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INTRODUCTION 

 
The Hydrology Laboratory (HL) of the National Weather Service (NWS) Office of Hydrologic 
Development (OHD) is investigating methods to improve river and stream flow forecasts by 
taking advantage of multi-sensor, gridded, precipitation products.  NEXRAD-based multi-sensor 
precipitation products are currently produced at NWS River Forecast Centers (RFCs) at a 1-hour 
temporal and 4-km spatial resolution.  Archiving of these products first began in 1993 with the 
Stage III algorithms (Fulton et al., 1998) and work to improve these algorithms continues (Seo, 
2002).    
 
Thirteen National Weather Service RFCs in the United States produce both short and long-term 
river flow forecasts at about 4,000 forecast points.  Current operational methods for hydrologic 
modeling were designed when the only source of precipitation data was rain gages.  Rain gage 
data can support lumped modeling at 6-hour time steps on basins ranging in size from 300 – 
5000 km2.  Using multi-sensor rainfall products and additional sources of spatial information 
describing the land surface, there is a potential to (1) improve forecast accuracy at basin outlets 
and (2) provide hydrologic simulations for smaller ungaged basins (this could improve flash-
flood warnings).  Improving our understanding of hydrologic processes through modeling is a 
pre-requisite to achieving these goals.  This paper describes distributed modeling research and 
development being done at HL in an effort to reach these goals.  To provide a framework for 
analysis, HL has recently developed a set of programs referred to as the Research Modeling 
System (HL-RMS).  Some of the main features of the current HL-RMS are: 
 

(1) ingests gridded NEXRAD-based products 
(2) basic modeling unit is the NEXRAD grid cell (~ 4 km) 
(3) rainfall-runoff calculations are done independently for each grid cell 
(4) runoff is routed over hillslopes within a model cell 
(5) channel routing is done from cell-to-cell  
(6) rainfall-runoff calculations can be done using lumped or distributed rainfall and lumped 
or distributed parameters 
(7) uses the Sacramento Soil Moisture Accounting Model (SAC-SMA) (Burnash et al., 1973) 
(8) uses the kinematic method for both hillslope and channel routing 
(9) writes output parameter, state, or forcing grids that can be displayed in ArcView GIS   

 
Several factors played a role in designing the features of HL-RMS.  Use of the SAC-SMA model 
for runoff calculations is a practical choice because NWS hydrologists have a large amount of 
experience with lumped applications of this model.  Also, the work of Koren et al. (2000) to 
estimate SAC-SMA parameters from soil properties makes it possible to run simulations using 
SAC-SMA parameter estimates that vary within a basin.  For simplicity, the 4 km grid cells used 
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to map multi-sensor precipitation are used as the basic modeling unit.  The 4-km resolution is 
adequate to resolve important spatial variability in rainfall that can occur across basins modeled 
by RFCs, while still maintaining acceptable computational requirements.  Certainly, there is a 
lower limit on the size basin that can be modeled with 4-km grid cells, but there is no reason that 
smaller grid cells (e.g. 2-km or 1-km) cannot be used in future applications.   
 
One reason for maintaining computational simplicity (e.g. grid structure) and familiarity (e.g. use 
of SAC-SMA) is to facilitate prototype testing and ultimately to simplify the transition from a 
prototype to an operational application.  Initial testing has shown that the computational 
resources required to run this model are very modest.  HL is hoping to learn about the possible 
benefits of using more complex rainfall-runoff and routing methods in real world applications 
through participation in and sponsorship of the Distributed Modeling Intercomparison Project 
(DMIP) (DMIP, 2002) and other cooperative research.   
 
The remainder of this paper includes a description of the HL-RMS model structure, parameter 
estimation procedures, and some initial results and discussion.   
 

MODEL STRUCTURE 
 
Rainfall-runoff calculations are performed for each 4-km NEXRAD grid cell.  The rainfall-
runoff parameters are assumed to be uniform within each model cell.  The SAC-SMA model 
defines several types of runoff including fast response impervious, surface, and direct runoff, 
medium response interflow, and slow response supplemental and primary baseflow.  In HL-
RMS, the impervious, surface, and direct runoff components are routed over conceptual 
hillslopes within each NEXRAD cell to a conceptual channel.  The interflow and baseflow 
components are assumed to enter the channel system directly from the soil and therefore bypass 
the hillslope routing.  This differs from a typical lumped application of the SAC-SMA model in 
which all flow components are routed through a unit hydrograph, and there is no distinction 
between hillslope and channel flow mechanisms.   
 
