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I.  Introduction and Scope 
 

Hydrologic outlooks issued by the National Weather Service (NWS) have 
traditionally been based on linear regression procedures that produce a single-valued 
forecast, with no indication of uncertainty in the predicted streamflow event.  The 
Ensemble Streamflow Prediction (ESP) method was developed to improve the quantity 
and quality of information in the NWS outlooks.  The ESP produces multiple estimates of 
a streamflow variable based on current basin conditions and past meteorological 
observations.  Probability and uncertainty are derived from the distribution of the 
predicted values.  ESP is considered to be an advanced hydrological forecasting product 
because it provides probabilistic forecast information rather than deterministic (Day, 
1985).   

The ESP forecast system has been distributed to NWS River Forecast Centers 
(RFCs) across the country as part of the NWS River Forecast System (NWSRFS).  The 
procedure has been operationally implemented at several RFCs within the past few years 
and will become more widely used in the coming years.  As ESP forecasts accumulate, it 
will be important that they are evaluated because verification provides hydrologists 
information about forecast qualities and needed improvements.  In addition, verification 
gives the users (e.g. water supply managers, municipalities, flood managers) information 
about how to most effectively use the forecast (Murphy and Winkler, 1987).  Without 
verification, there is a lack of quantitative information to support forecast credibility 
(Hartmann, 1999).  It is necessary that the NWS develop a thorough and informative 
evaluation method(s), which will allow consistent tracking of ESP performance in both 
space and time and be useful to both forecasters and users.   

Franz (2001) described and applied probabilistic forecast evaluation methods to 
simulated NWS ESP water supply outlooks for the Colorado River basin.  Three types of 
probabilistic verification methods were successfully applied to the forecasts: RPS 
(Epstein, 1969; Wilks, 1995), ranked probability skill score (RPSS) (Wilks, 1995), and 
discrimination and reliability (Murphy et al., 1989, 1987; Wilks, 1995).  Franz (2001) 
illustrated that these methods are capable of describing the probabilistic skill of the ESP 
forecasts and a variety of information contained within them.  The purpose of the current 
study was to investigate the feasibility of using the RPS, RPSS, discrimination, and 
reliability as applied by Franz (2001) for verification of operational (or RFC generated) 
NWS ESP forecasts.   

This project has been conducted in cooperation with the NWS and is part of a 
comprehensive effort to examine forecast evaluation as part of the Advanced Hydrologic 
Prediction System (AHPS).  The Colorado River Basin RFC has studied water supply 
forecasts produced using ESP and regression equations to compare the forecast 
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information obtained from both methods.  The NWS OH is currently developing 
evaluation tools as part of a short-term ensemble demonstration project at the Mid-
Atlantic RFC.  Ensemble forecasts of temperature, precipitation, and streamflow from 
this region are being evaluated by comparison of the ensemble mean and observation, the 
calculation of the ranked probability score (RPS), and comparison of the observation and 
forecast distributions to test forecast probability.  In addition, the ESP Verification 
system (ESPVS) was developed to aid in the evaluation of the ESP forecasting method 
through the use of synthetic historical ESP forecasts.  The North Central RFC has used 
this application to compare the ESP method to previous forecast methods for the 
generation of spring flood outlooks.  The ESPVS was also used by Franz (2001) to 
generate the simulated forecasts required to conduct the ESP water supply forecast 
evaluation. 

This final report is a summary of a forecast evaluation study completed under 
Grant Number 40-AA-NW-217447 and is compiled as follows.  Probabilistic verification 
procedures are discussed in Section II.  Forecasts and observation data used for 
completion of the study are discussed in Section III.  Evaluation procedures specific to 
this study are discussed in Section IV.  Results are presented and discussed in Section V.  
A discussion of the results, feasibility of implementation, and issues that arose are 
discussed in Section VI.  Conclusions are given in Section VII.  Recommendations based 
on this study are summarizes in Section VIII, and acknowledgements and references are 
provided in Sections IX and X, respectively. 
 
II.  Probabilistic Forecast Verification Procedures 
 

Conventional summary statistical methods, such as root mean square error and 
bias, are unable to evaluate the probabilistic nature of ESP forecasts because they only 
evaluate whether a forecast is right or wrong, 1 or 0.  A probabilistic forecast, such as 
ESP, has a set of values between 1 and 0, and they are therefore neither right nor wrong 
(Wilks, 1995).  The observation will have a value of either 0 (did not occur) or 1 (did 
occur) (Murphy and Winkler, 1992).  In addition, a meaningful assessment of 
probabilistic forecasts cannot be made on a single prediction; behavior trends can only be 
assessed through the evaluation of a collection of forecasts and observation pairs (Wilks, 
1995).    

The diagnostic verification methods ranked probability score (RPS), ranked 
probability skill score (RPSS), discrimination, and reliability are useful in detailed 
investigations of probabilistic forecasting skill and are the focus of this study.  The 
application of diagnostic verification has occurred predominantly in the meteorological 
field.  Diagnostic verification has been developed and illustrated previously by Murphy 
and Winkler (1992, 1987) and by Murphy et al. (1989) using probability of precipitation 
and maximum temperature forecasts.  Wilks (1995) described the methods in detail and 
discussed their application to meteorological forecasts.  Wilks (2000) used diagnostic 
verification in a study of Climate Prediction Center average temperature and total 
precipitation long-range forecasts over the United States.  The methods have not been 
applied extensively to hydrologic forecasts. 

Forecast verification involves analysis of the correspondence between the forecast 
and observation of a predicted event.  The strength of the correlation between the forecast 



 3

and observations can be investigated through analysis of their joint distribution denoted 
by: 

(p(fi,oj))                                                               (1) 
 

where fi = forecasts that have any of I values f1, f2, …fI; and oj = observations that have 
any of J values o1, o2,…oJ.  A probability ([0 1]) is associated with each of the possible 
combinations of forecasts and observation (Wilks, 1995).   

The information contained in the joint distribution is more accessible through 
analysis of the marginal distributions (p(fi) and p(oj)) and conditional distributions 
(p(oj|fi) and p(fi|oj)) (Murphy and Winkler, 1987).  The term (p(oj|fi)p(fi) is referred to as 
the calibration refinement factorization (Wilks, 1995) and is used to evaluate forecast 
reliability.  The term p(oj|fi) indicates how often a various observation occurred given a 
specific forecast, while p(fi) indicates how often a particular forecast was made.  The 
term p(fi|oj) p(oj) is called the likelihood-base rate by Wilks (1995) and is used to 
examine forecast discrimination.  The first term describes the frequency with which 
specific forecast probability values were given prior to a specific observation. The second 
term indicates the relative frequency of the various observations and is equal to the 
climatology of the observations. 
 
 Ranked Probability Score (RPS)  
 

The ranked probability score (RPS) is used to assess the overall forecast 
performance of the probabilistic forecasts (Epstein, 1969; Wilks, 1995).  To calculate the 
RPS, specific forecast probability categories are first created (Table 1, column 1).  The 
forecast non-exceedance probability categories chosen were based on the values archived 
in the OHRFC forecast files (5, 10, 25, 50, 75, 90, and 95% exceedance).  Several 
variations of this set were investigated and are identified with the corresponding results.  
Each forecast probability category is bounded by its associated streamflow non-
exceedance values determined from the cumulative distribution function (CDF) of the 
traces or climatology.  Once the ensemble members are distributed into these categories, 
the relative frequency (Table 1, column 2) and forecast cumulative distribution (Fm) 
(Table 1, column 4) are obtained:  
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where J equals the number of forecast categories (Wilks, 1995). 

  The observation occurs in only one of the flow categories, which is given a value 
of 1; the remaining categories are given a value of 0 (Table 1, column 3).  The 
cumulative distribution of the observations (Om) is then calculated (Table 1, column 5) 
(Wilks, 1995).  
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The RPS for one forecast is the sum of the squared errors of the cumulative distributions:  
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(Table 1: column 6).  For a group of n forecasts, the RPS is the average ( RPS ) of the n 
RPSs: 
 

.1
1
∑
=

=
n

k
kRPS

n
RPS      (5) 

 
A perfect forecast would assign all of the probability to the same streamflow category in 
which the event occurs, resulting in an RPS value of 0.  The RPS is said to be “sensitive 
to distance” because it increasingly penalizes forecasts that assign probability to 
streamflow categories further from the observation (Wilks, 1995).   

