

Multisensor Precipitation Estimator (MPE)

NOAR

Presented by D.-J. Seo

Hydrologic Science and Modeling Branch Hydrology Laboratory National Weather Service Silver Spring, MD NWS Flash Flood Workshop, Aug 27-29, 2002

In this presentation

- What is MPE?
- How has MPE come about?
- What can MPE do now?
- What are the upcoming improvements?

WFO

RFC

- Replaces Stage II/III
- Based on;
 - operational experience
 - new science
 - existing and planned data availability from NEXRAD to AWIPS and within AWIPS
 - 'multi-scale' accuracy requirements (WFO, RFC, NCEP, external)

More accurate QPE

More accurate flood forecast,

Longer flood forecast lead time Improved QPF

Driving Issues

Systematic errors in WSR-88D (i.e. radar-only) rainfall estimates;
in detection of precipitation
in estimation of (in particular, large) precipitation amount

Use of Radar-Based/Aided Precipitation Estimates In Quantitative Hydrologic Forecasting

NOAA

WSR-88D Rainfall Estimates

Issue 1 - Systematic errors in rainfall detection

- Sources
 - beam overshooting
 - beam blockage
 - uncertainty in locating beam blockage
 - uncertainty in locating, quantifying, and correcting partial beam blockage

Issue 2 - Systematic errors in rainfall estimates over a large area

- Sources
 - lack of radar calibration
 - uncertainty in the Z-R relationship
 - vertical profile of reflectivity (VPR)

Issue 3 - Systematic errors in rainfall estimates over small areas

- Sources
 - space-time variability in the Z-R relationship
 - hail
 - vertical profile of reflectivity (VPR)
 - ground clutter and ground clutter suppression
 - truncation error

Stage II/III vs MPE

- No delineation of effective coverage of radar
- Radar-by-radar precipitation analysis
- Mosaicking without radar sampling geometry accounted for

- Delineation of effective coverage of radar
- Mosaicking based on radar sampling geometry
- Service area-wide precipitation analysis
- Improved mean-field bias correction
- Local bias correction (new)

Delineation of Effective Coverage of Radar

- Addresses Issue 1
- To limit the quantitative use of radar data to those areas where radar can 'see' precipitation consistently
- Based on multi-year climatology of Digital Precipitation Array (DPA) product

Radar Rainfall Climatology - KPBZ, Warm Season

	Save	
	Quit	
	07/04/81 12:34:00	
	Radar ID:	
	HDP Product	
	< 0.0000 inch	
	< 5.0000	
	< 10.0000	
	< 15.0000	
	< 20.0000	
	< 25.0000	
	< 37.5000	
	< 50.0000	
	< 62.5000	
	< 75.0000	
コート・シュア ノブ ちゃいい 一般的 しょうしょう	< 87.5000	
	< 100.0000	
1 A	< 125.0000	
	< 150.0000	
	< 175.0000	
	< 200.0000	

Effective Coverage - KPBZ, Warm Season

Save	
Quit	
07/04/81 12:34:00	
Radar ID:	
HDP Product	
	< 0.0000 inche
	< 0.0667
	< 0.1333
	< 0.2000
	< 0.2007
	< 0.4000
	< 0.4667
	< 0.5333
	< 0.6000
	< 0.6667
	< 0.7333
	< 0.8000
	< 0.8667
	< 0.9333
	< 1.0000

Radar Rainfall Climatology - KPBZ, Cool Season

	Save	
	Quit	
	07/04/81 12:34:00	
	Radar ID:	
	HDP Product	
	< 0.0000 inche	
	< 1.5000	
	< 3.0000	
	< 4.5000	
	< 6.0000	
	< 7.5000	
	< 11.2500	
	< 15.0000	
	< 18.7500	
	< 22.5000	
· · · · · · · · · · · · · · · · · · ·	< 26.2500	
LAND A ALL	< 30.0000	
	< 37.5000	
	< 45.0000	
	< 52.5000	
	< 60.0000	

Effective Coverage - KPBZ, Cool Season

Save	
Quit	
07/04/81 12:34:00	
Radar ID:	
HDP Product	
< 0.0000 inche	
< 0.0667	
< 0.1333	
< 0.2000	
< 0.2667	
< 0.3333	
< 0.4000	
< 0.4667	
< 0.5333	
< 0.6000	
< 0.6667	
< 0.7333	
< 0.8000	
< 0.8667	
< 0.9333	
< 1.000	

