

Activities and Plans to Improve WSR-88D Rainfall Estimation and Forecasting in the National Weather Service

Richard Fulton

Hydrology Laboratory Office of Hydrologic Development National Weather Service

NWS DOH Science Conference June 20, 2002 Silver Spring, Maryland

Outline

- OHD staff and funding resources dedicated to Quantitative Precipitation Estimation (QPE) enhancement
- Near-term (0-2 yrs) Precipitation Processing System (PPS) and Multisensor Precipitation Estimator (MPE) enhancements
- Long-term (3+ yrs) QPE science frontiers
- O-6 hour Quantitative Precipitation Forecasting for the flash flood program

Mission Statement

Hydrometeorology Group

To develop and apply cutting-edge scientific rainfall analysis and forecast techniques using WSR-88D radar and hydrometeorological data sources to improve hydrologic operations and products

Scientific Staff Resources

Hydrometeorology Group Hydrologic Science and Modeling Branch

- Richard Fulton, meteorologist, team leader
- Chandra Kondragunta, meteorologist
- Dong-Jun Seo, hydrologist (UCAR) (60%)
- Feng Ding, meteorologist/computer specialist (RSIS...started in January)
- GS-13 vacancy (not yet advertised)
- Need for new full-time UCAR scientist

Software Engineering Staff Resources

AWIPS and NEXRAD Groups Hydrologic Software Engineering Branch

- Paul Tilles (MPE)
- Bryon Lawrence (MPE)
- Moria Shebsovich (MPE) (contractor)
- Dennis Miller (PPS)
- Jihong Liu (PPS) (contractor)
- Cham Pham (PPS+MPE) (contractor)

Scott Vandemark (PPS)

Scientific R&D Funding Support for QPE Enhancement

- Advanced Hydrologic Prediction Services (AHPS) FY02
 - Probabilistic/Ensemble QPE \$45k external contractor
 - Statement of Work at http://www.nws.noaa.gov/oh/hrl/papers/wsr88d/031302.htm
- AHPS FY03
 - Probabilistic/Ensemble QPE \$45k ext. contractor
 - Enhance MPE to Support Flash Flood Services -\$100k internal contractor
 - Multisensor Precipitation Nowcaster (MPN) -\$40k -internal contractor
 - Polarimetric QPE requested \$60k, got \$0k
- Other funding from NEXRAD Product Improvement (NPI) program, AWIPS, and WSR-88D Radar Operations Center

American Meteorological Society's Short Course on QPE and QPF

13 January 2002 Orlando, Florida http://www.nws.noaa.gov/oh/hrl/presentations/amsshortcourse/index.html

- Overview of operational rainfall estimation procedures
- Scientific techniques for estimating precipitation
- Improving radar rainfall estimates using rain gauges and satellite data
- Review of operational satellite rainfall estimation algorithms
- Introduction to quantitative precipitation forecasting
- Factors determining efficiency and rainfall intensity
- Forecasting precipitation associated with mesoscale convective systems
- Calibration of forecasts

5-Year Science Infusion Plan for Improved Quantitative Precipitation Estimation in the National Weather Service

- Draft plan located at http://www.nws.noaa.gov/oh/hrl/papers/papers.htm#wsr88d
- Related paper for 2002 Federal Interagency Hydrologic Modeling Conference at http://www.nws.noaa.gov/oh/hrl/papers/wsr88d/qpe_hydromodelconf_web.pdf
- Comments on future directions are welcome
- Other WSR-88D rainfall estimation publications, training course materials, and presentations are available on-line at http://www.nws.noaa.gov/oh/hrl/papers/papers.htm#wsr88d

Recent Precipitation Processing System (PPS) Enhancements

Build 1, WSR-88D Open RPG Field Deployment in Progress

Fixed integer-truncation bug

- Improves rainfall products for light, long-lasting stratiform rainfall events
- Description of problem at http://www.nws.noaa.gov/oh/hrl/papers/2001mou/MOU01_PDF.html and .../papers/2000mou_pdf/MOU00_PDF.html
- Quantitative evaluation of old vs new DPA products is in progress
- Forecast office perceptions of performance improvement are welcome

Near-term PPS Enhancements

Build 2, WSR-88D Open RPG Field Deployment beginning Fall 2002

- Gauge-radar mean field biases will be automatically passed from WFO's AWIPS MPE back to PPS within the local WSR-88D ORPG(s)
 - First time ever that PPS graphical rainfall products will be gauge-biasadjusted (WFO forecasters can choose to apply bias or not)
 - Once per hour (H+25) or whenever forecaster manually reruns MPE
 - Biases will not be applied to rainfall amounts in Digital Precipitation Array (DPA) products (bias written in product header for ext. users)
 - Will require WFO forecasters to monitor radar and raingauge data quality if they hope to make quantitative use of rain gauge data to calibrate their radar rainfall products
 - Dependent on AWIPS 5.2.2 delivery of MPE to WFOs

Near-term PPS Enhancements (cont.)