Because baseflow is generated and assumed to enter the channel within the same cell, there is no 
physical connection between the lower zone (groundwater) storages in adjacent model cells.  
This is perhaps a weakness in the current distributed application of the SAC-SMA model 
because it seems physically reasonable that more baseflow should be generated in the lower 
reaches of a basins, due to water that is transferred to the deeper channel banks through 
subsurface or channel flow from upstream cells.  Establishing flow relationships among 
subsurface storage zones in the HL-RMS conceptualization is one topic for future research.  
 
Because of the relatively large size of the 4-km model cells, the cells are subdivided into 
conceptual hillslopes to make overland flow distances physically realistic.  A drainage density 
parameter in the model is used to subdivide a cell into equally sized overland flow planes (Figure 
1a).  These hillslopes drain to a conceptual channel segment within the same cell.  Cell-to-cell 
channel routing is done using flow direction networks like that illustrated in Figure 1b.  For the 
relatively coarse resolution model cells, automatically defining an accurate drainage network that 
correctly describes the geomorphological character of a basin is not a trivial task.  Custom HL-
RMS pre-processing tools to derive drainage networks for coarse resolution grid cells using 
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higher resolution digital elevation models (DEMs) have been developed at HL.  To facilitate 
efficient routing calculations, the drainage network depicted in Figure 1b is translated into a 
computational sequence file using the scheme of Koren et al. (1992). 
 

Figure 1.  (a) Conceptual hillslopes and (b) cell-to-cell drainage network 
 
To maintain computational accuracy in kinematic channel routing calculations, the conceptual 
channel within each cell is subdivided into several reaches of equal length.  Approximating the 
length of channel flow within each cell as cellarea*2 has given reasonable results in initial 
simulations. 
 

PARAMETER ESTIMATION 
 
Rainfall-Runoff Parameters:  Calibration procedures to estimate SAC-SMA parameters for 
lumped model applications are well defined (Burnash, 1995; HRC, 1999; Brazil and Hudlow, 
1981; Anderson, 2002, Smith et al., 2002).  However, by definition, lumped calibrations do not 
yield any information about how parameters should vary within a basin, desirable information 
for the implementation of a distributed model.   

 
To estimate the spatial variability of rainfall-runoff parameters within basins, we use a priori 
SAC-SMA parameter grids developed by Koren et al. (2000).  Koren et al. (2000) developed a 
set of equations that can be used to derive 11 of the SAC-SMA parameters from the Soil 
Conservation Service (SCS) curve number (McCuen, 1982), properties that can be inferred from 
soil texture (e.g. porosity, field capacity, wilting point, and saturated hydraulic conductivity), and 
soil depth.  These equations were developed based on both physical reasoning and empirical 
relationships.  Using 1-km soil property grids derived from STATSGO data (USDA, 1994) by 
Miller and White (1999), Koren et al. (2000) produced a priori SAC-SMA parameter grids 
covering the conterminous United States.  The a priori values of the Upper Zone Free Water 
Maximum (UZFWM) parameter for the Arkansas River Basin are shown in Figure 6a. 

 

(a) (b) 
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Koren et al. (2000), Koren et al. (2001), and Duan et al. (2001) all have run lumped simulations 
using basin averaged a priori parameter estimates.  These studies suggest that although these a 
priori estimates cannot outperform a well calibrated lumped parameter set on a gaged basin, the 
values are reasonable initial guesses for manual or optimized calibrations and the a priori grids 
may be beneficial in regional analysis.  For example, to estimate parameters for an uncalibrated 
basin, Koren et al. (2001) used ratios of a priori parameters to scale parameters from a nearby, 
calibrated basin.  We also use this simple idea of parameter scaling in some of our HL-RMS runs 
to describe spatial variability within a basin.   

 
Simulations using three different approaches to assign SAC-SMA parameters are presented in 
this paper.   