 
 

Table 1: Example ranked probability score calculation 
Column 1 Column 2 Column 3 Column 4 Column 5 Column 6

Non-Exceedance Forecast Forecast Observation
Probability Probability Observation Cumulative Cumulative 
Category (f) (o) Sum (F) Sum (O) (F-O)2

0-10% 0.1 0 0.1 0 0.01
>10-30% 0.2 0 0.3 0 0.09
>30-70% 0.4 1 0.7 1 0.09
>70-90% 0.2 0 0.9 1 0.01

>90-100% 0.1 0 1 1 0
RPS = Sum = 0.2  

 
 
Ranked Probability Skill Score  
 

A single value, such as the RPS, often cannot put into context the actual quality of 
a forecast or set of forecasts.  It is useful then to compare the forecast of interest to a 
reference forecast, such as persistence forecasts, historical operational forecasts, or 
forecasts based on the historical distribution of observed values (climatology) (Wilks, 
1995).  Due to a lack of other available probabilistic streamflow forecasts, climatology 
forecasts were generated from the historical observations to serve as reference forecasts.  
The relative skill of the ESP forecasts was evaluated against the climatology forecasts 
through the use of the Ranked Probability Skill Score (RPSS):  
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where fRPS  is the average RPS of the forecasts for a particular forecast period, clRPS  

is the RPS of the climatology (reference) forecasts, and perfectRPS is equal to a perfect 
RPS score (Wilks, 1995).   

A positive RPSS indicates improvement over climatology and that the forecasts 
provided additional accurate predictive information.  A perfect score is 100%.  A 
negative RPSS indicates that the ESP forecasts performed worse than the climatology 
forecasts.   
 
Advantage of RPS and RPSS 
 

The RPS evaluates the entire distribution of the forecast.  It increasingly penalizes 
the forecast for assigning high probability to categories farther from where the 
observation occurred.  In this way, the RPS is able to account for the distance and the 
magnitude of the forecast probability with respect to the observation.  The RPSS can be 
used to compare the RPS of ESP to the RPS of reference forecasts (e.g., climatology, 
other forecast methods) in order to evaluate the percent improvement that the ESP 
forecasts display over alternative forecasts. The RPSS can also be used to evaluate 
improvements made during the forecasting process.      
 
Calculation Steps for RPS and RPSS 
For one forecast: 

1. Choose forecast percentiles to represent forecast probability and flow categories. 
2. Determine streamflow threshold values for each portion of the distribution equal 

to the forecast probability (or streamflow) desired, based on the historical 
distribution or distribution of the traces. 

3. Determine forecast trace relative frequency per forecast probability category.  
When using traces rather than flow climatology, the relative frequency will be 
equal to the probability for each non-exceedance category.  (Note: RPS will be the 
same whether exceedance or non-exceedance probabilities are used.) 

4. Place a one in the category in which the observation occurred and a zero in all 
others. 

5. Determine the cumulative distribution of the forecast and observation probability.   
6. Take the squared difference of each forecast cumulative probability category and 

corresponding observation cumulative probability category and sum the results.  
Because the last interval will always contain ones for both the forecasts and 
observation, this will be equal to zero.   

 
For several forecasts: 

7. The average RPS at one forecast point or group of points should be calculated for 
forecasts grouped according to lead time, forecast issue date, or some similar 
characteristic. 

8. The skill score can be calculated for average RPS or individual RPS values.  The 
reference forecasts must follow the same format as the ESP forecasts. 

 
Example MATLAB scripts used to calculate RPS and RPSS are provided in 

Appendix I. 
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Discrimination 
 
 The likelihood that a particular forecast would have been issued prior to a specific 
observation is expressed in the conditional distribution of the forecasts given the 
observed (p(f|o)) (Wilks, 1995).  If the value of p(f|o) for a particular observation 
category is similar to that for a different observation, the forecasts are not discriminatory 
for that observation.  On the other hand, when p(f|o) equals zero for all possible 
observations except one, the forecast procedure is perfectly discriminatory for forecasts 
for that observation  (Murphy and Winkler, 1987).   

The discrimination diagram displays the conditional distribution (p(f|o) as a 
function of forecast probability (Figure 1).  If the forecasts are discriminatory, then the 
p(f|o) for various o will not overlap to a great degree on the discrimination diagram 
(Figure 1a).  If there is little discrimination, there will be considerable overlapping 
(Figure 1b) (Murphy et al., 1989).  A discrimination diagram is produced for occurrences 
of observations in each flow category; therefore, forecasts that were issued prior to 
observations of low flows are plotted on a separate discrimination diagram than forecasts 
that were issued prior to other flow categories.  The number of observations represented 
on each plot is dependent upon the number of historical observations in the respective 
flow category.   
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Figure 1: Example discrimination diagrams for forecasts with (A) perfect discrimination 

for low flows, and (B) no discrimination for forecasts issued prior to low flow 
observations.   

 
 
Calculation Steps for Discrimination 

1. Choose flow intervals and probability categories of interest (may be different). 
2. Determine forecast probability from the relative frequency of traces within each 

forecast category.  The categories are based on the historical streamflow 
distribution.  

3. Divide the forecasts into groups based on the observation type that followed the 
forecast (i.e., low flow/high flow, flood/no flood). 

4. For each observation group, determine the relative frequency of the different 
forecast probability values that were given to each of the observation types.   Each 
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observation group should have information about each forecast probability level 
and the amount of probability given to each flow type. 

5. Plot the forecast probabilities given to each flow category according to the 
observations (one graph for each observation category). 

6. Count the number of observations in each category; this equals the marginal 
distribution of observations. 

 
Reliability 

Reliability summarizes the information contained in the conditional distribution 
(p(o|f)) and describes how often an observation occurred given a particular forecast.  
Ideally:  

ffop == )|1(      (7) 
 

(Murphy and Winkler, 1987).  That is, for a set of forecasts where a forecast probability 
value f was given to a particular observation, o, the forecasts are considered perfectly 
reliable if the relative frequency of the observation equals the forecast probability.  
(Murphy and Winkler, 1992).   

The reliability diagram is used to display forecast reliability (Figure 2).  The 
conditional distribution ((p(o|f)) of a set of perfectly reliable forecasts will fall along the 
diagonal line on the diagram.  Forecasts that fall within the shaded region of this figure 
are underforecasting or are not assigning enough probability to the subsequent 
observation.  Those that fall opposite the shaded regions are overforecasting (Murphy et 
al., 1989).  Forecasts that fall on the no-resolution line are unable to resolve occasions 
when the event is more or less likely than the overall climatology (Wilks, 1995).  Such 
forecasts plot along the horizontal line associated with their climatology (e.g., forecasts 
with no-resolution for flow in the highest 25% (high flows) would plot along the no-
resolution line at 25% relative frequency of observations).  
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Figure 2:  Diagram describing interpretation of the reliability diagrams.  Example is for 

forecasts that are predicting flows in lowest or highest 25% flow category. 
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As forecasts become sharper or more refined, the forecast probability becomes 
less distributed, and the forecast probability is more frequently assigned to the extreme 
non-exceedance categories (e.g., 0% and 90-100%) (Murphy and Winkler, 1987).  Thus, 
the sample sizes within the middle categories become smaller with sharper forecasts.  
Variations in small sample sizes decrease the ability to assess the quality of the forecasts; 
hence forecast frequency is often displayed with reliability diagrams for better contextual 
analysis (Wilks, 1995).   
 
Calculation Steps for Reliability 
Repeat steps 1 and 2 from discrimination. 

3. For each observation type, determine the number of times that observation 
occurred after a given forecast probability value was issued for that flow.   Do this 
for each probability category.  Calculate the relative frequency of the observation 
type at each probability category.   

4. Determine the number of forecasts that were issued with probability values equal 
to the probability categories (marginal distribution of the forecasts). 

5. Plot the relative frequency of the observations for each observation type.  The 
data point size may reflect the marginal distribution of the forecasts in each 
category, or a separate histogram can be created.  

