz (2005) that
is necessary to obtain the expressions for the conditional
distribution.

Let X and Y denote the 6-h QPF and the corresponding observed
MAP, respectively. Define the joint probability distribution func-
tion of X and Y by F:

Fðx; yÞ � PðX 6 x;Y 6 yÞ: ð1Þ

The above can be decomposed as:

Fðx; yÞ ¼ p00 þ p10GXðxÞ þ p01GY ðyÞ þ p11Dðx; yÞ; ð2Þ

where

p00 � PðX ¼ 0;Y ¼ 0Þ; ð3Þ

p10 � PðX > 0;Y ¼ 0Þ; ð4Þ

p01 � PðX ¼ 0;Y > 0Þ; ð5Þ

p11 � PðX > 0;Y > 0Þ; ð6Þ
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Fig. 2. Same as Fig. 1 but quantile–quantile plots.
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GXðxÞ � PðX 6 xjX > 0;Y ¼ 0Þ; ð7Þ

GY ðyÞ � PðY 6 yjX ¼ 0;Y > 0Þ; ð8Þ

Dðx; yÞ � PðX 6 x;Y 6 yjX > 0;Y > 0Þ: ð9Þ

Note that the conditional marginal cumulative distribution
functions (CDF) of (X | X > 0, Y > 0) and (Y | X > 0, Y > 0) are continu-
ous and so is their joint CDF, D(x, y). We may then model D(x, y) as
bivariate meta-Gaussian as described in Appendix A.

To obtain expressions for the conditional CDF, P(Y 6 y | X = x),
we first define:

FY jXðyjxÞ � PðY 6 yjX ¼ xÞ: ð10Þ

We further define:

DXðxÞ � Dðx;1Þ ¼ PðX 6 xjX > 0;Y > 0Þ; ð11Þ

DY jXðyjxÞ � PðY 6 yjX ¼ x;X > 0;Y > 0Þ; ð12Þ

FXjX>0ðxÞ � PðX 6 xjX > 0Þ: ð13Þ

Then we have for Eq. (10) for x = 0:

FY jXðyjxÞ ¼ aþ ð1� aÞGYðyÞ; ð14Þ

where a = p00/(p00 + p01). If p00 + p01 = 0, then P(X = 0, Y P 0) = 0,
which means we cannot define conditional probability of Y given
X = 0 for this case. For x > 0, we have:

FY jXðyjxÞ ¼ cðxÞ þ ð1� cðxÞÞDYjXðyjxÞ; ð15Þ
where

cðxÞ ¼ p10gXðxÞ
p10gXðxÞ þ p11dXðxÞ

ð16Þ

In Eq. (16), gX(x) and dX(x) denote the probability density func-
tions (PDF) corresponding to GX(x) in Eq. (7) and DX(x) in Eq. (11),
respectively. If p10 = 0, Eq. (15) becomes FY|X(y|x) = DY|X(y|x). If
p10 = 0 and p11 = 0, F(x, y) degenerates into a univariate CDF with-
out arriving at Eq. (16). Note that FY|X(y|x) in Eqs. (14) and (15),
which correspond to Eqs. (10a) and (10b) of Herr and Krzysztofo-
wicz (2005), respectively, is a composite of a discrete and a contin-
uous distribution. Eqs. (14)–(16) constitute the mixed-type meta-
Gaussian model proposed in this work and are used to generate
the precipitation ensembles. Section 4 describes how the distribu-
tions and parameters in these equations are estimated.

Schaake et al. (2007) use an alternative procedure, which essen-
tially models each marginal CDF as a combination of two continu-
ous distributions, the first approximating the probability mass at
zero and the second describing the probability distribution of posi-
tive precipitation. For description of the alternative procedure in
the form of the meta-Gaussian model, the reader is referred to
Appendix C. This procedure does allow the normal quantile trans-
form (NQT, Kelly and Krzysztofowicz, 1997) of observed and fore-
cast precipitation. However, the correlation coefficient between
the two transformed variates now represents a weighted combina-
tion of the skill in the QPF not only for predicting the amount of
precipitation but also for predicting the occurrence of precipita-
tion, where the relative weight depends on the magnitude of the
probability of precipitation (PoP). As such, estimation of the above
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Fig. 3. Sample correlation coefficient of NQT-transformed 6-h MAP and Day-1 QPF for HUNP1, TIFM7, and NFDC1 upper and lower areas.
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correlation coefficient as well as its use in the ensemble generation
is tricky. In Schaake et al. (2007), this correlation coefficient is
specified by a weighted average of the Pearson product-moment
correlation coefficient of the untransformed variates (including
zeros) and that of the transformed variates that best fit p00, p10,

p01, and p11 in Eqs. (3)–(6).
The distribution D(x, y) of (X 6 x, Y 6 y | X > 0, Y > 0) in (9) is

modeled as bivariate meta-Gaussian. In modeling D(x, y), we trans-
form its marginal distributions associated with X and Y to standard
normal distributions Z and W, respectively, via normal quantile
transform. The joint distribution of Z and W is assumed bivariate
standard normal. Under this assumption, the meta-Gaussian model
of D(x, y) will be identical to D(x, y) itself (Appendix A). In hydro-
logic applications, this assumption may not be satisfied. If this
assumption does not hold, then the conditional mean and variance
of the modeled distribution may not match those of the original
distribution D(x, y) well, resulting in a lack of reliability in the
ensembles generated from the model. Below, we develop a gener-
alization of the meta-Gaussian model in an attempt to address this
problem. This generalized model provides a parameter that can be
used to adjust the model’s dependence structure so that the
ensembles generated are optimal under the criterion of choice.
Such an approach has been used successfully by Seo et al. (2006).