Build 3, WSR-88D Open RPG Field Deployment beginning Spring 2003

New PPS product: Digital Storm-total Precipitation (DSP)

- 256-data-level digital counterpart to the existing 16-level graphical Storm Total Precipitation (STP) product
 - The only other PPS digital rainfall product besides DPA suitable for follow-on quantitative applications
- Polar 2-km x 1-deg grid (raw resolution of PPS algorithm)
- Generated every volume scan
- Differencing of consecutive products can produce accumulations of any arbitrary duration desired (e.g., 5-min, 30 min, 1.5-hr, 2-hr, 24-hr)
- Will expand future follow-on QPE hydrologic processing potential beyond existing legacy algorithms dependent on the DPA
- Available for use in hydrology applications outside of the WSR-88D to enhance flash flood services
 - Future versions of MPE at the WFOs
 - Distributed hydrologic models
 - Flash Flood Monitoring and Prediction
 - Other value-added flash flood applications outside of NWS

Longer-term PPS Enhancements

Build 4, WSR-88D Open RPG Field Deployment in Fall 2004

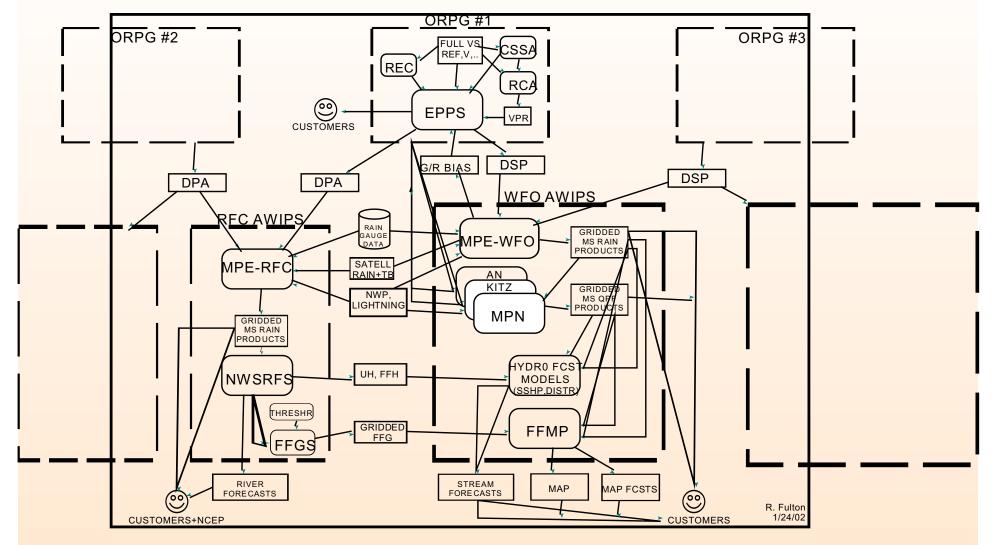
- Implement new Range Correction Algorithm (RCA)
 - To correct rainfall products for nonuniform vertical reflectivity profiles
 - Biggest benefits for cool season, stratiform rain events with brightband
- Enhanced PPS Preprocessing sub-algorithm (EPRE)
 - To allow PPS to accomodate the proposed new, variable WSR-88D antenna scanning patterns (no new science here, but improved processing efficiency)
- Improved removal of anomalous propagation (AP) contamination
 - Use of new fuzzy-logic Radar Echo Classifier (REC) algorithm to define *local* regions of non-raining echoes
 - Will replace legacy PPS Tilt Test technique
- Improved automated Precipitation Detection Function for PPS
 - Use of REC's AP-corrected reflectivity hybrid scan (instead of base reflectivity) to determine when rainfall starts accumulating in PPS
 - Manual forecaster adjustment of WSR-88D's Nominal Clutter Area will no longer degrade PPS rainfall accumulations
 - No impacts on radar scanning since changes impact PPS only

Multisensor Precipitation Estimator (MPE) Enhancements

No longer referred to as "RFC-Wide"

Incorporate satellite QPEs (SPEs) into MPE

- Initial deployment in next build after AWIPS 5.2.2
 - HRAP-gridded NESDIS AutoEstimator SPEs will be D2D displayable in 5.2.2
- Using optimal estimation, regression, or neural network multisensor merging techniques currently under evaluation


Deliver MPE to WFOs and enhance it to serve flash flood monitoring needs of the WFOs

- First version: Hourly 4-km regionally-mosaicked multisensor products (same as RFC capability)
- Next version: Shorter accumulation periods and update times (minutes) and higher spatial resolution (1 km=1/4 HRAP)

Comparisons of future RFC and WFO implementations of the Multisensor Precipitation Estimator