(1) Lumped parameters:  Assign uniform parameters to all of the model cells within a 
basin.  The values for uniform parameters are estimated using manual calibration of a 
lumped model forced by mean areal precipitation computed from the same hourly 
precipitation grids used for distributed modeling.   

(2) Distributed w/ a priori grids:  Use the a priori SAC-SMA parameter grids with no 
adjustment.  Simulations from this method indicate the degree of success that can be 
expected in modeling without any calibration.   

(3) Distributed with scaled a priori grids:  Multiply each a priori SAC-SMA grid by the 
ratio of the SAC-SMA parameter from lumped calibration to the parameter estimate 
derived from averaging the values in the a priori grid.   

 
These methods, as well as scenarios aggregating precipitation to different degrees, are all easy to 
implement within the HL-RMS framework.    
 
Routing Parameters:  Similar to the rainfall-runoff parameters, routing parameters are assumed 
to be constant within each model cell.  Thus, spatially variable routing parameters are input as 
grids with the same spatial resolution as the precipitation and rainfall-runoff parameter data.   
 
Hillslope Routing Parameters:  Three parameters are defined in each cell for kinematic 
overland flow routing:  hillslope slope, hillslope roughness, and drainage density.  Note that in 
the current model structure, hillslope slope and hillslope roughness may vary from cell to cell, 
but not among the conceptual hillslopes within a cell.  Representative hillslope slopes are 
estimated using DEM data (initially with 30-m DEM data for basin scale applications and 400-m 
DEM data for regional scale applications) by first computing the local slope of each DEM cell in 
the study domain using the Arc/Info slope function (ESRI, 1994), and then averaging all of the 
DEM cell slopes in each 4-km model cell.  In simulation runs presented here, a constant estimate 
of hillslope roughness (0.15) has been assigned for all model cells.  Certainly, spatially variable 
hillslope roughness values could be related to land use estimates based on a lookup table (e.g. 
Skahill and Johnson, 1999); however, implementing this option has not yet been a high priority 
given that (1) within a given land use category, published values of roughness values cover wide 
ranges of possible values that often overlap with the ranges assigned to other land use categories 
and therefore offering limited guidance in defining spatial variability, (2) initial outlet 
simulations using spatially constant hillslope roughness have been satisfactory, (3) HL-RMS has 
shown more sensitivity to channel routing parameters than hillslope parameters in the basins 
studied.   
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For drainage density, Dingman (1993) notes values ranging from 2 km-1 to 100 km-1 have been 
reported in the literature, and that drainage density is related to climate and geology.  For areas 
we are modeling in the Arkansas and Red River Basins, a spatially constant value of drainage 
density (2.5 km-1) has been assumed.  Based on model results, this seems like a reasonable 
assumption.   
 
Channel Routing Parameters:  In order to solve the continuity equation (Equation 1) using the 
kinematic routing method, two parameters in the momentum equation describing steady, uniform 
flow must be prescribed for all points in space (parameters a and b in Equation 2).   
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Q is flow in [L3 T-1], A is cross-sectional area of flow [L2], q is lateral inflow per unit length of 
channel [L2/T], x is the distance along the channel, t is time, and a and b are model parameters.  
We sometimes refer to a as the channel specific discharge.   
 
The a and b parameters can be defined two ways for HL-RMS.  Method 1:  HL-RMS reads four 
parameter grids that can be used to derive a and b.  Method 2:  HL-RMS directly reads pre-
defined grids of a and b.  The four grids required for Method 1 include channel slope (S), 
channel roughness (n), and two channel shape parameters (α and β).  Pre-processing procedures 
to derive input grids for either method have been developed and are described here.   
 
The basic idea used to derive distributed routing parameters is to combine point measurements 
that are available at USGS streamflow stations with the geomorphologic information that can be 
derived from DEMs.  Flow measurement data, including top width (B), flow cross-section (A), 
and flow (Q) (derived from velocity measurements), are intermittently collected by the USGS at 
stream gaging stations in order to derive stage-discharge curves.  The fact that the USGS has 
recently added an option to download these data from their national web site makes the 
parameter estimation process much easier.   
 
