
Presented at 15th Conference on Hydrology, AMS, January 9-14, 2000, Long Beach, CA

8.11 DEVELOPMENT OF A DATA ARCHITECTURE FOR THE NWS HYDROLOGIC SERVICES PROGRAM

Geoffrey M. Bonnin1 and Daniel Urban2

National Weather Service, Office of Hydrology, Silver Spring, Maryland

1. INTRODUCTION

The development of effective integrated software
systems implies examination and classification of the
data needs of the software system's domain. The
Hydrologic Research Laboratory of the National Weather
Service (NWS) Office of Hydrology (OH) has been
modeling the data needs of the Hydrologic Services
Program of the NWS. The data architecture is expressed
as a logical data model using class association diagrams,
one of several artifacts of the UML approach to object-
oriented analysis and design. This paper describes the
rationale for this effort, the data modeling process that is
being used, and a description of the products produced
and their relevance to the more general software
engineering approach. An example of the data model is
discussed.

2. DATA ARCHITECTURE IS CRUCIAL

A system generally consists of a number of
aggregations of functionality commonly referred to as
applications. Large systems are composed of many
applications that in their aggregate provide the general
purpose of the system. In an integrated system,
applications work cooperatively and are used in
combinations to achieve a purpose that is broader than
the domain of an individual application. This is quite
different from a system where applications are not used
together but fulfill complete purposes by themselves. For
example, AWIPS consists of applications such as
message communication, precipitation analysis,
streamflow modeling, and product preparation that can
be used together to produce a flood forecast. AWIPS
also consists of a large number of other applications used
in different combinations to produce other forecast
products.

The “glue” that allows applications to be used
together (to cooperate) is the ability of the applications to
share information. In order for applications to share
information, they must be able to communicate in a
mutually understandable fashion. In other words, a
necessary condition for an integrated system is
infrastructure for providing a common understanding of
and for sharing data. That infrastructure is developed
through the implementation of a data architecture

It is clear then that a data architecture is a
requirement for integrated processing systems of the
nature and scope of the AWIPS.

3. DESCRIBING THE DATA ARCHITECTURE

One of the keys to creating a data architecture is the
ability to describe it. In the same manner as a building
architect uses plans and drawings, a data architect uses
graphical and textual presentations to model data.

3.1 The OH Data Domain

The term “data domain” refers to all of the types of
data used by a system. The data domain of the NWS
Hydrologic Services Program includes such things as
surface observations, rivers and streams, gridded radar
and satellite data, forecast model parameters, and
observer names and addresses. In other words, the data
domain is extensive and covers all information that is
used to conduct the Hydrologic Services Program.

3.2 Reference Information

An often overlooked area of the data domain is
reference information; the relatively static information
required to fully describe any piece of data. One
significant element of reference information is the
“whereness” of things. For example, an individual
element of data in a grid needs to have attributes
describing where it is in the grid and whether the value
refers to a point at that location or perhaps is an areal
average for a cell centered on the grid point. The grid
itself needs to be defined and located in some projection
system and the projection system must be referenced to
natural earth coordinates. A grid may also be related to
other grids in a hierarchical relationship. Each of these
pieces of “reference” information may be necessary to
describe the “whereness” of the data element.

Reference information can often comprise a very
large portion of a data system. A feature of the data
architecture of integrated systems is that it includes a
comprehensive model of reference information that once
in place, can be used by all applications in the system.

3.3 Logical Models

A data architecture is expressed as different views or
models. Two important models of the data are the
logical and the physical models. The physical model of
the data is a complete and detailed description of the
structure of the physical data storages. An example of
this could be the details of disk file layouts or relational
table structures. However the physical layout of data in
an implemented system often reflects compromises to
improve performance and to account for the nature of the
physical storage mechanism.

1 Corresponding author address: Geoffrey M. Bonnin,
W/OH1, 1325 East-West Hwy, Silver Spring, MD
20910; e-mail: Geoffrey.Bonnin@noaa.gov

2 Urban Architectures and COMSO Inc.

Figure 2. The IHFS Software Architecture

Figure 1. The “Class” Dog

A logical model is constructed prior to making those
compromises. The logical model is concerned with the
data itself rather than how it is stored. It provides a
complete and detailed description of the data, its
attributes and interrelationships without regard for
physical implementation. The logical model
includes such details as the “type” of the data and
its constraints. For example temperature might
be in degrees Celsius, stored in a floating point
variable, with a precision of one decimal place
and a range of 60 to -90.

Because the data domain of the data
architecture is the domain of the system rather
than the data domain of any single application,
the logical modeling process proceeds from an
understanding of the data rather than the
applications. It is a “data centric” rather than an
“application centric” approach. During the
physical modeling stage when performance
becomes the issue, a more application centric
approach is adopted. However it is highly unlikely
that an optimum physical model will produce optimum
performance for each application because individual
applications generally have different patterns of data
access. Therefore, the application centric approach of
the physical modeling stage involves compromises
between the performance of individual applications.