 
Advantages of Discrimination and Reliability 
 

Discrimination and reliability are useful in assessing forecast performance at 
various levels of the historical distribution.  Different parts of the forecast probability 
distribution and the streamflow distribution can be analyzed in a way that reflects the 
concerns of the forecasters and the forecast users (e.g., drought conditions, flood levels).  
Discrimination and reliability can give insight into forecast performance and where 
improvements are needed.  Discrimination gives information about the ability of the 
forecasts to distinguish between the probabilities of various observations.  It reveals 
whether or not the forecasts are able to decipher a higher likelihood for one type of 
observation over another.  It can show whether forecasts are better at predicting some 
flow types over others and which predictions are more likely to be consistent over a 
number of forecasts.  Reliability gives information about the calibration between forecast 
probability and the frequency of the predicted observations.  It reveals bias in the 
forecasts and thereby gives insight into needed adjustments.   

An example MATLAB script used to calculate discrimination and reliability is 
provided in Appendix II.   
 
III.  Study Data and Data Processing 
 

Forecast data, forecast observations, and historical observations were requested 
from NWS personnel at the Office of Hydrology (OH) in Silver Spring, Maryland, for as 
many forecast points as were available.  OH collected streamflow forecasts and 
observation data from the issuing RFCs.  The data were then screened and reformatted (if 
necessary) by OH personnel before being sent to the University of Arizona (UA) 
Department of Hydrology and Water Resources.   
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Data for 42 Ohio River Forecast Center (OHRFC) forecast points was received by 
UA.  The forecast files had the following characteristics: 

• ASCII format 
• Contained ESP trace values and forecast exceedance probabilities based on the 

empirical distribution of the traces. 
• Forecast Type 1 was predictions of mean weekly stage (7-day interval) with a 6-

day lead time. 
• Forecast Type 2 was predictions of maximum monthly stage (30 day interval) 

with a 6-day lead time. 
• Average number of Type 1 and Type 2 forecasts per forecast point was 11. 
• Forecast periods covered 12/12/2001 to 3/24/2002. 
• Forecast values included any effects of post-processing and represent the actual 

forecast information that was issued by OHRFC.   
• The forecasts started and ended at 11 Z time (6:00 a.m. EST) on the first and last 

day of the forecast interval. 
 

Forecast observations are defined as the value of the forecasted variable observed 
at the forecast point for the exact period of the forecast.  The forecast observations files 
had the following characteristics: 

• Observations of river stage in feet with an average time interval of one hour. 
• Spanned the forecast period. 
• Available for each point. 

 
In some forecast observation data files, the hour interval was shortened during 

certain periods to ½ hour and lengthened during other periods to intervals greater than 1 
hour.  In the latter case, this resulted in a situation where data were missing within the 
forecast interval.  Missing data at the beginning and the end of the forecast interval made 
it necessary to generate a set of rules to deal with the missing forecast observations.   

• If an 11 Z data point was missing at the beginning of the forecast interval, the 
observed data were taken to start at 0 Z of the first day and end at 11 Z of the last 
day.   

• If an 11 Z data point was missing at the end of the forecast interval, the interval 
ended at the last observation of the last day.  (Data missing at the beginning and 
the end of the interval resulted in an 8-day observation period that includes the 
entire first and last day.)  

• If one day was missing at either the beginning or the end of the forecast interval, 
the observed period started or ended at one day past the missing day.   

• Where data for more than one day were missing, the forecast was not evaluated.   
 

In addition, the forecast observed data provided by the NWS ended 3 days earlier 
than the last 7-day forecast provided.  Therefore, the last weekly mean stage forecast was 
not evaluated.  The forecast observations ended and average 24 days before the monthly 
maximum stage forecast intervals ended; therefore, the last 4-5 monthly forecasts could 
not be evaluated.   

OH provided historical observations for some of the forecast points as available.  
Historical observations are defined as forecast variable observations realized during the 



 10

same forecast interval for years other than the forecast year.  The historical data are used 
to develop the climatology of the forecasted hydrologic variable.  The historical 
observations files had the following characteristics: 

• Values of mean daily stage. 
• The historical observation data were severely limited.   
• Observed data were available for 19 of the 43 forecast points. 
• Average number of historical years was 3. 
• The most recent data were from 1984 (with the exception of WROT1, which 

ended at 1992). 
 

Because the historical observations were daily rather than hourly measures, it was 
necessary to decide whether to include the first and last forecast day, resulting in an 8-day 
period, or to omit one or the other, resulting in a 7-day period.   Because the data was 
already limited and streamflow data display persistence, an 8-day (30-day) period was 
used and a mean (maximum) stage was computed using the data from all days within the 
forecast interval.  The missing historical observations were dealt with in a similar manner 
to forecast observations: 

• If the forecast start or end day data were missing, either the day after or the day 
prior was used, depending upon availability.   

• If data for more than one day were missing at either the beginning or the end of 
the forecast interval, data for that historical year were considered missing.   

 
In some instances, data from as many as 10 days would be missing from the 

historical record during a 30-day forecast interval.  This severely limited the quantity of 
past observations available to generate a distribution for monthly forecasts. 
 
IV.  Procedures  
 

Two ways to derive forecast probability from the traces was examined in this 
project.  In the first case, the exceedance or non-exceedance probability associated with 
each trace is calculated from the empirical distribution of the traces.  This is the simplest 
method because it does not require data other than the forecast traces.  The forecast is 
usually developed for a set of the probability values (e.g., 5, 10, 25, 50, 75, 90, and 95% 
exceedance probability) rather than as a continuous function.  This method results in 
forecasts that always provide the same exceedance probability ranges, while the 
forecasted streamflow values change.   

In the second case, the probability is based on the relative frequency of traces that 
fall within certain streamflow categories.  The streamflow categories are chosen based on 
streamflow levels of interest, such as particular percentiles.  Boundary values for the 
categories are obtained from the empirical distribution of historical observations (or 
known streamflow climatology) at the forecast point for the same forecast interval.  The 
number of forecast traces that fall within each category according to their value is 
recorded.  The relative frequency of the forecast traces per bin provides the forecast 
probability for the given flow category.  This method results in forecasts that always 
predict for the same streamflow values, while the probability applied to the streamflow 
values will change.   
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In case two, historical observations provide a point of reference by which to 
qualify the forecasts. This has an advantage over using the forecast traces alone in that it 
provides the forecaster and forecast user a context with which to evaluate and understand 
the forecast.  This point of reference information gives an indication whether the 
forecasted flow is characteristic of or unusual for the forecast point.  Without past 
records, such as in case one, the ESP forecast can indicate only what streamflow values 
could be expected.  It is difficult to know whether the forecast is predicting flows to be 
below, at, or above normal.  A forecast user without personal or ancillary knowledge of 
expected values will have a difficult time relating this information to their specific 
applications.  A final benefit to applying the second case to the ESP forecasts is that the 
verification statistics described in Section II can be utilized.   

In this study, forecast categories were based on chosen percentiles of the 
historical distribution.  To estimate the outer 1%, it is necessary to have 100 sample 
points.  To estimate the outer 5%, at least 20 samples would be needed.  Because the 
historical observations sets were so limited, it was impossible to use the same exceedance 
probability categories used by OHRFC.  Only 10 data sets had records long enough to 
allow application of the verification statistics (Table 2).  The minimum flow category that 
could be achieved was 15% (a minimum of 6 observations required) for 6 points and 25% 
(a minimum of 3 observations required) for 10 points.   
 
 

Table 2: Study forecast points. 
Minimum Length of 

Flow Distribution Forecast Historical 
Category Point Record

BBVK2 8
CMBK2 8
ELKK2 7
PKYK2 6
PTVK2 6
WLBK2 8
DLYW2 3
FLRK2 3
PSTK2 5
WRTO1 4

15
%

 &
 2

5%
25

%

 
 
 

Two groups of forecasts were created: weekly mean stage forecasts with a 6-day 
lead time and maximum monthly stage forecasts with a 6-day lead time.  The statistics 
from all forecast points were averaged as an assessment of forecast skill in the general 
study area of the OHRFC region.  Four main analyses were applied to the forecasts: 
calculation of RPS without historical information; calculation of RPS with historical 
information and comparison to climatology forecasts (RPSS); reliability; and 
discrimination.  Variations of the forecast probability and flow category sets were 
examined for RPS, RPSS, discrimination, and reliability based on the limitation in the 
previous paragraph.  The variations are explicitly stated in the results section.   
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V.  Results and Interpretation 
 
RPS Only 
 

The RPS was calculated for ESP forecasts using probability based on the 
empirical distribution of the traces.  The probability categories were: .05, 1.0, .25, .5, .75, 
.90 and  .95 non-exceedance.  The RPS was calculated for each forecast and averaged by 
forecast point.   