Although the flow measurement data can be used directly to derive required channel parameters 
at the basin outlet, the goal is to get parameter estimates at upstream grid cells.  For Method 1, 
both channel slope and drainage area information in each cell are used along with the outlet 
parameter information to derive routing parameter grids, while in Method 2 only the drainage 
area is used.  The drainage area for each model cell is implicit in the network connectivity 
(Figure 1b), and representative estimates of channel slope are derived using high resolution (e.g. 
30-m) DEM data.  To derive channel slope estimates, the average of the slopes of the largest 
streams branches that pass through each 4-km model cell are used.  As should be the case, 
channel slope estimates for a cell are significantly different than the hillslope slope values.  
 
In Method 1, a simple parabolic channel shape defined by Equation 3 is assumed 
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βαHB =  (3) 
 
where H is flow depth, B is top width, and α and β are model parameters.  Given Equation 3, it is 
easily shown that 
 

ββα ])1[( avgHH +=  (4) 
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Parameter estimates at a basin outlet, (αo, βο) are determined by fitting a curve to a plot of A vs. 
B data.  With this simple channel model, it is not necessarily possible to get a good fit to the A 
vs. B plot at all flow levels; therefore, we aim to get good fits at high flow levels because we are 
interested in modeling floods.  In our applications, the shape parameter, β, is assumed to be 
constant within a basin, but spatially variable values of the width parameter, α, are derived.   
 
Channel roughness (ni) values for each cell are calculated using an empirical equation (Tokar 
and Johnson, 1995), 
 

00011.0272.0 −= FSnn oi  (6) 
 
where F is upstream drainage area and S is channel slope.  Locally applicable values for the 
coefficient, no, are derived using USGS flow measurements at the basin outlet.  
 
Two basic geomorphologic assumptions and the ni values are used to estimate α values at 
upstream cells.  The first assumption is that channel forming flow is a known function of 
drainage area, and the second is that cross-sectional area is a known function of stream order.  In 
the current HL-RMS, the following relationships are assumed: 
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where the subscript i denotes any upstream cell and the subscript o denotes the value at the 
outlet, Rl is Horton’s length ratio, and k is stream order.  Gorbunov (1971) suggests the cross-
sectional area relationship in Equation 8.  One advantage of using this stream order relationship 
rather than a relationship that is strictly a function of drainage area is that the Rl parameter can be 
varied to reflect local characteristics.  In our analysis, we use Rl = 2.1.   
 
The procedure to estimate distributed αi values is as follows.  For a selected flow level at the 
outlet, estimate the upstream flow (Qi) and cross sectional area (Ai) using Equations 7 and 8.  
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From this information, a representative velocity (vi) at each upstream cell is estimated, and the 
average depth (Havgi) is back-calculated using Manning’s equation.  The top width Bi is then 
calculated as Ai/Havgi and Equation 4 is solved for αi.  With known channel geometry at each 
cell, values of channel specific discharge (a) are estimated and used for kinematic channel 
routing calculations.   
 
To implement Method 2, channel specific discharge (a) and the exponent (b) in Equation 2 are 
estimated at the outlet by fitting a curve to the A vs. Q data.  The same geomorphologic 
assumptions are used to estimate a and b at upstream cells and from Equations 7 and 8, it can be 
shown that: 
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As discussed in the next section, both methods for channel parameter estimation yield reasonable 
results in simulation runs.  As an independent check on the procedure, Figure 2 shows that the 
pattern of predicted channel width variations along the main channel is similar to the pattern of 
actual channel top width measurements made in the field.  What is interesting here is the pattern 
rather than the absolute widths.  Top widths measured in the field are based on a channel bank 
approximation and there is no channel bank in the simplified conceptual channel defined by 
Equation 3.  The estimated widths shown in Figure 2 are generated for a flow level that produces 
similar overall widths.  
 