RadClim

- A software package to;
 process long_term DPA (
 - -process long-term DPA data
 - -display various statistics
 - display hybrid scan sectors and occultation tables
 - -display PRISM data
 - delineate effective coverage (if necessary, via manual-editing)

Mosaicking Based on Sampling Geometry of the Radars

 In areas of coverage overlap, use the radar rainfall estimate from the lowest unobstructed sampling volume

Mid-Atlantic River Forecast Center (MARFC)

Height of Lowest Unobstructed Sampling Volume

noaa

Radar Coverage Map

West Gulf River Forecast Center (WGRFC)

Height of Lowest Unobstructed Sampling Volume

Radar Coverage Map

Jan 26 2001 16z rfc=serfc Height of Radar Coverage

Jan 26 2001 16z rfc=serfc Radar Coverage Map

PRECIPITATION MOSAIC

Sep 6199612z rfc=marfc RMOSAIC

RADAR COVERAGE MAP

Los 20 2000 15 - - C - - C - D - Los Comments Man

Mean-Field Bias Adjustment

- Addresses Issue 2
- Based on (near) real-time rain gauge data
- Equivalent to adjusting the multiplicative constant in the Z-R relationship for each radar; Z = A(t) R^b

Mean field bias adjustment

$$\$_k \approx \frac{A_c^{-1} |_{Ac} g(u,t) du}{A_c^{-1} |_{Ac} r(u,t) du}$$

where A_c is the area commonly identified as raining by both radar and gauges within the effective coverage of the radar

$${}_{k}^{*} = N^{-1} \stackrel{k}{\underset{i=k-L}{E}} g_{ij} / N^{-1} \stackrel{k}{\underset{i=k-L}{E}} g_{ij} / N^{-1} \stackrel{k}{\underset{i=k-L}{E}} r_{ij}$$

where L is the moving average window

From Seo et al. (1999)

e

Memory Span (hrs)	Bias	Effective sample size
1	1.53	6.3
10	1.44*	30.6
50	1.40	43.5
100	1.29	63.5
500	1.13	316.8
1000	1.11	741.7
2000	1.11	1438.4

- Produced in MPE in AWIPS Build 5.2.2

- Shipped to ORPG
- Appended to DPA

J	CLOSE	APPLY H	ELP	May 17	2002 16z
	Radar	Bias : Manually	Specified	A	В
- 145					
	ABR	<u>≬</u> 0.91	NO	300	1.40
	APX	1.00	NO	300	1.40
	ARX	[0.72	NO	300	1.40
	BIS	Ĭ1.00	NO	300	1.40
	CLE	[0.92	NO	300	1.40
	DLH	≬0.9 7	NO	200	1.60
	DMX	<u>ĭ</u> 0.74	NO	300	1.40
	DTX	[0.90	NO	300	1.40
	DVN	Ĭ1.00	NO	300	1.40
	EAX	ŏ.70	NO	300	1.40
	FSD	ĭ́0.75	NO	300	1.40
	GGW	Ĭ1.00	NO	300	1.40
	GRB	ĭ́0.79	NO	300	1.40
	GRR	Ĭ 1.31	NO	N/A	N/A
	ILX	<u>≬</u> 0.94	NO	300	1.40
	IND	Ĭ 1.19	NO	300	1.40
	IWX	Ĭ1.18	NO	300	1.40
	LOT	Į́0.95	NO	300	1.40
	LSX	<u>≬</u> 0.67	NO	300	1.40
	MBX	Ĭ1.00	NO	300	1.40

MFB and Z-R List

MEAN FIELD BIAS (MFB) ADJUSTMENT

Effect of Bias Adjustment

KTLX, 1/8 Network, Warm Season, Neutoff=9

Local bias adjustment

- Addresses Issue 3
- Bin-by-bin application of the mean field bias algorithm
- Reduces systematic errors over small areas
- Equivalent to changing the multiplicative constant in the Z-R relationship at every bin;
 Z = A(x,y,t) R^b
- More effective in gauge-rich areas