For mean weekly stage forecasts, the forecasts from FLRK2 and WRTO1 
performed the best (smallest RPS values) (Figure 3).  BBVK2 and WLBK2 forecasts 
performed the worst (highest RPS values).  The best maximum monthly stage forecasts 
were issued for WRTO1 and CMBK2, while the worst forecasts were issued for PTVK2 
and WLBK2 (Figure 4). 
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Figure 3:  RPS analysis results for mean weekly stage forecasts.  
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Figure 4: RPS analysis results for maximum monthly stage forecasts. 
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RPS scores for the 33 forecast points not included in this study are provided in 
Appendix III.   

Because the actual RPS value is difficult to evaluate independently, the use of the 
RPS in the absence of reference forecasts is limited to forecast comparison among 
different forecast locations, as illustrated in this section.  However, the RPS is useful in 
identifying regions where the predictions are not performing as well as others.  This 
information can give forecasters an indication of where to conduct investigations into 
calibration, data quality control, event hydrology, or other factors contributing to the 
poorer forecast performance.  Adjustments to the forecast system or subsequent forecasts 
can then be completed accordingly.   
 
RPS and RPSS 
 

In this section, the forecast probability was distributed according to categories 
defined by the historical climatology.  The RPS for the forecasts and the streamflow 
climatology forecast were calculated. The performance of the ESP forecasts was then 
compared to climatology forecasts for the same location by calculating the skill score.   

Historical observations were required for both development of ESP probability 
within streamflow categories and for generating climatology forecasts.  Therefore, the 
forecast probability intervals were limited to available historical data.  The following 
combinations of forecast categories was examined:  (.25, .5, .75, and 1.0) and (.25, .75, 
and 1.0) for all 10, and (.15, .25, .5, .75, .85, and 1.0) and (.15, .85, and 1.0) for 6 of the 
ten.  Any number of combinations of probability values can be created; therefore, some 
criteria needed to be defined to make the results more concise.  The sets chosen here were 
based on the limitations of the observed data, the values used by the NWS in their 
forecasts files, and the number of intervals desired.   

The average skill score for mean weekly stage forecasts for the four forecast 
categories is shown in Figure 5.  The skill score is interpreted as percent improvement 
over climatology.  The results indicate that the mean weekly stage ESP forecasts 
performed better on average than the climatology forecasts.  In addition, forecast 
improvement was highest when the (.25, .75, and 1.0) probability intervals were used and 
lowest when the (.15, .25, .5, .75, .85, and 1.0) intervals were used.  Forecasts that 
included the 15% outer categories displayed poorer performance than those where the 
smallest category was 25%.   
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Figure 5:  Ranked probability skill score for mean weekly stage forecasts. 
 
 

Monthly maximum stage forecasts performed worse than the climatology 
forecasts (Figure 6). The forecasts that included a 15% outer category were much worse 
(more negative) than the forecast with only 25% categories.  This indicates that either the 
forecasts have low skill when predicting small categories for monthly forecasts, or that 
the four forecast points not included in this average were significantly better than the 
remaining six.   
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Figure 6: Ranked probability skill score for maximum monthly stage forecasts. 
 

The RPS is sensitive to the number and size of forecast categories.  Because the 
RPS is a measure of distance as well as probability value, fewer categories will result in 
less distance from the observations and a better score.  This further illustrates that an RPS 
score alone is difficult to interpret.  

With the absence of a reference forecast, such as climatology, it is difficult to 
understand the RPS value.  The RPSS, therefore, is a more meaningful score because it 
can convey both the direction and degree of improvement over another forecast of 
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interest.  The RPSS is also useful in assessing forecast improvement due to operational 
modifications of the forecast or forecast system such as pre-processing or post-
processing, re-calibration, initial state modifications, and/or trace weighting.   
 
Discrimination & Reliability 
 

Discrimination and reliability analyses require historical observations.  In this 
applications, the forecast flow categories considered were the lowest 25%, middle 50%, 
and highest 25% of the historical distribution.  For 6 forecast points, the forecasts were 
re-examined with the outer 15% category and middle 70% categories.  Because the 
discrimination and reliability diagrams become difficult to read when more than three 
flow categories are displayed at once, no more than three categories were used.    

In the case of discrimination and reliability, the probability categories do not need 
to match the flow categories as in the RPS calculation.  Experimentations with different 
probabilities categories indicated that the statistical information was best displayed with 
five or more intervals.  Therefore, 7 forecast probability categories were applied to the 
discrimination and reliability diagrams (0%, >0-10%, >10-25%, >25-50%, >50-75%, 
>75- 90%, >90-100%).   

Forecasts of mean weekly stage displayed good discrimination for predicting 
flows in the middle 50% of the historical distribution (Figure 7).  Forecasts indicated a 
decreased likelihood of high flows occurring prior to observations in the lowest 25%.  
Discrimination was very good when predicting flows in the middle 70% of the 
distribution (Figure 8); however, this category is rather large and may not be useful to 
water managers and decision makers.  The forecasts displayed no discrimination for 
predicting flows in the highest 25%, highest 15%, and lowest 15% of the streamflow 
distribution.   

Monthly maximum forecasts showed no discrimination for high or low flows of 
the various flow categories examined and only a small degree of discrimination for 
predicting the middle 50% flow category (Figure 9).  However, the forecasts did 
discriminate well for the middle 70% (Figure 10). 
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Figure 7:  Discrimination diagrams for weekly mean stage forecasts for forecasts issued 
prior to observations in the (a) lowest 25%, (b) middle 50%, and (c) highest 25% of the 

historical distribution. 
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Figure 8: Discrimination diagrams for weekly mean stage forecasts for forecasts issued 
prior to observations in the (a) lowest 15 %, (b) middle 70%, and (c) highest 15% of the 

historical distribution. 
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Figure 9: Discrimination diagrams for monthly maximum stage forecasts for forecasts 

issued prior to observations in the (a) lowest 25 %, (b) middle 50%, and (c) highest 25% 
of the historical distribution. 
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Figure 10: Discrimination diagrams for monthly maximum stage forecasts for forecasts 
issued prior to observations in the (a) lowest 15%, (b) middle 70%, and (c) highest 15% 

of the historical distribution. 
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Reliability diagrams shows that weekly mean forecasts underestimate both the 
lowest 25% (Figure 11) and lowest 15% flows categories (Figure 12).  The ESP forecasts 
tended to overestimate the middle flows when high forecast probability values were 
assigned.  The forecasts displayed no reliability for the highest 25% or highest 15% flow 
categories.  Changes in the forecast performance between the middle 50% and middle 
70% are most likely due to the most accurate forecasts switching categories at the 
different cutoff points, thereby changing the skill of the middle category.   

Reliability performance for maximum stage forecasts was quite variable across 
the forecast probability values.  Reliability was best for the lowest 25% and middle 50% 
categories when probability values between 10% and 75% were issued (Figure 13).  They 
also showed some skill when predicting the highest 25% with probability below 50%.  
The forecasts show poor reliability for the highest 15% flow category (Figure 14).  The 
forecast skill is variable over the range of forecast probabilities for predicting the lowest 
15% and middle 70% flows.    

The size of the data points on the reliability diagrams illustrates the relative 
frequency of the forecasts for each forecast probability category (bin).  For better 
illustration, the bin value was transformed where point size = 2([(bin size +1) λ-1]/λ) and 
λ = 0.6.  The relative frequency of the forecasts indicates the degree of refinement.  A 
forecasting system that more often predicts with extreme forecast probability values such 
as 0 or 100% is considered to produce sharp forecasts.  The ESP stage forecasts do not 
illustrate a great degree of refinement.     

The number of observations that fall within the various categories can modify the 
results.  If the forecast system has skill, the chances of revealing this skill through the use 
of discrimination and reliability will be greater when the sample size is larger.  Statistical 
results are considered more reliable from a larger sample size.  The relative frequency of 
the forecasts can give insight into what statistical information may be most valid based on 
the number of forecasts in each probability category. 