Consider the following linear model:

U ¼ bZ þHb; ð17Þ

where b > 0, Hb � N(0, Var[W � bZ]), W and Z are standard normal
variates with correlation coefficient q, and Hb is assumed indepen-
dent of Z. We have Var[Hb] = 1 + b2 � 2bq, U � N(0, Var[Hb] + b2)
and c = b/(Var[U])1/2, where c denotes the correlation coefficient
between Z and U. The joint distribution of (Z, U) is bivariate normal.
When b = q, (Z, U) is bivariate standard normal. The conditional
mean of U given Z is E[U | Z = z] = bz. The conditional variance of U
given Z is Var[U | Z = z] = 1 + b2 � 2bq and we have Var[-
U | Z = z; b] P Var[U | Z = z; b = q]. In this work, q is estimated as
the sample correlation coefficient between the NQT-transformed
variates Z and W. Appendix B provides an expression for the condi-
tional distribution that can be used to produce ensembles. Section 4
describes how b is estimated.

The three procedures described in this section are all related to
the meta-Gaussian model, yet they differ in significant ways. The
procedure described in Schaake et al. (2007), referred to as Method
1 hereafter, can be understood as application of meta-Gaussian
model to precipitation amounts with implicit treatment of precip-
itation intermittency. The mixed-type bivariate structure, on the
other hand, treats precipitation intermittency explicitly. The con-
tinuous–continuous component of this structure can be modeled
as the meta-Gaussian distribution (Method 2) or as an extension
of the meta-Gaussian distribution with an adjustable parameter
(Method 3). The differences among these three procedures are con-
trasted in Table 1.

Any one of the three procedures described above may be used
to generate ensemble traces of FMAP for the basin of interest. To
generate ensemble traces over the entire forecast horizon, the pro-
cedure is repeated for each time step within the forecast horizon
using the parameters specific for the time step. For any given fore-
cast time step, the ensemble generation process consists of two
steps. First, a forecast probability distribution as the conditional
distribution given the single-valued forecast is estimated. Next,
the Schaake Shuffle (Clark et al., 2004) is applied. The Schaake
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Shuffle can be understood as a procedure that connects the ensem-
ble members at consecutive time steps within the forecast horizon
such that the ensemble traces exhibit, in the rank correlation sense,
the historically-observed temporal variability. Here, we give a
description of the procedure. For a given forecast time step, we first
construct an ensemble of MAP values collected across the historical
years available in the data archive and ordered by the historical
years. Then, a sample of the size of that of the MAP ensemble is
drawn from the forecast distribution. The sample points may come
out in any order. The Schaake Shuffle arranges the sample points in
such a way that the nth largest sample point in the forecast ensem-
ble has the same position as the nth largest member of the MAP
ensemble so that the forecast ensemble acquires the prescribed or-
der for its members. The Schaake Shuffle, therefore in this respect,
is an ordering process. The Schaake Shuffle can also be understood
as an adjusting process with respect to the MAP ensemble. The ra-
tio of each member of the MAP ensemble to the same-rank mem-
ber of the forecast sample can be calculated. The forecast ensemble
can be understood as obtained from the MAP ensemble through
the multiplicative operation of mapping the corresponding mem-
bers using the ratio (special treatment for the members of 0-value
is needed). In short, the Schaake Shuffle amounts to adjusting the
observed historical ensemble traces so that, for each time step in
the forecast horizon, the empirical CDF of the adjusted historical
ensemble members matches the conditional CDF estimated from
one of the three procedures. The end result is a set of forecast
ensemble traces with similar temporal variability as the historical
MAP ensemble traces. Similarly, the Schaake Shuffle also applies to
multiple basins provided the same historical years are used to
construct the ensembles across the basins. The Schaake Shuffle,
therefore, replicates in the forecast ensemble traces the spatiotem-
poral rank correlation of the observed historical ensemble traces.
3. Study basins and data used

The procedures described above are evaluated using real-world
data for selected river basins in the service areas of the Arkansas-
Red Basin (AB-), California-Nevada (CN-) and Middle Atlantic
(MA-) River Forecast Centers (RFC). The QPFs are produced by
the RFCs based on the guidance products from NCEP HPC. The 6-
h observed MAP values come from rain gauge-only or multisensor
(Seo and Breidenbach, 2002) analysis.

The following three basins are used in the study, the Hunting-
don basin (basin ID: HUNP1; drainage area: 2113 km2) of the Juni-
ata River in Pennsylvania, the Elk River basin at Tiff City (basin ID:
TIFM7; drainage area: 2258 km2) in Arkansas and Missouri, and the
North Fork basin of the American River (basin ID: NFDC1; drainage
area: 890 km2) in California. NFDC1 consists of an upper- and a
lower-elevation zone. A historical archive of 6-h MAP and the cor-
responding 6-h QPF for a forecast horizon of 2 days (forecast period
0–24 h is referred to as Day 1 and 24–48 h Day 2 hereafter) are
available for the three basins (see Table 2). Note that the observed
data span a much longer period than the QPF data. This is neces-
sary for the Schaake Shuffle (Clark et al., 2004) used at the end of
the ensemble generation process (see Section 5.1).

Figs. 1 and 2 show the scatter and quantile–quantile plots,
respectively, of Day-1 6-h QPF for all 6-h sub-periods and the
corresponding MAP for the study basins. Note in Fig. 1a that the
QPF for NFDC1 shows the largest skill owing to the larger predict-
ability of orographic precipitation whereas the QPF for TIFM7
shows the smallest due to significantly smaller predictability of
convective precipitation. The skill contrasts clearly in Fig. 1b,
where base 10 log–log scales are used. Note in Fig. 2 that the QPFs
for NFDC1 and HUNP1 are remarkably unbiased, a reflection of the
added skill provided by the human forecasters.
4. Parameter estimation

To estimate the parameters for the mixed-type meta-Gaussian
model, historical data are needed, comprising the QPF and corre-
sponding MAP for each of the 6-h time steps. Three aspects were
considered in parameter estimation: sub-daily-scale variations in
QPF skill and diurnal variations in variability of precipitation, sea-
sonal variations in QPF skill and variability of precipitation, and the
length of the historical records. To account for seasonal variations,
a moving window was used to subset, for a given 6-h time step, the
QPF and MAP data from all historical years that fall within the time
window centered at each Julian day of the year. Often, seasonal
changes in the precipitation regime occur over a relatively short
period of time. Due to limited sample size, however, it was not pos-
sible to select a sufficiently small window. In this work, we used a
compromise choice of 91 days for the window size. The skill in the
6-h QPF varies from one 6-h period to another. Also, there often ex-
ist strong diurnal variations in variability and predictability of pre-
cipitation and so it is desirable to obtain the statistics at a 6-h scale.
In this work, however, the sample size was too small to estimate
the parameters for each 6-h time step. Consequently, for all basins
we pooled all 6-h data within each 24-h period, thereby ignoring
sub-daily-scale variations in QPF skill and diurnal variations in pre-
cipitation variability.