Sound software engineering requires the preparation
of a logical model prior to the preparation of the physical
model so that a proper understanding of the data is
developed prior to dealing with the complexities of
performance optimization.

The importance of a logical model to an organization
cannot be over-stressed. It is the comprehensive answer
to the question; “What is our data?” It should be
regarded as a long term intellectual asset of any
organization.

OH has chosen a process for the production of a
logical model by starting with conceptual definitions and
frameworks of the data and then drilling down to full
logical definitions in selected areas.

3.4 Object-oriented Approach

OH began its data modeling using entity relationship
diagrams but later moved to an object-oriented approach.

This switch was made to take advantage of the capability
of the object-oriented approach to provide more semantic
precision in the definition of relationships. The object-
oriented paradigm formalizes concepts such as
encapsulation and hiding of the internals of software
behind an externally exposed signature. Everything that
is necessary to answer the question “What can this piece
of code do for me?” is captured in a class signature. The
class signature consists of a class name, class data and
class behavior or “methods”.

Figure 1 depicts a class that represents a dog. It
shows the class name as “Dog”; that there are several
things we know about the class (its data) such as its color
and whether it has had its rabies shots; and its behavior
such as its ability to bark. Note that we do not know the
dog’s name because that item of data does not exist and
the dog does not seem able to jump. We also do not
know how it goes about barking, sleeping or frolicking
only that it can exhibit this behavior.

4. RELEVANCE TO THE MORE GENERAL
SOFTWARE ENGINEERING APPROACH

We have adopted the architecture depicted in Figure
2 for our Integrated Hydrologic Forecast System (IHFS).
The figure depicts a Data Access Services layer that is a
typical feature of software architectures today.

Typically a data access services layer is concerned
only with data and not with behavior. It provides all of the
services associated with data access and hides the
details of how this is done from applications so that the
applications can be freed from these complexities.
Application behavior belongs in the applications layer
with the behavior of other services in layers such as the
Applications Control or Applications Communications
Services layers.

This presents a problem for the object-oriented
approach because data and behavior are combined in the
class signature. The solution that OH has adopted is
also the solution that in common in the industry. That is
to separate data and behavior into two separate but
related classes or components (Coad, 1999). One of
these classes is the “pure data class” associated with the
data access layer and that inherits data access behavior
from within the data access layer. The other class
contains both the class behavior and the data, where the
data is inherited from the pure data class. The second

class is associated with the applications layer. With this
separation we can apply an object-oriented approach to
the data modeling problem.
5. CREATING THE DATA ARCHITECTURE

Creation of a data architecture requires appropriate
skills, processes and tools. The following paragraphs
describe the approach in use at the Office of Hydrology.

5.1 The Skills Required

The skills required for preparing a data architecture
fall into three categories, data modeling, domain
knowledge, and leadership. A combination of these skills
may be applied by a single individual.

Data modeling is a highly developed skill requiring
extensive experience and detailed knowledge of the logic
and patterns of data models. For a large data model
such as is required for an integrated system, experience
in the development of large data models is also a
requirement. The skills of a data modeler are quite
different from those of a database administrator. A
database administrator is concerned with the operation
and characteristics of the database management
software used to manage the implementation of a
physical model and its hardware platform. The data
modeler must be able to disregard physical issues during
the logical modeling stage and then focus on them while
retaining the essence of the logical model during the
physical modeling stage. This intellectual
compartmentalization of the problem is not a simple task.
During the physical modeling stage the data modeler will
draw upon the knowledge and skills required of a
database administrator and on those of the application
and system designers. The data modeler must have
strong active listening and semantic skills to draw out
meaning from domain experts from whom a
comprehensive understanding of the domain data is
obtained.

The domain expert is classed as expert because
there must be a comprehensive understanding of the
semantics of the data. It is likely that there is no single
person with a sufficiently comprehensive knowledge of all
of the data that must be modeled and so the data
modeler must synthesize the information gleaned from
often overlapping sources who provide shades of
meaning which are often different, and occasionally
contradictory. For example the familiar term
“observation” is used to describe items ranging from the
value of a temperature reading to a textual message
encoded according to a particular code form and
containing a set of information. Domain knowledge can
also be drawn from documentation - if it exists.

Leadership skills are brought into play to identify
sources of domain knowledge and to help the data
modeler determine whether the information gathered is
relevant to the modeling of the data domain. When
combined with the data modeling skills, leadership skills
are necessary to assess and drive toward completeness
and comprehensiveness of the data model.

5.2 The Process

The data modeler goes about the task by reading
documentation and discussing the data with domain
experts, synthesizing what has been learned into models,
and then presenting the models back to the domain
experts see if they agree with the interpretation. This is
an iterative and informal process. It is conducted one-on-
one or with perhaps three people present. It is not a
process that is conducive to large group or formal
meetings. Toward the end of the process, the more
formal design review involving a greater number of
people is valuable.