The reliability diagrams indicate where biases occur in the forecasts and provide a 
direction of improvement that is required.  Operationally, forecasters can use this tool to 
interpret their forecasts in light of the knowledge that they tend to over- or under-forecast 
at different parts of the flow distribution.  Confidence in the statistical results will come 
with increased sample sizes and better historical observations.  This will provide the 
justification for altering forecasts based on statistical results.   
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Figure 11: Reliability diagrams for weekly mean stage forecasts for forecasts issuing 

probability to the (a) lowest 25 %, (b) middle 50%, and (c) highest 25% of the historical 
distribution.   
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Figure 12: Reliability diagrams for weekly mean stage forecasts for forecasts issuing 
probability to the (a) lowest 15 %, (b) middle 70%, and (c) highest 15% of the historical 

distribution. 
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Figure 13:  Reliability diagrams for monthly maximum stage forecasts for forecasts 
issuing probability to the (a) lowest 25 %, (b) middle 50%, and (c) highest 25% of the 

historical distribution.
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Figure 14: Reliability diagrams for monthly maximum stage forecasts for forecasts 

issuing probability to the (a) lowest 15 %, (b) middle 70%, and (c) highest 15% of the 
historical distribution. 
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VI.  Discussion  
 

To evaluate the ESP forecasts using the statistics applied in Franz (2001), the 
following data were needed: 

• Forecast data  
• Observation(s) over the forecast interval (termed the forecast observation) 
• Historical observations or streamflow (stage) climatology   

 
The forecast data should include the forecasted variable values and the associated 

probability.  Current NWS products and data that would be useful are the ESP-generated 
forecast traces and the cumulative distribution graphs.  Plots such as bar graphs would 
not contain the proper information to apply the verification statistics.  Further 
investigation into current NWS ESP products that would be conducive to probabilistic 
forecast evaluation is needed. 

The single most limiting factor in completing a thorough and confident forecast 
evaluation using the procedures proposed for this study was the missing observed data. 
The observations (both forecast and historical) should be derived from data spanning the 
same calendar days as the forecast.  In addition, the time step of the observation records 
should be commensurate to the time step at which the forecast traces were generated.  For 
example, the historical data available were mean daily stage.  These data types are 
suitable for use in evaluating the mean weekly stage forecasts, but not ideal for 
evaluation of the monthly maximum forecasts.  Because maximum daily stage 
observations were not available, the maximum monthly stage climatology needed to be 
calculated from the mean daily stage, resulting in climatology for monthly maximum 
mean stage. 

The historical data used in the development of the streamflow climatology were 
not current; they generally included only information from the 1970s and 1980s.  Data 
from more recent years may better represent the current hydrologic systems.  Possible 
changes in equipment, data collection techniques, data quality control, basin hydrology, 
and climate all challenge the validity of using only 20- to 30-year old data to describe the 
current flow regime.   

The data issues mentioned above should be considered when drawing conclusions 
from the evaluations presented in this report.  The lack of sufficient historical 
observations may be a major limiting factor in the NWS effort to fully verify probabilistic 
forecasts at this time using methods outlined and applied in Franz (2001), unless a 
feasible alternative method of obtaining climatology distributions is determined.  
Discrimination and reliability could be used without a distribution if critical flow or stage 
levels were defined such as above or below flood stage.  In this case, only the flood stage 
value would needed.   

Probabilistic forecast evaluations conducted without past flow records provide 
limited information.  From a user’s perspective, the past distribution is a means by which 
a forecast can be put into context.  In other words, the forecast user may gain more useful 
information about anticipated flows from a forecast that gives an indication of the 
likelihood of having extreme low, extreme high, or normal flows rather than the 
likelihood of a specific flow value.  Without characteristic knowledge of the basin, a 
forecast user would not know if a prediction for a particular flow value indicated flood 



 26

conditions or drought conditions.  By using past observations, a categorical forecast can 
be generated that may be more informative to a user unfamiliar with the basin.  
Application of RPSS, discrimination, and reliability as illustrated in this report will 
provide the forecaster and forecast user insight into forecast skill for predicting different 
flow conditions.  This information is valuable to a decision maker when deciding whether 
or not to rely on the forecast.  The forecaster can use this information to indicate 
confidence in the predictions and to adjust them accordingly.       

The methods presented here will allow the NWS to track ESP forecast 
performance in both time and space.  It will also allow for identification of needed 
improvements and regions where ESP may not work well.  Additionally, forecast quality 
may change with season, climate state, or length of historical record.  Once implemented, 
the verification system will allow comparison of forecast performance for different 
regions, for different events, and for changes in the forecasting system.  Continual 
evaluations will allow forecasters to evaluate their current forecasts based on past 
performances and make adjustments accordingly.  Comparison of forecast points will 
allow insight into why ESP works better in some regions than in others.  In addition, the 
forecast verification will provide a basis for making adjustments and improvements to the 
forecast system.  Scores such as the RPSS lend themselves to assessing forecast skill 
changes resulting from pre-processing, post-processing, and system modifications 
activities.   

The statistical measures are also flexible and would allow forecasters (and users) 
to analyze streamflow levels of interest.  Forecast probability intervals can also be 
changed.  However, some analytical consistency is required as illustrated in the changes 
in RPSS due to category size.  Finally, the statistics can be updated as new forecasts are 
generated providing long-term average forecast performance information.   
 
VII.  Conclusions  
 

Traditionally, forecast evaluations have focused on dichotomous outcomes, 
whether the event occurred or not.  However, this type of analysis is not sufficient or 
proper in the evaluation of probabilistic forecasts because the traditional verification 
methods cannot directly evaluated forecast probability.  Probabilistic forecasts require 
verification methods that can assess the degree to which the forecasts apply probability to 
the subsequently observed event.   

This “proof of concept study” was a necessary step to support incorporation of 
probabilistic evaluation methods into the NWSRFS.  The results of this study support the 
recommendation that the NWS begin implementing the RPS, RPSS, discrimination, and 
reliability verification procedures in their ESP evaluation procedures.  These methods 
were successfully applied to mean weekly stage and maximum monthly stage forecasts 
obtained from the Ohio River Forecasting Center (OHRFC).  While the evaluation 
presented here only included stage forecast, the probabilistic forecast evaluation methods 
described in this document can be applied to any predicted streamflow variable given the 
appropriate forecast and observation data.  The methods allow detailed evaluation of a 
variety of information contained within the ESP forecasts.  The method can be designed 
to emphasize events of interest and concern.   



 27

The ESP system has been available to RFCs for close to 15 years and has been 
implemented on a limited basis at some RFCs.  Within the next several years, it is 
anticipated that ESP will become more widely used.  Implementation of ESP verification 
methods will allow forecasters and users to begin developing an understanding of the 
usefulness and limitations of the system.   
 
VIII.  Recommendations 
 

Forecast verification methods have been successfully applied to operational NWS 
ESP forecasts; therefore, based on this study, the following recommendations are being 
made: 
 
(1)  Three verification measures are recommended for evaluation of NWS ESP 
forecasts:  

• ranked probability score (RPS) (from which is derived the ranked probability 
skill score (RPSS)) (Epstein, 1969, and Wilks, 1995),  

• discrimination (Murphy and Winkler, 1987, Murphy et al., 1989, and Wilks, 
1995), and 

• reliability ((Murphy and Winkler, 1987, Murphy et al., 1989, and Wilks, 
1995).   

 
It has been illustrated that these methods are well-suited for probabilistic 

streamflow forecasts verification. 
 
(2)  In order to implement the recommended evaluation techniques, it is necessary to 
have historical streamflow data to characterize the hydrologic system of the forecast 
basin and to develop comparison forecasts.  Because sufficient climate data may be 
lacking in some regions, it is recommended that research be conducted to investigate 
other sources of the information while observations are accumulating. The following 
suggestions supply a basis for such an investigation. 

Calculation of the skill score requires a comparison forecast against which the 
ESP forecast is evaluated.  In this study, the ESP forecasts were evaluated against 
climatology forecasts developed from climate data.  The flow categories were also 
defined based on this data.  Insufficient climate data requires the use of alternative 
information for use in calculation of the skill score such as model climatology generated 
from historical temperature and precipitation data, persistence, or regression forecasts.  
Climatology for the development of flow categories could possibly be derived from a 
forecaster’s personal knowledge, USGS rating curves (back-calculating from streamflow 
records), or USGS return flow equations.  Data are also published yearly by the USGS 
for every gauge station; however, digitization of these data would be extremely time-
consuming.   