The marginal distributions associated with d(x, y) in Eq. (9),
namely, the distribution of (X 6 x | X > 0, Y > 0) and that of
(Y 6 y | X > 0, Y > 0), may be estimated using parametric or non-
parametric techniques. We found that the 2-parameter Weibull
distribution fits the data well for the AB- and MARFC basins. For
the CNRFC basin NFDC1, on the other hand, lack of fit was evident.
Other parametric distributions were also tried, including the 2-
parameter Gamma, 3-parameter Pearson Type III, and 4-parameter
kappa distributions using the L-moment method (Hosking, 2005).
None of these distributions, however, provided a good fit for the
MAP data of NFDC1. We then tried nonparametric distributions
using Gaussian kernel smoothing with plug-in optimal bandwidth
selection. Azzalini (1981) and Reiss (1981) demonstrate that non-
parametric distribution estimation with kernel smoothing can out-
perform the classic empirical distribution estimation with
asymptotic efficiency gains. Choosing a bandwidth parameter is re-
quired in kernel smoothing. In this work, we use the plug-in band-
width estimation technique proposed by Hansen (2004), which
minimizes an estimate of the asymptotic mean integrated squared
error. This nonparametric technique worked well for the NFDC1
MAP data as well as for the AB- and MARFC basins. A less than sat-
isfactory aspect of the nonparametric technique, however, is that
the estimated distribution may exhibit a step function-like behav-
ior in the data-sparse upper tail. The Gaussian kernel smoothing
technique was used to produce the validation results presented
in Section 5.

The density functions in Eq. (16) were estimated by parametric
distribution modeling. Estimating gX(x) (see Eq. (7)) in Eq.(16),
however, is challenging for two reasons: this density function
may be highly skewed and the number of data points for
(X | X > 0, Y = 0) may be very small. We tried various distribution
models available in Hosking (2005). We found that the 3-parame-
ter Pearson type III distribution works best in most cases. In some
cases, the 4-parameter kappa distribution works best. Nonpara-
metric distributions with the Gaussian kernel were also tried, but
found to have excessive fluctuations. We also tried an empirical
method (Cong et al., 2006) for estimating c(x) in Eq. (16), but found
the results to be sensitive to the sampling procedure of this meth-
od. Appendix D provides three alternative expressions for c(x) in
Eq. (16), which may allow for larger samples for estimating c(x) un-
der certain situations. In producing the validation results pre-
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sented in Section 5, we used the 3-parameter Pearson type III dis-
tribution for the density functions in Eq. (16).

Fig. 3 shows the sample correlation coefficient between the 6-h
QPF of Day-1 and the corresponding MAP in the bivariate trans-
formed space for HUNP1, TIFM7, and both the upper and lower
zones of NFDC1. The figure shows the seasonality and regional
variations in the predictive skill in the QPF for these basins and,
for NFDC1, variations in elevation as well. The time window used
for pooling the observed and forecast pairs of precipitation data
was 91 days. With such a large window size, the correlation coef-
ficient over seasonal transition periods may be overly smoothed
as the seasonal transition in precipitation regime often takes place
in a very short period of time. It is important to point out that,
because the correlation coefficient used in the procedure is condi-
tioned only on the time of the year, the procedure may incorrectly
prescribe the correlation coefficient for ‘‘out-of-season’’ storms,
possibly resulting in over- or under-spread in the conditional
CDF. Such storm type- or regime-dependent modeling of the statis-
tics is a future endeavor.

For the generalized linear model in Eq. (17), the parameter b
needs to be estimated. In this work, we experimented with two
objective functions in estimating an optimal b value. The primary
one is the mean Continuous Ranked Probability Score (CRPS) (Hers-
bach, 2000), which is one of the most widely used performance
measures in ensemble forecast verification. The mean CRPS mea-
sures the overall quality of probabilistic forecasts as the expected
squared error of the forecast probabilities for all possible events
(Jolliffe and Stephenson, 2003). As noted in the introduction, one
of the overriding criteria for the proposed procedures is that the
ensembles fully capture the skill in the single-valued QPF. In this
regard, the mean CRPS is a particularly attractive criterion; it is
equivalent to the mean absolute error for single-valued forecasts
and hence allows quantitative comparison between ensemble
and single-valued forecasts. The other objective function we used
is the Root Mean Square Error (RMSE) of the observed and the cor-
responding ensemble 60th percentile. The RMSE may be used
when large errors of the observed and forecast values are particu-
larly undesirable.

5. Validation

In this section, we present the results from the validation
experiments, which included estimating the model parameters,
producing hindcasts and carrying out verification. To produce
hindcasts, the QPFs from the historical record were used. The hind-
casting experiments were performed with the following settings.
The size of the moving window for the QPF and MAP data in
parameter estimation was 91 days (see Section 4). Because of the
limited amount of archived data for the study basins (see Table 2),
sub-daily-scale and diurnal variations in the QPF and MAP were ig-
nored. The statistical parameters were hence estimated from the
data pooled over all four 6-h sub-periods within each 24-h period.
The marginal distributions were estimated for all basins using the
nonparametric technique with Gaussian kernel smoothing and
plug-in optimal bandwidth selection (see Section 4). The density
functions in Eq. (16) were modeled by the 3-parameter Pearson
type III distribution as indicated in Section 4.