From Seo and Breidenbach 2002

noaa

Help

From Seo and Breidenbach 2002

From Seo and Breidenbach 2002

Radar-Gauge Merging

$$G_{ko}^{*} = E_{i=1}^{n_{Gk}} G_{ki} + E_{i=1}^{n_{Rk}} G_{ki} + E_{i=1}^{n_{Rk}} (\$_{k} R_{kj})$$

The weights, 8_{Gki} and 8_{Rkj} , are solved for from:

minimize
$$E[G_{ko}^{*} - G_{ko}]^{2}$$

subject to $E^{n}_{Gk} + E^{n}_{E} = 1$
 $i=1$ $j=1$ $F^{n}_{Rk} = 1$

From Seo 1998

MULTISENSOR ESTIMATION FILLS MISSING AREAS

Climatological Unbiasedness

$$G_{ko}^{*} = E_{i=1}^{n_{Gk}} \frac{m_{Go}}{m_{Gi}} G_{ki} + E_{i=1}^{n_{Rk}} \frac{m_{Go}}{m_{Gj}} (\$_{kj} R_{kj})$$

where

m_{Gi} is the climatological mean gauge rainfall* at location u_i and \$_{kj} R_{kj} is the bias-adjusted radar rainfall at hour k at location u_j 0.00

June PRISM Climatology

MPE products

- RMOSAIC mosaic of raw radar
- BMOSAIC mosaic of mean field biasadjusted radar
- GMOSAIC gauge-only analysis
- MMOSAIC multi-sensor analysis of BMOSAIC and rain gauge data
- LMOSAIC local bias-adjusted RMOSAIC
- hourly, HRAP (●4x4km²)

Human Input via Graphical User Interface

- By the Hydrometeorological Analysis and Service (HAS) forecasters
- Quality control of data, analysis and products
- Manual reruns (i.e. reanalysis)
- The current GUI a hold-over from Stage III
- New GUI in AWIPS 5.2.2

Upcoming improvements

- Bring in additional data sources
- Quality-control the data
- Objectively integrate them into the multisensor estimation framework

Use of Multi-Hourly Gauge Data

- Being software-engineered
- Disaggregate multi-hourly into hourly, and update bias estimates in the rerun mode
- To improve MPE estimates in areas with sparse hourly gauges

Use of satellite data-derived precipitation estimates

 MPE can only display the hourly HydroEstimator product from NESDIS

ЮЯ

- Local bias correction using rain gauge data being evaluated (Michael Fortune)
- Objective merging with radar, rain gauge and lightning data under development (Chandra Kondragunta)

State of the second second

NORA

State of the States

noaa /

0.00 0.01 0.10 0.20 0.30 0.40 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.50 3.00

.Hous

0,00

(Rad + Sat)

12 10 8 6 4 2 Π Con. Non Con. Combined Satellite Model Radar

From Kondragunta 2002

Merging radar, rain gauge, satellite and lightning data

Quality control of rain gauge data

- By far the most labor-intensive part of the HAS (Hydrometeorological Analysis and Service) operation at the RFCs
- HL (Chandra Kondragunta) has developed/is developing automatic and interactive tools for quality control of daily and hourly rain gauge data

Use of environmental data

- NWP model output
- sounding data
- surface obs

• Future plans

- Operate at the highest space-time resolution afforded by the WSR-88D data
- Digital Hybrid-Scan Reflectivity (DHR) product (1 km x 1↓)
- Digital Storm Total Precipitation (DSP) product (2 km x 1√)

To help get there

- In addition to in-house R&D (supported by NPI and AWIPS)
- Collaborative research and development
 - Princeton University
 - University of Iowa
 - Baltimore Flash Flood Project
 - Florida State University
 - FSL, NCEP
- AHPS
 - Ensemble/probabilistic QPE
- Intercomparison projects
 - OHD-NSSL QPE Intercomparison Project

In Closing

- Radar-based/aided precipitation estimation activities are driven by the accuracy requirements for flood forecasting that span a wide range of space-time scale
- Current and near-term efforts are direct to;
 - improve the accuracy of the estimates (bias reduction in particular)
 - provide information on the quality of the estimates
- Planned and future improvements reflect where the science of hydrologic prediction is headed;
 - distributed hydrologic models (requirement for hydro forecasts for smaller basins)
 - ensemble/probabilistic prediction (requirement for forecast uncertainty)

For more details

 Http://www.nws.noaa.gov/oh/hrl /papers/papers.htm#wsr88d