Figure 2.  Comparison of estimated and observed top widths 
 

RESULTS AND DISCUSSION 
 
Initial testing of HL-RMS is being carried out for basins within the Arkansas and Red River 
Basins (Figure 3).  The main reason for this is that the Arkansas-Red Basin River Forecast 
Center (ABRFC) has the longest archive of 4-km multi-sensor precipitation grids (May 1993 – 
present), and these rainfall grids have been evaluated more thoroughly than grids produced in 
other parts of the country.  Also, these basins are not regulated.  Others have also used this area 
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in distributed modeling studies (e.g., Carpenter et al., 2001).  Although all of the basins shown in 
Figure 3 are being studied as part of DMIP, specific results for only a few of these basins will be 
discussed here.  It should be noted that the following simulations were derived by HL scientists 
and do not correspond to the forecasts derived at the ABRFC.  RFC forecasts include a 
significant amount of human quality control not present in simulations shown here.  Ongoing 
developments on assimilation/updating techniques (Seo et al., 2002) should also improve the 
performance of HL-RMS. 

 
Figure 3.  Location reference for the Arkansas, Red, and DMIP basins 

 
A critical question to consider in evaluating the potential benefits of distributed modeling for 
NWS operations is whether a distributed model can produce simulations that are comparable to 
or better than simulations from existing lumped models.  Of course, producing better simulations 
is ideal, but the ability to produce comparable simulations is also a positive result because there 
are other potential benefits from running a distributed model, like the ability to simulate flows at 
small, ungaged sites within a basin, and the ability to incorporate future sources of spatial data 
that describe hydrologic variables (e.g. satellite observations).   
 
In general, distributed model runs for the Blue River at Blue, OK, have shown noticeable 
improvements over lumped simulations, while distributed model simulations for the Illinois 
River at Watts, OK, and the Baron Fork at Eldon, OK, have yielded results comparable to 
lumped simulations.    
 
Figures 4a and b show hydrographs for two events in the Blue River.  These two events have 
been selected from a 6 year continuous simulation (June 1993 – May 1999) to illustrate results 
that can be obtained in events with relatively non-uniform and relatively uniform rainfall.  
Several other events during the calibration period show results similar to those shown here.  
Figure 4a shows that a distributed model outperforms a lumped model when the rainfall 

1 2

3

4 5
6

Arkansas R.

Red R. 

Blue R.

Elk R.

1. Ill. R. at Tahlequah, OK 
2. Baron Fork at Eldon, OK 
3. Peacheater Creek, OK 
4. Flint Creek at Kansas, OK 
5. Ill. R at Watts, OK 
6. Ill. R at Savoy, OK 



 9

distribution is relatively non-uniform.  Figure 4b shows that the lumped simulation results are 
more comparable for cases with less spatial rainfall variability.  Based on visual and statistical 
comparisons of hydrographs at the basin outlet, the use of scaled, a priori SAC-SMA grids 
produces better overall simulations than the use of unscaled a priori grids. 
 

 
 

Figure 4.  Representative events for the Blue River.  (a) Case with highly non-uniform rainfall. 
(b) Case with relatively uniform rainfall. 

 
Initial distributed model simulations in the Illinois River Basin above Watts (1645 km2) and the 
Baron Fork at Eldon (795 km2) show results comparable to lumped simulations.  In these basins, 
little to no gain from distributed modeling is seen in the overall simulation quality at the basin 
outlet.  The difference from the Blue River results is likely due to a number of factors including 
differences in basin shape and orientation, and the possible dampening affects of deeper soils in 
Watts and Eldon basins.  These results agree with those of Obled et al. (1994) who suggested 
that the spatial variability of the precipitation was not sufficiently organized to overcome the 
effects of dampening present in the basins studied.   
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Further study of the Tahlequah (2484 km2) and Eldon basins is of interest because of the 
potential to verify modeling results at interior gaged locations.  The Watts, Savoy (433 km2), and 
Flint Creek (295 km2) basins are all within Tahlequah and Peacheater Creek (65 km2) is within 
the Eldon basin.   
 

Figure 5.  Simulations at (a) Eldon and (b) Peacheater Creek.  Scaled parameters at Peacheater 
Creek are based on calibration at Eldon. 