The validation experiments were designed to answer the fol-
lowing questions: (Q1) How good is the meta-Gaussian model for
generating precipitation ensembles for different regions, seasons,
and amounts? (Q2) Is the proposed procedure for the mixed-type
meta-Gaussian model capable of generating reliable and skillful
precipitation ensembles under minimum sampling uncertainty
(i.e. in dependent validation) and in the presence of sampling
uncertainty (i.e. in independent validation)? (Q3) How much data
does one need for parameter estimation to produce reliable precip-
itation ensembles that capture the skill in the single-valued fore-
cast? (Q4) How much do regional variations in the QPF skill
affect the quality of the ensembles generated by the proposed pro-
cedure? (Q5) How much does the generalized model with param-
eter optimization improve the quality of precipitation ensembles?
Below, Sections 5.1–5.3 address Q1, Q2 through Q4, and Q5,
respectively.

5.1. Validation of the meta-Gaussian model

If the bivariate normality condition holds, D(x, y) in Eq. (2) is
equal to its meta-Gaussian distribution. Herr and Krzysztofowicz
(2005) studied the bivariate normality condition for 24-h precipi-
tation amounts at a number of rain gauge locations in two river ba-
sins in the Appalachian Mountains. Their findings are mixed in that
in most of the cases the normality hypothesis was not rejected for
one basin but rejected for the other basin. Thus, a natural question
arises as to whether one can still obtain satisfactory results from
the meta-Gaussian model when the bivariate normality is not
met. This question may be answered by evaluating the results of
the meta-Gaussian modeling. To that end, rather than testing
bivariate normality, here we assess the goodness of fit of the
meta-Gaussian model of D(x, y) against the empirical joint distri-
butions of (X 6 x | X > 0, Y > 0) and (Y 6 y | X > 0, Y > 0). A good fit
between the modeled and the empirical joint distributions is a nec-
essary condition for reliable ensembles. Two-dimensional Kol-
mogorov–Smirnov tests (Peacock, 1983; Fasano and Franceschini,
1987) are available for evaluating goodness of fit between two
bivariate distributions. Here, as a simpler alternative, we evaluate
goodness of fit between the modeled and the empirical distribu-
tions by comparing their conditional distributions given QPF. This
approach allows us to see directly how the collective distributional
quality of the ensembles may vary as the conditioning QPF varies.

To evaluate the goodness of fit, we carried out the following
hindcasting experiment. The data were pooled into four seasons:
winter (DJF), spring (MAM), summer (JJA), and fall (SON). A sample
was drawn from the modeled distribution for each season in
the hindcast period for comparison with the empirical joint
distribution for that season. Due to the limited sample size, we par-
titioned the range of QPF into two sub-ranges separated at the
median to obtain conditional distributions. Fig. 4 shows the results
for HUNP1 for Day 1 obtained from dependent validation (see Sec-
tion 5.2), which are based on 6 years of QPF and MAP data (see Ta-
ble 2). The ensemble size, which matches the number of historical
years in the long-term MAP record used in the Schaake Shuffle, is
51 members. The figure may be summarized as follows. For winter,
the empirical conditional distribution matches that of the modeled
distribution very well for QPF greater than or equal to the median,
but lack of fit is evident for QPF less than the median. For summer,
the fit is good for both cases. The results for spring and fall (not
shown) are generally similar to those for winter but inferior for
QPF greater than or equal to the median. The results for TIFM7
and NFDC1 for Day 1 are similar to those for HUNP1 and are not
shown. It is interesting to note that the fit appears to be good when
QPF is greater than or equal to the median for winter for all three
basins whereas no clear patterns are apparent for the other sea-
sons. Reduced nonstationarity in skill during winter, as suggested
by the relatively uniform correlation coefficient (see Fig. 3), may
be a contributing factor to the above observation.

5.2. Validation of ensembles from the mixed-type meta-Gaussian
Model (Method 2)

To assess the quality of precipitation ensemble hindcasts gener-
ated by the proposed procedure, we examined reliability diagrams,
relative operating characteristic curves (ROC) and mean CRPS.
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The latter two are particularly useful as they allow quantitative
quality assessment of ensemble forecasts using the single-valued
forecasts. The ROC curve connects, at varying levels of predicted
probability, the paired false alarm (FAR) and hit rates (HR) associ-
ated with the ensemble forecasts, which may be checked against
those of the single-valued forecasts. The mean CRPS of ensemble
forecasts may be checked against the mean absolute error of sin-
gle-valued forecasts, as the mean CRPS reduces to the mean abso-
lute error for single-valued forecasts.

We present the results from dependent validation (DV) and
leave-one-year-out cross validation (CV). In DV, the same data
set used in parameter estimation was also used in hindcasting.
Hence, DV is a check on the goodness of the fit of the model to
the observed conditions without regard to that of the future condi-
tions. Both DV and CV were carried out using the entire QPF data
and the corresponding MAP data described in Section 4.

Figs. 5–8 show the reliability diagrams for ensemble hindcasts
of 6-h precipitation for HUNP1 and TIFM7. In each figure, there
are four reliability diagrams, corresponding to four different
thresholds of 0, 2.54, 3.18 and 6.35 mm (0, 1/10, 1/8 and 1/4 in).
We could not use larger thresholds because of inadequate sample
size. As such, we are not able to make a strong statement about
the reliability of 6-h precipitation ensembles generated by the pro-
posed technique for thresholds exceeding 6.35 mm. In these fig-
ures, the DV results are presented together with the CV results
for ease of comparison. Also shown are the 95% confidence inter-
vals estimated via the percentile method of bootstrapping (Bröcker
and Smith, 2007; Chernick, 2008). Note that the confidence inter-
vals at the lowest forecast probabilities may be too small to be
visually discernible. In Fig. 6, for the 6.35 mm threshold, two points
appear without accompanying confidence intervals due to lack of
sample size (and hence no sampling variability in bootstrapping).
The reliability diagram for the threshold of 0 mm indicates how
reliable the ensembles are at predicting the probability of precipi-
tation (PoP). These figures indicate reliable ensemble prediction of
PoP for Days 1 and 2 in both DV and CV. For other thresholds, the
precipitation ensembles are generally reliable, within the sampling
uncertainty bounds. Note that the difference between the DV and
CV results is relatively small. It suggests that only several years’
worth of data may be required for parameter estimation to realize
in real-time applications the level of performance seen in DV.