	MPE-RFC	MPE-WFO
WSR-88D product input	DPA (range-corrected)	DSP (range-corrected)
Frequency of execution	Once/hour at H+00	Every 5-15 minutes
Rain accumulation durations	1 hour	15, 30 <u>mins</u> , 1, 3,6, 12, 24 hrs (user selectable)
Number of radars used	1 to many (to cover RFC)	1 to many (to cover <u>CWA</u>)
Spatial resolution	4 km (HRAP)	1 km (1/4 <u>HRAP</u>)
Rain gauge adjustment duration	Hourly to seasonal	Hourly to seasonal
Products	Hourly rainfall accumulation: 1) Multisensor (radar+gauge+satellite) 2) Radar-only 3) Gauge-only 4) Satellite-only 5) Mean-field-bias-adjusted radar 6) Local bias-adjusted radar 7) Local bias-adjusted satellite	 15-minute through 24-hour rainfall accumulations: 1) Multisensor (radar+gauge+satellite) 2) Radar-only 3) Gauge-only 4) Satellite-only 5) Mean-field-bias-adjusted radar 6) Local bias-adjusted radar 7) Local bias-adjusted satellite
Purpose/Use	River monitoring and forecasting	Flash flood monitoring and forecasting

Future Vision for QPE in the NWS Driven by Different RFC and WFO Requirements

Major NWS QPE-related Science Frontiers For Next 5-10 Years

- Higher spatial and temporal resolution QPE products to better support the WFO flash flood warning program (PPS: 1/4 km X 1/2 deg; MPE: 1/4 HRAP, 5-15 minute accumulations and updates)
- Automated tuning of QPE algorithm input parameters (e.g., Z-R parameters) based on meteorological data to optimize QPEs
- Use of other observed meteorological data (soundings, surface observations, lightning) and atmospheric model analysis fields to improve QPE analyses (e.g., rain vs snow, freezing level ident.)
- Polarimetric QPE algorithms (JPOLE and beyond)
- Real-time, on-the-fly validation and performance monitoring of multisensor QPE products and algorithms
- Probabilistic/Ensemble QPE algorithms
- Improved automated quality control algorithms for radar, rain gauge, and satellite rainfall data
- Snowfall estimation algorithms

State-of-the-Art Technology for Short-term QPF To Support Flash Flood Warning

QPN=Quantitative Precipitation Nowcasts (0-6 hours)

- Steady-state, deterministic extrapolation of current radar rainfall patterns has been the accepted standard in the 0 to 1-6 hour forecast periods (data driven)
 - Convective rainfall: ~1 hour predictability limit
 - Stratiform rainfall: ~6 hour predictability limit
- Existing NWS operational QPN algorithms are limited to single-radar-site:
 - WSR-88D Storm Cell Identification and Tracking (SCIT) algorithm (no QPF products)
 - MDL's AWIPS statistical-extrapolative 1-hr QPN algorithm
- Atmospheric model QPF performance in the 0-6 hour forecast period is poor but improving steadily
- Successfull operational rainfall nowcast algorithms in UK Met Office merge radar-extrapolated rainfall with atmospheric model-generated QPFs in the ~1-6 hour "no-man's land" of unpredictability
 - And they are linked to hydrologic models for flash flood warning guidance
- Current research focuses on accounting for storm initiation, growth, and decay
 - Algorithms are complicated and CPU expensive
 - Marginal benefit over steady-state techniques is dependent on ability to observe airmass boundaries using radar and/or satellite data
- Assimilation of observed radar reflectivity and velocity into storm-scale atmospheric models is another active research area to improve QPNs

Multisensor Precipitation Nowcaster (MPN)

Provides Short-term QPFs for Additional Flash Flood Warning Lead Time

- Will generate gridded 1-km deterministic rainfall forecasts out to 30 minutes to 2 hours in the future, updated every 5-15 minutes
- Will use the observed DSP-based rainfall estimates from MPE-WFO as the main driving input
 - Leverages on MPE's advanced rainfall estimation technology (multiradar mosaicking, multisensor rainfall from radar, rain gauges, & satellite, range- and bias-corrected estimates)
- Based on *local* extrapolation of MPE multisensor radar rainfall echoes
 - Accounting for local motion is important since flash flood-producing storms often exhibit anomalous movement relative to their neighbors
- Accounts for storm growth and decay (but not initiation)

Where Should We Go with QPN in NWS to Increase Flash Flood Warning Lead Times?

- Implement simpler extrapolation algorithms to serve as baseline for QPN performance
 - MDL's statistical-extrapolative QPN algorithm
 - HL's extrapolative Multisensor Precipitation Nowcaster (MPN)
- Implement advanced fuzzy logic QPN algorithms as they become operationally viable
 - NCAR's Autonowcaster
- Measure & evaluate marginal benefit relative to extrapolative algorithms to learn strengths & weaknesses
- Implement probabilistic short-term QPN techniques
- Assimilate these short-term rainfall forecasts into distributed hydrologic models to provide additional warning lead time

Conclusions

The Hydromet Group is involved in a wide variety of WSR-88D QPE and QPF science activities that will lead to improved RFC and WFO hydrologic operations

Much more work remains to be done...