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Outline

• What transition?

• Lessons learned from 
development of 5 HEC-RAS 
models

• Where do we need new 
hydraulic models?
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What Transition?

• CHPS - Community Hydrologic Prediction 
System replaces NWSRFS 
(http://www.weather.gov/oh/hrl/chps/index.html)

• HEC-RAS – Hydrologic Engineering Center -
River Analysis System replaces Dynamic Wave 
Operation (DWOPER) and FLDWAV (Flood 
Wave) models
– HEC-RAS contains unsteady flow modeling 

capabilities based on UNET



5

Overall simulation accuracy levels for a range of 
different rivers

What data should we transfer from FLDWAV or 
DWOPER to HEC-RAS?

What is the relative importance of rainfall-runoff 
and routing model errors?

Lessons Learned



6

Statistical Summary from 5 Calibrated HEC-RAS Models

• Nearly all points less than 5 percent RMSE 
• Similar error ranges on different size rivers

 Model 
Length 
(km) 

Avg. 
cross-
section 
spacing 
(km) 

Tar River (T) 77 0.9 
Columbia River (C) 304 2.8 
Upper Mississippi (M) 724 4.6 

Lower Miss-Ohio 
Smithland (L) 

716 14.9 

Ohio-Miss Cincinnati (O) 1320 1.4 
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Mississippi River from L&D 11 to 22

Data Transfer from DWOPER to HEC-RAS

Iowa

Missouri

Illinois

Wisconsin

HEC-RAS Schematic From DWOPER 
Data

Scenario 1:
Transfer DWOPER 
network layout, cross-
section spacing, and 
symmetric geometry

• 2.64 mile cross-section 
spacing
• River mile 615 to 301.2
• 4 dynamically modeled 
tributaries
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Nearly identical area-elevation 
curves

Scenario 2:
Transfer DWOPER network layout, cross-section spacing,
BUT GET CROSS-SECTION GEOMETRY FROM UNET

Data Transfer from DWOPER to HEC-RAS
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Potential advantages of Scenario 2:  Easier to add levees, physical 
data about ineffective flow areas, storage ponds, and inline structures.
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Different Calibration Approaches With Different Cross-section 
Data
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Simulated Stages: UNET Sections vs. DWOPER Sections
(Mississippi River from L&D 11 to 22)

Example Hydrographs for Dubuque, IA

Statistics for March 2001 – September 2001

• Big gains from calibration (from 1.4 to 0.5 ft RMSE)
• No substantial difference in DWOPER-based and UNET-based 
calibrated results

Mar Apr May Jun Jul Aug Sep Oct
2001

S
ta

ge
 (f

t)
592

596

600

604

608

612

DWOPER UNET Observed Stage

RMSE (ft)
UNET
Uncalibrated DWOPER UNET Diff

Guttenberg, IA; L & D 10 Tail 1.12 0.42 0.48 0.06
Dubuque, IA; L&D 11 Tail 2.07 0.39 0.40 0.02
Dubuque, IA 2.09 0.43 0.41 -0.03
Bellevue, IA 1.78 0.42 0.53 0.11
Fulton, IL; L&D 13 Tail 1.86 0.44 0.50 0.06
Camanche, IA 1.41 0.29 0.33 0.04
Le Claire, IA; L&D 14 Tail 0.44 0.30 0.30 0.00
Rock Island, IL; L&D 15 Tail 1.94 0.40 0.58 0.18
Illinois City, IL; L&D 16 Tail 1.69 0.36 0.44 0.08
Muscatine, IA 2.05 0.50 0.51 0.01
New Boston, IL; L&D 17 Tail 0.96 0.73 0.78 0.05
Keithsburg, IL 1.04 0.44 0.46 0.02
Gladstone, IL; L&D 18 Tail 1.54 0.44 0.56 0.12
Burlington, IA 1.37 0.38 0.47 0.08
Keokuk, IA; L&D 19 Tail 1.70 0.82 0.72 -0.10
Grettory Landing, MO 1.21 0.67 0.58 -0.09
Canton, MO; L&D 20 Tail 2.01 0.56 0.75 0.20
Quincy, IL 0.47 0.43 0.46 0.03
Quincy, IL; L&D 21 Tail 1.20 0.65 0.76 0.11
Hannibal, MO 0.56 0.49 0.45 -0.04
Average 1.43 0.48 0.52
Max 2.09 0.82 0.78
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Hydraulic Routing vs. Rainfall-Runoff Inflow Errors