Figs. 9–12 show the ROC diagrams for ensemble hindcasts for
HUNP1 and TIFM7. In these figures, we define the event as 6-h pre-
cipitation exceeding the threshold. In each figure, there are four
ROC diagrams corresponding to four different thresholds of 0,
2.54, 6.35 and 12.7 mm. The DV and CV results are shown together
for ease of comparison. The area under the ROC curve (AUC) is also
given as obtained by the perfcurve function in the MATLAB Statis-
tics Toolbox (MATLAB Statistics Toolbox™ 7 User’s Guide). For
the positive thresholds, the ensembles associated with zero QPF
and zero MAP were excluded from the calculation so that we
may isolate the discriminatory skill in non-dry conditions. The
HUNP1 ensembles show better discrimination than the TIFM7, in
agreement with the relative magnitude in correlation for the two
basins seen in Fig. 3. Note that the DV and CV results are very sim-
ilar for ROC as well, which suggests that a historical archive of
about 6 years may be enough to realize in the prediction mode
the level of discrimination attainable in DV.
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Fig. 5. Reliability diagrams for ensemble hindcasts from Method 2 of 6-h precipitation for all four 6-h periods within Day 1 for HUNP1. The vertical bars denote 95%
confidence interval. Note that confidence intervals at the lowest forecast probability are indiscernible.

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

Forecast probabilites

O
bs

er
ve

d 
fre

qu
ec

ie
s

Threshold: 0 mm

DV
CV

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

Forecast probabilites

O
bs

er
ve

d 
fre

qu
ec

ie
s

Threshold: 2.54 mm

DV
CV

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

Forecast probabilites

O
bs

er
ve

d 
fre

qu
ec

ie
s

Threshold: 3.18 mm

DV
CV

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

Forecast probabilites

O
bs

er
ve

d 
fre

qu
ec

ie
s

Threshold: 6.35 mm

DV
CV

Fig. 6. Same as Fig. 5 but for Day 2. For the threshold of 6.35 mm, two points appear without accompanying confidence intervals due to no sampling variability in
bootstrapping.
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Fig. 7. Same as Fig. 5 but for TIFM7.
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Fig. 8. Same as Fig. 7 but for Day 2.
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Fig. 9. ROC diagrams for ensemble hindcasts from Method 2 and single-valued QPFs of 6-h precipitation for all four 6-h periods in Day 1 for dependent validation (DV), cross
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Fig. 10. Same as Fig. 9 but for Day 2.
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Fig. 11. Same as Fig. 9 but for TIFM7.
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Fig. 12. Same as Fig. 11 but for Day 2.
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Figs. 9–12 also show the HR and FAR of the single-value QPF
used to condition the modeled bivariate distribution. By comparing
the HR and FAR of the single-valued forecast with the ROC curves
of the ensemble forecast, we may assess how well the ensemble
forecast may capture the discriminatory skill in the QPF. A ROC
curve that lies on or above and to the left of the (HR, FAR) of the
single-valued QPF is an indication that the ensemble forecast has
approximately the same level of discrimination as the single-val-
ued forecast for that particular definition of the event. These fig-
ures show that the proposed procedure is generally successful in
capturing the discriminatory skill in the conditioning QPF for the
positive event thresholds. For the no-precipitation threshold, how-
ever, the ensemble forecasts have smaller discriminatory skill than
the single-valued forecasts. It suggests that modeling of precipita-
tion intermittency may need further improvement. For TIFM7 for
Day 2, the ensembles underperform the QPFs noticeably. It reflects
the difficulty of generating ensembles using the meta-Gaussian
model when the single-valued forecast has very limited skill.

5.3. Comparison of the methods

In this subsection, we compare Schaake et al. (2007) (Method
1), the mixed-type meta-Gaussian model (Method 2), and the
mixed-type bivariate distribution with the generalized linear mod-
el (Method 3) described in Section 2. These methods differ mainly
in two aspects: precipitation intermittency modeling and depen-
dence structure modeling. Differences in the first aspect can be de-
scribed as follows. Method 1 accounts for precipitation
intermittency implicitly by modeling each of the marginal distri-
butions as a convex combination of continuous distributions,
resulting in continuous conditional distributions for sampling
ensemble members. The positive ensemble members less than a
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Fig. 14. Same as Fig.
threshold value are set to zero. Both Methods 2 and 3 model pre-
cipitation intermittency explicitly, giving discrete–continuous con-
ditional distributions for sampling ensemble members. Differences
in the second aspect are the following. For Method 1, the depen-
dence structure of the transformed space is still bivariate standard
normal, but only partially specified. Thus, the correlation coeffi-
cient of the dependence structure is estimated by a weighted aver-
age of the Pearson product-moment correlation coefficient of the
untransformed variates (including zeros) and that of the trans-
formed variates that best fit p00, p10, p01, and p11 in Eqs. (3)–(6).
Method 2 simply uses Pearson’s correlation coefficient for the
dependence structure of the continuous–continuous part of the
bivariate distribution. Method 3 uses an extended linear model
for the transformed space, providing a parameter for adjusting
the dependence structure to yield optimal ensembles under the
criterion of choice.