 
An interesting result from this type of study is presented in Figure 5.  In Figure 5a, the 
distributed model with scaled SAC-SMA parameters produces results comparable to a lumped 
simulation and better than a distributed model with unscaled a priori parameters at Eldon.  
However, for the same storms at Peacheater Creek (Figure 5b) the model with unscaled a priori 
parameters produces better results than runs with both lumped and scaled SAC-SMA parameters.  
Note that the lumped parameters and scaling factors used in this example are based on 
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calibration at Eldon only, without calibration at Peacheater Creek.  It is perhaps not difficult to 
accept this result because the lumped parameters and scaling factors derived from manual 
calibration at Eldon are scale dependent (Koren et al., 1999) and they implicitly account for a 
certain scale of rainfall averaging.  Although this result indicates that there are scaling issues, it 
should not deter continued efforts to refine modeling and calibration procedures to produce 
better results at small, nested basins while maintaining good hydrologic performance at the 
outlet.   
 
Modeling results for an interior point within the Watts basin, the Illinois River at Savoy (433 
km2), do not show the same trend as Figure 5 when moving from a larger to a smaller basin.   
That is, results using scaled grids based on a Watts calibration and unscaled a priori grids yield 
comparable simulation results at Savoy.  Perhaps the difference in these results is due to the fact 
that the Eldon basin is 12 times as large as Peacheater Creek, while the Watts basin is only about 
4 times as large as the Savoy basin.  The reality is that defining a distributed parameter model 
calibration strategy that is robust across many spatial scales remains a challenge.   
 
Strategies to calibrate several basins in a hydrologic region have long relied on qualitative 
assessments of soil and vegetation properties.  The scaling of a priori parameter grids used here 
and the similar procedures described by Koren et al. (2001) for adjacent basin are attempts to 
approach this type of analysis in a quantitative and consistent manner.  These procedures can 
continue to be refined, both with new theory and the use of additional data sources.   
 
In order to improve our understanding of regional variability in both rainfall-runoff and routing 
parameters, HL-RMS is also being applied to wider areas.  Given the simple structure of the 
model, it is possible to run simulations for large areas such as the Arkansas River (408,939 km2).  
From a computational standpoint, this type of run is feasible.  To produce a 10 day simulation in 
quasi-forecast mode for the entire Arkansas River area only takes 5-6 minutes of CPU time on an 
HP9000/J5000 workstation.  
 
Figures 6b-d show example results from this type of demonstration run.  For this demonstration, 
a priori parameter grids are used for rainfall-runoff modeling and routing parameter grids are 
derived using data from only a few stations on the main stem of the Arkansas River.  This 
demonstration of running the model on a large area is considered a beginning and not an end.  
Certainly, we do not initially expect accurate hydrograph simulations in many parts of the 
Arkansas River, because there are numerous processes that are not represented in HL-RMS (e.g. 
reservoirs and the potential for dynamic flow variations and backwater effects on the larger 
rivers).  However, running HL-RMS over a large area provides a framework for further study.  
Studies on specific subbasins can begin to populate the HL-RMS input grids with more accurate 
parameter estimates and refine the regional picture.   
 

SUMMARY AND CONCLUSIONS 
 
HL-RMS provides a framework to run distributed models that will improve our understanding of 
hydrologic process.  HL-RMS shows the potential to improve the accuracy and resolution of 
river forecasts.  The basic conclusions from initial simulation runs are: 
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• HL-RMS produces simulations that are comparable to or better than the simulations that 
are produced by lumped models.   

 
• The improved results were found in the Blue River, OK, for events where spatial 

variability of rainfall is significant.   
 

• Schemes developed to estimate distributed routing parameters produce reasonable results 
for moderate to large storm events without any calibration.   

 
• Progress has been made in quantitatively estimating spatially variable rainfall-runoff 

parameters, but a robust method to calibrate the distributed parameter model is still not 
well defined.   

 
The simple gridded structure of the model facilitates both scientific research and prototype 
testing in field offices.  HL-RMS results will be compared with more complex models through 
the DMIP project to identify possible improvements.  Future work should also include exploring 
the use of additional data sources (e.g. NDVI, soil moisture observations) to help improve both 
model formulation and parameter estimation procedures.   
 
Plans to run the model over large areas will also help to refine calibration procedures and 
identify model components that can be improved.  More applications of HL-RMS will improve 
our understanding of subbasin processes and scale issues important for flash-flood modeling.   

 
Figure 6.  HL-RMS demonstration for the Arkansas River Basin 
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