At the Office of Hydrology a single person was
engaged as the data modeler. An extensive set of
documentation exists, both as textual documentation of
structured data file systems and application input/output
characteristics, as well as entity relationship diagrams
and a data dictionary of relational database tables. The
data modeler began by reviewing existing documentation
and then moved progressively to iterative one-on-one
discussions with about a half dozen domain experts.
These discussions focused on narrow subject areas.
However the subject areas and the general model state
were continuously reviewed by one or two key domain
experts to help clarify semantic differences and to review
the overall model structure. During the discussions
additional documentation was revealed that was then
used to augment the developing model.

Systems tend to exhibit recurring structural patterns.
The object-oriented approach is conducive to the use of
recurring patterns and one of the skills of the data
modeler is to recognize and use existing patterns. OH
has used the patterns developed by the Open GIS
Consortium for describing geospatial information
(Buehler, 1996).

5.3 The Tools

The data model is expressed using graphical and
textual presentations. Figure 3 presents a “class
association diagram” that is one of the diagrammatic
forms available in the Unified Modeling Language (UML)
(Rational Software Corp., 1997). UML is a combination
of notation standards and an approach for capturing and
expressing knowledge (Alhir, 1998). The class
association diagram is the primary diagram of UML and
is used exclusively by OH in the development of the data
architecture along with textual information such as a data
dictionary and engineering notes.

OH uses a commercial Computer Aided Software
Engineering (CASE) tool for drawing the diagrams and
documenting the data elements. We also use it for class
association diagrams of the application and services
software and to directly generate computer code. The
CASE tool is much more than a drawing tool structured
to implement the notation and semantics of UML. It also
provides powerful validation checks, a consolidated
repository of the design information, automated
techniques for direct code generation, and configuration
and version control mechanisms. Some inexperienced
modelers have tried to use simple drawing tools that are
useful for very small projects on large modeling projects
and have become bogged down in the mechanics of
drawing diagrams. They have lost their focus on the

Figure 3. River System Class Association Diagram

modeling task and have incurred large overhead costs in
the process.

6. SAMPLE PRODUCT

Figure 3 is a UML Class Association Diagram. It
presents a fragment of the logical data model of a river
system illustrating four of the class templates
(signatures) and their associations.

RFCArea is a class that models the geographic area
of responsibility of an NWS River Forecast Center. On
other diagrams, this class would be shown with all of it
geospatial associations. The RFCArea signature shows
data attributes consisting of an RFC Identifier, a name,
an area and a free text description. The “type” of each
attribute is defined, for example, area is of type “Quantity”
which is further defined elsewhere in the logical model.
The data item “area” could be computed on the fly or
stored in the physical implementation however this is a
physical not a logical modeling issue.

RFCArea is associated with RiverSystem in a one to
many relationship. In other words, there are many river
systems related to each RFC area. A river system is
composed of many tributaries, streams and channels.
The association with Channel is a zero or one to zero or
more aggregation. In other words, each river system is
composed of channels but the river system object can
exist without a channel having been defined and vice-
versa. The dendritic nature of channels in river systems
is shown on other diagrams.

There is a one to one or more relationship between
Channel and Basin. In other words, each channel is
related to at least one and maybe more than one
catchment areas. Two interesting data attributes of the
Basin signature are hydrologicUnitCode and
isComposite. The hydrologic unit code is a river basin
code assigned by the U.S. Geologic Survey and is a
commonly used identifier for river basins. isComposite
is a code used to decide if the basin is composed of other

basins. That recursive
association is shown on
o t h e r d i a g r a m s
elsewhere in the model
as mentioned in the
note on the diagram.

Together , the
features of the class
association diagram
shown in Figure 3 (and
elsewhere) provide a
well-defined model of
t h e d a t a a n d
interrelationships of
information associated
with river systems.
Other features are not
illustrated in this figure,
however the diagram
captures and presents in
a clear and concise
manner a large body of
that information.

7. CONCLUSION

The development of a data architecture is key to the
success of integrated systems. An object-oriented
approach that focuses on data-only classes provides a
powerful tool for the development of q data architecture
that is consistent with common software architectures.
However, the approach relies on the knowledge and skills
of experienced data modelers and domain experts, and
effective processes and CASE tools for its success. The
Hydrologic Research is applying these resources and
processes to the development of a data architecture for
the Hydrologic Services Program of the NWS.

8. REFERENCES

Alhir, Sinan Si, 1998: UML in a Nutshell. O’Reilly &
Associates, Inc., 273 pp.

Buehler, K, and McKee, L, editors, 1996: The OpenGISTM

Guide. Open GIS Consortium, Inc.
Coad, P, and Mayfield, M, 1999: JAVA Design: Building

Better Apps and Applets. Yourdon Press. 303 pp.
Rational Software Corp. and Partners, 1997: Unified

Modeling Language Version 1.1. The Object
Management Group.

Rumbaugh, J, Blaha, M, Premerlani, W, Eddy, F, and
Lorensen, W 1991: Object-Oriented Modeling and
Design. Prentice Hall, Inc., 490 pp.