We use CNRFC’s NFDC1 in the comparison. The time period
covered is the wet season of October through May in the entire
period of record (see Table 2). The comparison is made using
the mean CRPS, the reliability diagrams, and the ROC curves.
These results are based on the same data set. As such, while there
exist in some cases significant sampling uncertainties, as shown
by the relatively large confidence intervals, one may still draw
firm conclusions from the mean CRPS on the relative performance
among the three methods, at least for those events captured in the
data set. Note that the period of record is several years long, and
includes a reasonably diverse set of events. Figs. 13 and 14 show
the mean CRPS for the three methods for 6-h precipitation
ensemble forecasts for Days 1 and 2, respectively. There are three
plots in each figure, corresponding to the mean CRPS conditional
on MAP greater than or equal to 0, 6.35 and 12.7 mm. Note the
large reduction in the mean CRPS by Methods 2 and 3 over Meth-
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od 1. Method 3 moderately improves over Method 2 for the con-
ditioning thresholds of MAP greater than or equal 6.35 and
12.7 mm, with respective reductions of 4.1% and 10% for Day 1,
and 3.8% and 7.1% for Day 2. The results of Method 3 shown in
Figs. 13 and 14 were obtained using the mean CRPS as the objec-
0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Forecast Probabilites

O
bs

er
ve

d 
Fr

eq
ue

ci
es

Threshold: 6.35 mm

DV
CV

Fig. 15. Left: Reliability diagrams for ensemble hindcasts from Method 3 in dependent va
all four 6-h periods in Day 1. The results are for NFDC1 from October through May. The
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QPF (SVF). The results are for NFDC1 from October through May.
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Fig. 16. Reliability diagrams for ensemble hindcasts in DV of 6-h precipitation for all fo
vertical bars denote the 95% confidence intervals.
tive function and as such provide performance bounds with re-
spect to the mean CRPS for the methods examined in this work.
As noted earlier, the mean CRPS reduces to the mean absolute er-
ror (MAE) for single-valued forecasts, which allows a comparative
check on the overall quality of the ensemble forecasts against that
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vertical bars denote the 95% confidence intervals. Right: ROC curves for ensemble
1. Also shown are the false alarm rate and hit rate of the conditioning single-valued

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

Forecast Probabilites

O
bs

er
ve

d 
Fr

eq
ue

ci
es

Threshold: 2.54 mm

Method 1
Method 2
Method 3

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

Forecast Probabilites

O
bs

er
ve

d 
Fr

eq
ue

ci
es

Threshold: 6.35 mm

Method 1
Method 2
Method 3

ur 6-h periods in Day 1. The results are for NFDC1 from October through May. The



L. Wu et al. / Journal of Hydrology 399 (2011) 281–298 295
of the single-valued forecasts. Some caution is necessary in such
an assessment, however, in that ensemble forecasts have an
inherent advantage over single-valued forecasts of similar skill
owing to the smoothing effects. Accordingly, we would like to
see the mean CRPS of the ensemble forecasts being clearly smaller
than the MAE of the single-valued forecasts. Note in Figs. 13 and
14 that the above is indeed achieved by Methods 2 and 3. Fig. 15
shows the reliability and ROC diagrams of hindcast ensembles
from Method 3 in DV and CV for the selected threshold and event
definition. For the results given in Fig. 15, we used RMSE of the
observed and the corresponding ensemble 60th percentile as the
objective function (all other results from Method 3 presented in
this subsection were produced with the mean CRPS as the objec-
tive function). Figs. 13–15 show that, for both Methods 2 and 3,
the difference in performance between DV and CV is rather small,
an indication that several years’ worth of data may be enough for
parameter estimation (see also Section 5.2). The results for Meth-
od 1 are similar and are not shown.

Figs. 16 and 17 show the reliability diagrams for the three
methods. They are based on DV. It is seen that the ensembles from
Methods 2 and 3 are considerably more reliable than those from
Method 1. The reliability results of Method 1 indicate under-fore-
casting, which may be attributed to poor estimation of the correla-
tion coefficient between the transformed variates and lack of fit of
the parametric distribution model, which is Weibull, to the mar-
ginal probability distributions in the NQT. The reliability results
of Method 2 and Method 3 are similar. Note that the corresponding
DV results of Method 3 for threshold 6.35 mm shown in Figs. 15
and 16 are slightly different due to different objective functions
used in the optimization, as indicated earlier in the discussion on
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Fig. 17. Same as Fig.
Fig. 15. The ROC results are similar among all three methods and
are not shown. The above results indicate that, as expected, the
reduction in the mean CRPS by Methods 2 and 3 over Method 1
come mostly from improved reliability.

6. Conclusions and future research recommendations

Two statistical procedures (Methods 2 and 3 described in Sec-
tion 2) for generating precipitation ensemble forecasts from sin-
gle-valued quantitative precipitation forecasts (QPF) were
described and evaluated using observed Mean Areal Precipitation
(MAP) and QPF data for three basins in the service areas of the
Arkansas-Red Basin (AB-), California-Nevada (CN-), and Middle
Atlantic (MA-) River Forecast Centers (RFC) of the National Weath-
er Service (NWS). Both procedures are based on modeling the rela-
tionship between the MAP and QPF by a mixed-type bivariate
distribution, in which the relationship between the positive MAP
and positive QPF is modeled as meta-Gaussian and generalized
meta-Gaussian.

The main conclusions are as follows:

� The goodness of the meta-Gaussian model, as assessed by com-
paring the modeled cumulative distribution functions (CDF)
with the empirical, varies with the time of the year and the
magnitude of the conditioning single-valued QPF. For the study
basins and for Method 2, the goodness of fit is the best for lar-
ger-than-median QPFs in the wet season, for which the single-
valued QPF has the largest skill.
� The validation results show that, overall, the precipitation

ensembles generated by the proposed procedures (Methods 2
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and 3) are reliable. The proposed procedures are generally suc-
cessful in capturing the discriminatory skill in the single-valued
QPF when precipitation is predicted, but less so in capturing the
skill in discriminating precipitation vs. no precipitation and
when the single-valued forecast has very limited skill (i.e. the
Day-2 forecast in the southern plains). Additional work is neces-
sary to address these.
� The similarity of the dependent and cross validation results sug-

gests that a dataset of several years in length is sufficient to esti-
mate the model parameters with acceptable sampling
uncertainty. This is an extremely important consideration given
the reality that the period of record for single-valued QPFs is
rather short at most RFCs.
� Comparative evaluation indicates that the proposed procedures