Finally, the verification methods recommended have been applied to hydrologic 
forecasts with medium to long (week to months) forecast windows.  They have not been 
tested on forecasts with shorter intervals, such as daily flows.  Further investigation into 
the feasibility of using these methods for such forecasts is recommended. 
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(3)  The two forecast development methods showed two ways to think about 
hydrologic forecast probability.  One included only trace distribution information from 
which the RPS was calculated; the other used historical observations to shift forecast 
probability between defined flow categories.  The forecast data required are primarily 
the issued forecast traces or probability distribution functions.  Archiving of the 
traces provides the evaluator with the ability to apply a much broader variety of analyses; 
therefore, it is recommended that the traces always be archived when an ESP forecast is 
produced.  However, the NWS may also want to archive the following data for use in re-
analysis studies:  

• Pre- and post-processing information 
• Initial conditions 
• State updates  
• Run-time modifications 
• Trace distribution type 
• Original traces (pre-modifications) 

 
(4)  These evaluation techniques rely on past records to generate and evaluate the 
forecasts; a poor record imparts obvious limitations to these techniques.  Thus, the NWS 
RFCs should begin archiving streamflow data at the appropriate time interval and 
locations so that a proper data archive can begin to be developed.  The following data are 
required: 

• Observations from the forecast year for forecast period 
• Historical observations for forecast period 
 
Observations should be commensurate with the forecasted variable type, i.e., stage, 

discharge, etc. 
 

The RFCs may also wish to archive the following data: 
• Rating curves 
• Quantitative precipitation forecasts (QPFs) 
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Appendix I 
 
 

Example MATLAB scripts for calculation of RPSS and RPS 



 31

%Script to calculate ranked probability score and ranked probability skill scores for ESP 
%forecasts 
%Kristie Franz 
%University of Arizona 
%June, 2002 
%For more information contact Kristie at kristie@hwr.arizona.edu 
 
clear all; 
close all; 
 
var = input('Enter forecast point name: \n', 's'); 
fname1 = sprintf('%s%s%s', 'results/',var,'SS_all_wk_mo_emp1'); 
fname2 = sprintf('%s%s%s', 'results/',var,'SS_rps_wk_mo_emp1'); 
 
fid1 = fopen(fname1,'w');  
fid2 = fopen(fname2,'w');  
 
load obs_mean_max;  
load traces_mean; 
load traces_max; 
load obs_mean_max; 
load wkly_mean_stage; 
load mnthly_max_stage; 
load fcst_mean; 
 
[z C] = size(obs_mean_max);  
 
quants = 6; 
SS_all = zeros(2,z);         
 
for cycle = 1:2 
    clear rps_y; 
    clear rps_o; 
    clear rps_y3; 
    clear rps_o3; 
    clear rps_y2; 
    clear rps_o2; 
    clear rps_y4; 
    clear rps_o4; 
    clear rps_temp_f; 
    clear rps_temp_o; 
    clear rps_temp_f3; 
    clear rps_temp_o3; 
    clear rps_temp_f2; 
    clear rps_temp_o2; 
    clear rps_temp_f4; 
    clear rps_temp_o4; 
    clear cum_fcasts; 
    clear cum_obs; 
    clear cum_fcasts3; 
    clear cum_obs3; 
    clear cum_fcasts2; 
    clear cum_obs2; 
    clear cum_fcasts4; 
    clear cum_obs4; 
    clear prob_fcasts; 
    clear prob_obs; 
 
    ignore = 0; 
 ct = 0; 
 ct2=0; 
    if cycle == 1 
   [y B] = size(wkly_mean_stage); 
  [x A] = size(traces_mean); 
  forecasts = traces_mean; 
  prob_obs = zeros(y,quants); 
  quantiles = zeros(y,quants); 
  obs_col = 1; 
               temp_obs=wkly_mean_stage; 
    else 
  [y B] = size(mnthly_max_stage); 
  [x A] = size(traces_max); 
  forecasts = traces_max; 
  prob_obs = zeros(y,quants); 
  quantiles = zeros(y,quants); 
     obs_col = 2; 
               temp_obs=mnthly_max_stage; 
      end 
 
    for yr = 1:y 
        clear observed; 
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        if obs_mean_max(yr,obs_col)~=-9999 
                observed = -9999; 
                temp_k = 0; 
                for u = 1:B 
                    if temp_obs(yr,u)~=-9999 
                        temp_k = temp_k+1; 
                        observed(temp_k) = temp_obs(yr,u); 
                    end 
                end    
 
            obs = sort(observed'); 
            ct3 = 0; 
            for i = 1:length(obs) 
                ct3 = ct3+1; 
                obs(i,2) = (ct3/(length(obs)+1)); 
            end 
 
            emp15 = interp1(obs(:,2),obs(:,1),.15); 
            emp25 = interp1(obs(:,2),obs(:,1),.25); 
            emp50 = interp1(obs(:,2),obs(:,1),.5); 
            emp75 = interp1(obs(:,2),obs(:,1),.75); 
            emp85 = interp1(obs(:,2),obs(:,1),.85);   
 
      for i = 1:x 
                 if forecasts(i,yr) <= emp15 

                    quantiles(yr,1) = quantiles(yr,1) + 1; 
                 elseif forecasts(i,yr) <= emp25 

                    quantiles(yr,2) = quantiles(yr,2) + 1; 
               elseif forecasts(i,yr) <= emp50 
                    quantiles(yr,3) = quantiles(yr,3) + 1; 
               elseif forecasts(i,yr) <= emp75 
                    quantiles(yr,4) = quantiles(yr,4) + 1;   
               elseif forecasts(i,yr) <= emp85 
                    quantiles(yr,5) = quantiles(yr,5) + 1; 
               else 

                      quantiles(yr,6) = quantiles(yr,6) + 1; 
                end 
           end   

 
            if yr<=z 
                if obs_mean_max(yr,obs_col) <= emp15 
                    prob_obs(yr,1) = 1; 
                elseif obs_mean_max(yr,obs_col) <= emp25 
                    prob_obs(yr,2) = 1; 
                elseif obs_mean_max(yr,obs_col) <= emp50 
                    prob_obs(yr,3) = 1; 
                elseif obs_mean_max(yr,obs_col) <= emp75 
                    prob_obs(yr,4) = 1; 
                elseif obs_mean_max(yr,obs_col) <= emp85 
                    prob_obs(yr,5) = 1; 
                else                          
                    prob_obs(yr,6) = 1; 
                end 
            end 
 
      for t = 1:quants 

                prob_fcasts(yr,t) = quantiles(yr,t)/x;  
      end 
        else 
            prob_obs(yr,1:quants) = 0; 
            prob_fcasts(yr,1:quants) = 0; 

    ct = ct+1; 
            ignore(ct) = yr; 
        end    
end 
 
        climo = [.15 .25 .50 .75 .85 1.0]; 
        cum_fcasts = cumsum(prob_fcasts,2); 
        cum_obs = cumsum(prob_obs,2); 
 
        climo3 = [.25 .75 1.0];   
        cum_fcasts3(:,1) = cum_fcasts(:,2); 
        cum_fcasts3(:,2) = cum_fcasts(:,4); 
        cum_fcasts3(:,3) = cum_fcasts(:,6); 
        cum_obs3(:,1) = cum_obs(:,2); 
        cum_obs3(:,2) = cum_obs(:,4); 
        cum_obs3(:,3) = cum_obs(:,6); 
 
       climo2 = [.15 .85 1.0]; 
       cum_fcasts2(:,1) = cum_fcasts(:,1); 
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       cum_fcasts2(:,2) = cum_fcasts(:,5); 
       cum_fcasts2(:,3) = cum_fcasts(:,6); 
       cum_obs2(:,1) = cum_obs(:,1); 
       cum_obs2(:,2) = cum_obs(:,5); 
       cum_obs2(:,3) = cum_obs(:,6); 
 