• Original Tar River model runs 
– observed flow only at Tarboro
– laterals from uncalibrated

simulation models 
• Greenville station 

– USGS stage and acoustic 
velocity meter

– USGS reconstructed 
record flow during 
Hurricane Floyd

• New model runs using 
observed flow at Greenville

Qavg-Grnv = (QTarb + L1 + L2 + L3 + L4)avg

L1

L2

L4

L3

L5
L6

L7

Tar River Model
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0.76 to 0.39 ft (49%) when the observed flows at Greenville were
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9/1/1999 – 11/15/1999 (Hurricane Floyd)
Greenville, NC flow bias = -10.4%

Hydraulic Routing vs. Rainfall-Runoff Inflow Errors

Need to simultaneously calibrate hydrologic inflow and hydraulic models
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• Slope
• Rate of flood rise
• Backwater 

– Confluences
– Structures
– Tides  

Factors Influencing the Need for Dynamic 
Hydraulic Models
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Rate of flood rise impacts example – two 
events at the same location: Thebes, IL, 

Miss. R.  

Could use Fread (1973) looped rating 
curve model as a screening tool for 
locations without backwater



Only 21% of CONUS 
rivers with slopes < 1 ft 
mile are modeled using 
a dynamic technique

0 – 1 ft/mile – DYNAMIC WAVE

1 – 10 ft/mile – DIFFUSIVE 
>10 ft/mile -- KINEMATIC
Domain of NWS 
Hydraulic Models

Average Slopes for CONUS 
River Segments Draining < 

773 mi2

Where should we implement new 
hydraulic models?

USACE 
Rules of 
Thumb

Miles

% of 
Total 
Modeled

NWS Dynamically 
Modeled Miles 5500
Total Miles < 1ft 26200 21
Total Miles < 10 ft/mile 97300 6



• Forecasters adjust hydrologic routing parameters to 
compensate for model inaccuracies

• Lack of convincing cost-benefit documentation for river 
forecasting applications (Hicks and Peacock, 2005)

• Dynamic hydraulic models have a “reputation for being 
difficult to learn and apply” (Hicks and Peacock, 2005)
– Specialized knowledge required
– Higher computational requirements (no longer an 

issue)
– Cross-section data required (becoming much easier 

to get)

Why haven’t hydraulic models been implemented 
more widely for NWS operational forecasting?
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Next Steps

• Develop new models
– Prioritize implementation
– Community modeling efforts (e.g. OHRFC Community 

HEC-RAS Model) 
– Leverage data from existing studies (e.g. FEMA)
– Leverage GIS-based model building tools (e.g. HEC-

GeoRAS)
– Understand cost-benefits of increased model 

complexity
• Improve training

– model building
– use in a forecasting environment)
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Conclusions

• Calibration should yield < 5% RMSE
• FLDWAV/DWOPER to HEC-RAS Conversions

– Keeping network layout, cross-section spacing, and symmetric 
cross-section geometry is useful in many cases 

– Potential advantages in substituting more detailed cross-section 
geometry in some cases

• Need simultaneous rainfall-runoff inflow and hydraulics 
calibration for rivers where a large portion  of the lateral 
inflows are ungauged

• Many candidate rivers for new hydraulic forecast model 
implementation in the U.S. – working towards smart, 
efficient implementation