(Methods 2 and 3) provide considerable improvement over the
initial version (Method 1). Large reductions in the mean CRPS
for Methods 2 and 3 over Method 1 are achieved (Figs. 13 and
14); in particular, the reductions for Method 3 over Method 1
for Day 1 are 3.4%, 22%, and 30%, respectively, for the three con-
ditioning thresholds of MAP greater than or equal to 0, 6.35 and
12.7 mm. The evaluation also indicates that the improvement
comes largely from improved reliability.
� In hydrologic ensemble forecasting, we want to provide fore-

casts for as long a prediction horizon as possible. The forecasts
of the frozen GFS (Hamill et al., 2008) have lead-times up to
14 days, much longer than the RFC/HPC issued single-valued
forecasts. The ensemble mean of the frozen GFS reforecast
may be used with the procedures described in this work to pro-
duce forcing ensembles for hydrologic models. In this work,
assessment of reliability was limited to small to medium
amounts of precipitation due to the limited period of record
for QPF. With data archive of more than 20 years available for
the frozen GFS reforecast, we may be able to do the assessment
for larger amounts for ensembles produced from the ensemble
mean of the frozen GFS. We plan to use the GFS reforecast data-
set (Hamill et al., 2008) to evaluate the quality of ensembles for
larger amounts.
� To minimize the impact of temporal nonstationarity in MAP,

QPF, and their correlation in model parameter estimation, bet-
ter methods for temporally pooling data need to be developed.
Wavelet analysis can potentially be used to characterize the
temporal nonstationarity. The standardization and de-stan-
dardization procedures described in Krzysztofowicz and Evans
(2008) might be used to treat nonstationarity in the first two
moments of the data.
� Several methods have been developed in modeling precipitation

amounts and spatial correlation of precipitation fields (Bardossy
and Plate, 1992; Berrocal et al., 2008; Makhnin and McAllister,
2009). Bardossy and Plate (1992) used a power-transformed
normally distributed variate truncated at zero to describe both
intermittency and positive precipitation. Berrocal et al. (2008)
used a two-stage approach, in which precipitation occurrence
is considered first, positive precipitation accumulation is then
modeled conditionally on precipitation occurrence using a
Gamma distribution. These methods offer diverse approaches
to precipitation field modeling. It would be very interesting to
see how well they may perform in tackling the problem consid-
ered in this work.
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Appendix A. The bivariate meta-Gaussian distribution model

Consider the joint cumulative distribution function (CDF) of two
continuous variates X and Y:

Fðx; yÞ � PðX 6 x;Y 6 yÞ: ðA1Þ

Denote the CDF of X by FX(x) and that of Y by FY(y). Assume that FX(x)
and FY(y) are strictly increasing. Let Q denote the standard normal
distribution function and Q�1 denote its inverse. Applying the nor-
mal quantile transform (NQT) to X and Y, respectively, we obtain
two standard normal variates Z and W:

Z ¼ Q�1ðFXðXÞÞ; ðA2aÞ

W ¼ Q�1ðFY ðYÞÞ: ðA2bÞ

Then P(X 6 x, Y 6 y) = P(Z 6 z, W 6 w), where z ¼ Q�1 (FX(x)) and
w ¼ Q�1 (FY(y)). The joint distribution of Z and W is not necessarily
bivariate standard normal. Let B denote the bivariate standard nor-
mal distribution function. Define:

Hðx; y;qÞ � BðQ�1ðFXðxÞÞ;Q�1ðFYðyÞÞ;qÞ; ðA3Þ

where q denotes the Pearson product-moment correlation coeffi-
cient between Z and W. If (Z, W) is standard normal, that is:

PðZ 6 z;W 6 wÞ ¼ Bðz;w; qÞ; ðA4Þ

then F(x, y) = H(x, y; q) and H(x, y; q) is called bivariate meta-Gauss-
ian distribution of X and Y (Kelly and Krzysztofowicz, 1997). If
(Z, W) is not standard normal, what one can hope is that F(x, y) is
well approximated by H(x, y; q):

Fðx; yÞ � Hðx; y;qÞ: ðA5Þ

For the meta-Gaussian distribution of X and Y, the conditional dis-
tribution of Y given X = x is given by (Kelly and Krzysztofowicz,
1997):

HY jXðyjxÞ ¼ Q
Q�1ðFYðyÞÞ � qQ�1ðFXðxÞÞ

ð1� q2Þ1=2

 !
: ðA6Þ

For any p such that 0 < p < 1, the p-probability conditional quantile
of Y given X = x is a value yp|x of Y such that p = HY|X(yp|x|x). From
(A6), we have for yp|x:

Ypjx ¼ F�1
Y ðQðqQ�1ðFXðxÞÞ þ ð1� q2Þ1=2Q�1ðpÞÞÞ: ðA7Þ
Appendix B. Extension of the bivariate meta-Gaussian model

As in Appendix A, let X and Y be continuous variates with
strictly increasing CDF. Let Z and U be the variates defined in Eq.
(17) in Section 2. The variates X and Z are related as in Eq. (A2a).
Let eQ denote the CDF of U and eQ �1 the inverse of eQ . A one-to-
one correspondence between Y and U is offered by eQ ðuÞ ¼ FYðyÞ.
Denote the joint distribution function of Z and U by eBðz;u; cÞ. The
joint distribution eBðz;u; cÞ is bivariate normal and the conditional
distribution of U given Z = z is N(bz, 1 + b2 � 2bq), or expressed in
the standard normal distribution function Q as:
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PðU 6 ujZ ¼ zÞ ¼ Qððu� bzÞ=ð1þ b2 � 2bqÞ1=2Þ: ðB1Þ

Writing eBðz;u; cÞ as a function of x and y and denoting it as eHðx; yÞ,
we have analogously to Eq. (A3):eHðx; yÞ � eBðQ�1ðFXðxÞÞ; ~Q�1ðFY ðyÞÞ; cÞ: ðB2Þ

We can show that eHðx; yÞ is a bivariate CDF using, e.g., Theo-
rem 6 in Rohatgi (1976, p.135). For this CDF, from its definition gi-
ven by Eq. (B2), we can derive its marginal CDFs, which are FX(x)
and FY(y), and its conditional distribution of Y given X = x, which is:

eHY jXðyjxÞ ¼ Q
eQ �1ðFY ðyÞÞ � bQ�1ðFXðxÞÞ
ð1þ b2 � 2bqÞ1=2

 !
: ðB3Þ

An equation analogous to (A7) can be easily derived from (B3).