       climo4 = [.25 .5 .75 1.0]; 
       cum_fcasts4(:,1) = cum_fcasts(:,2); 
       cum_fcasts4(:,2) = cum_fcasts(:,3); 
       cum_fcasts4(:,3) = cum_fcasts(:,4); 
       cum_fcasts4(:,4) = cum_fcasts(:,6); 
       cum_obs4(:,1) = cum_obs(:,2); 
       cum_obs4(:,2) = cum_obs(:,3); 
       cum_obs4(:,3) = cum_obs(:,4); 
       cum_obs4(:,4) = cum_obs(:,6);    
 
for i = 1:yr 
        if i~=ignore 
            rps_y(i) = (sum((cum_fcasts(i,:)-cum_obs(i,:)).^2)); 
            rps_o(i) = (sum((climo(1,:)-cum_obs(i,:)).^2)); 
            SS_all(obs_col,i) = (rps_y(i)-rps_o(i))/(0-rps_o(i)); 
            rps_y3(i) = (sum((cum_fcasts3(i,:)-cum_obs3(i,:)).^2)); 
            rps_o3(i) = (sum((climo3(1,:)-cum_obs3(i,:)).^2)); 
            SS_all3(obs_col,i) = (rps_y3(i)-rps_o3(i))/(0-rps_o3(i)); 
            rps_y2(i) = (sum((cum_fcasts2(i,:)-cum_obs2(i,:)).^2)); 
            rps_o2(i) = (sum((climo2(1,:)-cum_obs2(i,:)).^2)); 
            SS_all2(obs_col,i) = (rps_y2(i)-rps_o2(i))/(0-rps_o2(i)); 
            rps_y4(i) = (sum((cum_fcasts4(i,:)-cum_obs4(i,:)).^2)); 
            rps_o4(i) = (sum((climo4(1,:)-cum_obs4(i,:)).^2)); 
            SS_all4(obs_col,i) = (rps_y4(i)-rps_o4(i))/(0-rps_o4(i)); 
 
fprintf(fid1,' %1.4f %1.4f  %1.4f %1.4f\n', SS_all(obs_col,i), SS_all3(obs_col,i), 
SS_all2(obs_col,i), SS_all4(obs_col,i));  
 
        else  
            rps_y(i) = -9999; 
            rps_o(i) = -9999; 
            SS_all(obs_col,i)=-9999; 
            rps_y3(i) = -9999; 
            rps_o3(i) = -9999; 
            SS_all3(obs_col,i)=-9999; 
            rps_y2(i) = -9999; 
            rps_o2(i) = -9999; 
            SS_all2(obs_col,i)=-9999; 
            rps_y4(i) = -9999; 
            rps_o4(i) = -9999; 
            SS_all4(obs_col,i)=-9999; 
 
fprintf(fid1,' %1.4f %1.4f  %1.4f %1.4f\n', SS_all(obs_col,i), SS_all3(obs_col,i), 
SS_all2(obs_col,i), SS_all4(obs_col,i));  
 
        end 
end 
 
 fprintf(fid1,' \n ');  
 
for i = 1:yr 
         if rps_y(i) ~= -9999 
           ct2 = ct2+1; 
           rps_temp_f(ct2) = rps_y(i); 
           rps_temp_o(ct2) = rps_o(i); 
           rps_temp_f3(ct2) = rps_y3(i); 
           rps_temp_o3(ct2) = rps_o3(i); 
           rps_temp_f2(ct2) = rps_y2(i); 
           rps_temp_o2(ct2) = rps_o2(i); 
           rps_temp_f4(ct2) = rps_y4(i); 
           rps_temp_o4(ct2) = rps_o4(i); 
        end 
 
        rps_fcpt(obs_col) = mean(rps_temp_f); 
        rps_ob_yr(obs_col) = mean(rps_temp_o); 
        rps_fcpt3(obs_col) = mean(rps_temp_f3); 
        rps_ob_yr3(obs_col) = mean(rps_temp_o3); 
        rps_fcpt2(obs_col) = mean(rps_temp_f2); 
        rps_ob_yr2(obs_col) = mean(rps_temp_o2); 
        rps_fcpt4(obs_col) = mean(rps_temp_f4); 
        rps_ob_yr4(obs_col) = mean(rps_temp_o4); 
end 
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    SS(obs_col) = (rps_fcpt(obs_col)-rps_ob_yr(obs_col))/(0-rps_ob_yr(obs_col)); 
    SS3(obs_col) = (rps_fcpt3(obs_col)-rps_ob_yr3(obs_col))/(0-rps_ob_yr3(obs_col)); 
    SS2(obs_col) = (rps_fcpt2(obs_col)-rps_ob_yr2(obs_col))/(0-rps_ob_yr2(obs_col)); 
    SS4(obs_col) = (rps_fcpt4(obs_col)-rps_ob_yr4(obs_col))/(0-rps_ob_yr4(obs_col)); 
end 
 
 
fprintf(fid2,'%1.4f %1.4f %2.4f %2.4f \n',SS, rps_fcpt); 
fprintf(fid2,'%1.4f %1.4f %2.4f %2.4f \n',SS3, rps_fcpt3); 
fprintf(fid2,'%1.4f %1.4f %2.4f %2.4f \n',SS2, rps_fcpt2); 
fprintf(fid2,'%1.4f %1.4f %2.4f %2.4f \n',SS4, rps_fcpt4); 
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%Script to calculate ranked probability score for ESP forecasts 
%Kristie Franz 
%University of Arizona 
%June, 2002 
%For more information contact Kristie at kristie@hwr.arizona.edu 
 
clear all; 
close all; 
 
var = input('Enter forecast point name: \n', 's'); 
fname2 = sprintf('%s%s%s', 'results/',var,'RPS_avg_wk_mo_emp2'); 
fid2 = fopen(fname2,'w');  
 
load obs_mean_max; 
 
quants = 8; 
[z C] = size(obs_mean_max);  
 
for cycle = 1:2 
     
    clear forecasts; 
    clear prob_obs; 
    clear cum_obs1; clear cum_obs2; clear cum_obs3; clear cum_obs5; 
    clear cum_fcasts1; clear cum_fcasts2; clear cum_fcasts3; clear cum_fcasts5; 
    clear rps_y1; clear rps_y2; clear rps_y3; clear rps_y5; 
 clear rps_temp_f1; clear rps_temp_f2; clear rps_temp_f3; clear rps_temp_f5; 
    ignore = 0; 
 ct = 0; 
 ct2=0; 
    if cycle == 1 
  load fcst_mean; 
        forecasts=fcst_mean; 
        prob_obs = zeros(z,quants); 
        obs_col = 1; 
        fname1 = sprintf('%s%s%s', 'results/',var,'RPS_all_week_emp2'); 
        fid1 = fopen(fname1,'w'); 
    else 
        fclose(fid1); 
  load fcst_max; 
        forecasts=fcst_max; 
  prob_obs = zeros(z,quants); 
  obs_col = 2; 
        fname1 = sprintf('%s%s%s', 'results/',var,'RPS_all_mon_emp2');         
        fid1 = fopen(fname1,'w');  
    end 
    
    for yr = 1:z 
        clear observed; 
        if obs_mean_max(yr,obs_col)~=-9999 
            observed = -9999; 
            temp_k = 0; 
                     
            if yr<=z 
                if obs_mean_max(yr,obs_col) <= forecasts(1,yr) 
                    prob_obs(yr,1) = 1; 
                elseif obs_mean_max(yr,obs_col) <= forecasts(2,yr) 
                    prob_obs(yr,2) = 1; 
                elseif obs_mean_max(yr,obs_col) <= forecasts(3,yr) 
                    prob_obs(yr,3) = 1; 
                elseif obs_mean_max(yr,obs_col) <= forecasts(4,yr) 
                    prob_obs(yr,4) = 1; 
                elseif obs_mean_max(yr,obs_col) <= forecasts(5,yr) 
                    prob_obs(yr,5) = 1; 
                elseif obs_mean_max(yr,obs_col) <= forecasts(6,yr) 
                    prob_obs(yr,6) = 1; 
                elseif obs_mean_max(yr,obs_col) <= forecasts(7,yr) 
                    prob_obs(yr,7) = 1; 
                else                          
                    prob_obs(yr,8) = 1; 
                end 
            end   
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        else 
            prob_obs(yr,1:quants) = 0; 
            ct = ct+1; 
            ignore(ct) = yr; 
        end    
 end 
  
 cum_obs1 = cumsum(prob_obs,2); 
    cum_fcasts1 = [.05 .10 .25 .50 .75 .90 .95 1.0]; 
     