Appendix C. Implicit modeling of precipitation intermittency

Schaake et al. (2007) accounts for precipitation intermittency
implicitly in precipitation ensemble generation. Here, we give an
alternative formulation for this implicit approach in the framework
of the bivariate meta-Gaussian model by writing each of the mar-
ginal distributions of F(x, y) defined in Eq. (1) as a convex combina-
tion of continuous distributions (Law and Kelton, 2000, p. 449). In
this formulation we model the precipitation amount as a continu-
ous distribution with a stretch of its CDF unspecified for the precip-
itation amount in the interval of 0 to a threshold value. The
probability mass corresponding to that stretch is the sum of the
probability of zero precipitation and that of the precipitation
amount that may be negligible in the modeling.

Now, let X denote forecast precipitation amount accumulated
during a given time interval and Y denote the corresponding ob-
served precipitation amount. Denote the joint distribution function
of X and Y by Eq. (1). Let

bX1 � PðX < xtÞ; bX2 � 1� bX1;

bY1 � PðY < ytÞ; bY2 � 1� bY1;

FX1ðxÞ � PðX 6 xjX < xtÞ;

FX2ðxÞ � PðX 6 xjX P xtÞ;

FY1ðyÞ � PðY 6 yjY < ytÞ;

FY2ðyÞ � PðY 6 yjY P ytÞ;

where xt and yt are positive threshold values. The CDF of X and Y can
be expressed, respectively, as:

FXðxÞ ¼ bX1FX1ðxÞ þ bX2FX2ðxÞ;

FY ðyÞ ¼ bY1FY1ðyÞ þ bY2FY2ðyÞ:

For the case of y P yt, for bY2 – 0, Eq. (A7) becomes:

Ypjx ¼ F�1
Y2

QðqQ�1ðbX1FX1ðxÞÞ þ ð1� q2Þ1=2Q�1ðpÞÞ � bY1

bY2

 !
;

if x < xt; ðC1aÞ

Ypjx ¼ F�1
Y2

QðqQ�1ðbX1 þ bX2FX2ðxÞÞ þ ð1� q2Þ1=2Q�1ðpÞÞ � bY1

bY2

 !
;

if x P xt: ðC1bÞ

Note that the right-hand side of (C1b) depends on neither FX1(x)
nor FY1(y), which means that the modeling of FX1(x) and FY1(y) does
not affect yp|x in (C1b). If FX1(x) and FY1(y) are not specified, the
apparatus of estimating q, Pearson’s correlation coefficient
between the transformed variates, through (A2a) and (A2b) is no
longer available. One way of estimating q may be offered by
expressions (A3) and (A5). For example, for a selected pair of values
xa P xt and ya P yt, we may find q numerically via:

min
q
jFðxa;yaÞ�BðQ�1ðbX1þbX2FX2ðxaÞÞ; Q�1ðbY1þbY2FY2ðyaÞÞ;qÞj:

ðC2Þ

Numerical algorithms for computing the bivariate normal dis-
tribution function can be found in Divgi (1979). The formation of
this minimization problem represents an attempt to approximate
F(x, y) using H(x, y; q) given in (A3) by choosing a value of q.

For x P xt, the conditional distribution HY|X(y|x) can be sampled
for ensemble generation as follows: First we note that HY|X(y|x) is
an increasing function of y for a given x (see (A6)). Obtain pt = HY|X(-
yt|x) using (C1b). For a given probability value pi, if pi P pt, use
(C1b) to compute yp|x from pi; if pi < pt, assign 0 to yp|x. For the case
of x < xt, Eq. (14) may be used for ensemble generation.
Appendix D. Alternative expressions for c(x)

Below, we give alternative expressions for c(x) in Eq. (16). Using
the notation of Section 2, we write Eq. (11a) of Herr and Krzyszto-
fowicz (2005) as:

p10GXðxÞ þ p11DXðxÞ ¼ ðp00 þ p11ÞFXjX>0ðxÞ:

Here GX(x), DX(x), and FX|X>0(x) are defined in Eqs. (7), (11), and
(13), respectively. Assuming their respective PDFs gX(x), dX(x), and
fX|X>0(x) are continuous for x > 0, we have:

p10gXðxÞ þ p11dXðxÞ ¼ ðp10 þ p11ÞfXjX>0ðxÞ:

It follows from the above equation and Eq. (16) that:

cðxÞ ¼ p10gXðxÞ
ðp10 þ p11ÞfXjX>0ðxÞ

; ðD1Þ

1� cðxÞ ¼ p11dXðxÞ
p10gXðxÞ þ p11dXðxÞ

; ðD2Þ

1� cðxÞ ¼ p11dXðxÞ
ðp10 þ p11ÞfXjX>0ðxÞ

: ðD3Þ

In the above, we have derived three new equations that are
mathematically equivalent to Eq. (16). Our numerical experiments
indicate that Eqs. (16) and (D2) were more robust in numerical
evaluation than Eqs. (D1) and (D3) when parametric models were
used for the density functions involved. For example, in one
numerical experiment, we observed that the right-hand side of
(D1) exceeded 1, a theoretical upper bound for c(x), for small x val-
ues. This pathological behavior can be attributed to the sensitivity
of the ratio of two skewed density functions to the change in x.
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