    cum_fcasts2 = [.1 .9 1.0];   
    cum_obs2(:,1) = cum_obs1(:,2); 
    cum_obs2(:,2) = cum_obs1(:,6); 
    cum_obs2(:,3) = cum_obs1(:,8); 
     
    cum_fcasts3 = [.25 .75 1.0];   
    cum_obs3(:,1) = cum_obs1(:,3); 
    cum_obs3(:,2) = cum_obs1(:,5); 
    cum_obs3(:,3) = cum_obs1(:,8);   
     
    cum_fcasts5 = [.1 .25 .5 .75 .9 1.0];  
    cum_obs5(:,1) = cum_obs1(:,2); 
    cum_obs5(:,2) = cum_obs1(:,3); 
    cum_obs5(:,3) = cum_obs1(:,4); 
    cum_obs5(:,4) = cum_obs1(:,5); 
    cum_obs5(:,5) = cum_obs1(:,6); 
    cum_obs5(:,6) = cum_obs1(:,8); 
                      
 for i = 1:yr 
        if i~=ignore 
            rps_y1(i) = (sum((cum_fcasts1(1,:)-cum_obs1(i,:)).^2));  
            rps_y2(i) = (sum((cum_fcasts2(1,:)-cum_obs2(i,:)).^2));  
            rps_y3(i) = (sum((cum_fcasts3(1,:)-cum_obs3(i,:)).^2));         
            rps_y5(i) = (sum((cum_fcasts5(1,:)-cum_obs5(i,:)).^2));             
            fprintf(fid1,' %1.4f %1.4f %1.4f %1.4f\n', rps_y1(i), rps_y2(i), 
rps_y3(i),rps_y5(i));  
        else  
            rps_y1(i) = -9999;  
            rps_y2(i) = -9999; 
            rps_y5(i) = -9999;           
            rps_y3(i) = -9999;          
            fprintf(fid1,' %1.4f %1.4f %1.4f %1.4f\n', rps_y1(i),rps_y2(i), rps_y3(i), 
rps_y5(i));  
        end 
 end 
 fprintf(fid1,' \n ');  
 for i = 1:yr 
        if rps_y1(i) ~= -9999 
           ct2 = ct2+1; 
           rps_temp_f1(ct2) = rps_y1(i); 
           rps_temp_f2(ct2) = rps_y2(i);       
           rps_temp_f3(ct2) = rps_y3(i); 
           rps_temp_f5(ct2) = rps_y5(i);  
        end 
        rps_fcpt1(obs_col) = mean(rps_temp_f1); 
        rps_fcpt2(obs_col) = mean(rps_temp_f2);   
        rps_fcpt3(obs_col) = mean(rps_temp_f3); 
        rps_fcpt5(obs_col) = mean(rps_temp_f5);           
     
     
    end 
end 
  
fprintf(fid2,'%1.4f %1.4f  \n',rps_fcpt1); 
fprintf(fid2,'%1.4f %1.4f \n', rps_fcpt2); 
fprintf(fid2,'%1.4f %1.4f  \n', rps_fcpt3); 
fprintf(fid2,'%1.4f %1.4f  \n', rps_fcpt5); 
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Appendix II 
 
 

Example MATLAB script for calculation of discrimination and reliability 
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%Script to generate forecast discrimination and reliability statistics for ESP forecasts 
%Kristie Franz 
%University of Arizona 
%June, 2002 
%For more information contact Kristie at kristie@hwr.arizona.edu 

 
clear; 
close; 
var1 = input('Enter forecast point name: \n', 's'); 
var = input('Enter 1 for mean flow forecast and 2 for max flow forecast: \n'); 
if var == 1 
    load traces_mean; 
    load wkly_mean_stage; 
    hist_obs = wkly_mean_stage; 
    forecasts = traces_mean; 
    obs_col = 1; 
    [y B] = size(wkly_mean_stage); 
    [x A] = size(traces_mean); 
    fname1 = sprintf('%s%s%s', 'results/',var1,'disc_wkly_emp'); 
    fname2 = sprintf('%s%s%s', 'results/',var1,'rel_wkly_emp'); 
    fname3 = sprintf('%s%s%s', 'results/',var1,'obs_freq_wkly_emp'); 
    fname4 = sprintf('%s%s%s', 'results/',var1,'fc_freq_wkly_emp'); 
    fid1=fopen(fname1,'w'); 
    fid2=fopen(fname2,'w'); 
    fid3=fopen(fname3,'w'); 
    fid4=fopen(fname4,'w'); 
else     
    load traces_max; 
    load mnthly_max_stage; 
    hist_obs=mnthly_max_stage; 
    forecasts = traces_max; 
    [y B] = size(mnthly_max_stage); 
    [x A] = size(traces_max); 
    obs_col = 2; 
    fname1 = sprintf('%s%s%s', 'results/',var1,'disc_mnthly_emp'); 
    fname2 = sprintf('%s%s%s', 'results/',var1,'rel_mnthly_emp'); 
    fname3 = sprintf('%s%s%s', 'results/',var1,'obs_freq_mnthly_emp'); 
    fname4 = sprintf('%s%s%s', 'results/',var1,'fc_freq_mnthly_emp'); 
    fid1=fopen(fname1,'w'); 
    fid2=fopen(fname2,'w'); 
    fid3=fopen(fname3,'w'); 
    fid4=fopen(fname4,'w'); 
end 
    
load obs_mean_max; 
[z C] = size(obs_mean_max);  
quants = 6; 
prob_obs = zeros(y,quants); 
climo = [.1 .25 .5 .75 .9 1.0]; 
quantiles = zeros(y,quants); 
ignore = 0; 
ct = 0; 
 
for yr = 1:y 
    clear observed; 
    if obs_mean_max(yr,obs_col)~=-9999 
        clear temp_array; 
        observed = -9999; 
        temp_k = 0; 
        for u = 1:B 
            if hist_obs(yr,u)~=-9999 
                temp_k = temp_k+1; 
                observed(temp_k) = hist_obs(yr,u); 
            end 
        end    
 
        obs = sort(observed'); 
        ct3 = 0; 
            for i = 1:length(obs) 
                ct3 = ct3+1; 
                obs(i,2) = (ct3/(length(obs)+1)); 
            end 
            emp10 = interp1(obs(:,2),obs(:,1),.10); 
            emp25 = interp1(obs(:,2),obs(:,1),.25); 
            emp50 = interp1(obs(:,2),obs(:,1),.5); 
            emp75 = interp1(obs(:,2),obs(:,1),.75); 
            emp90 = interp1(obs(:,2),obs(:,1),.90); 
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     for i = 1:x 
            if forecasts(i,yr) <= emp10 
                quantiles(yr,1) = quantiles(yr,1) + 1; 
            elseif forecasts(i,yr) <= emp25 
                quantiles(yr,2) = quantiles(yr,2) + 1;    
            elseif forecasts(i,yr) <= emp50 
                quantiles(yr,3) = quantiles(yr,3) + 1; 
            elseif forecasts(i,yr) <= emp75 
                quantiles(yr,4) = quantiles(yr,4) + 1; 
            elseif forecasts(i,yr) <= emp90 
                quantiles(yr,5) = quantiles(yr,5) + 1; 
            else 
                quantiles(yr,6) = quantiles(yr,6) + 1; 
            end 
     end  
             
 
        if yr<=z 
            if obs_mean_max(yr,obs_col) <= emp10 
                prob_obs(yr,1) = 1; 
            elseif obs_mean_max(yr,obs_col) <= emp25 
                prob_obs(yr,2) = 1; 
            elseif obs_mean_max(yr,obs_col) <= emp50 
                prob_obs(yr,3) = 1; 
            elseif obs_mean_max(yr,obs_col) <= emp75 
                prob_obs(yr,4) = 1; 
            elseif obs_mean_max(yr,obs_col) <= emp90 
                prob_obs(yr,5) = 1; 
            else                          
                prob_obs(yr,6) = 1; 
            end 
        end 
 
 
     for t = 1:quants 
            prob_fcasts(yr,t) = quantiles(yr,t)/x; 
     end 
    else 
    prob_obs(yr,1:quants) = 0; 
    prob_fcasts(yr,1:quants) = 0; 
    ct = ct+1; 
    ignore(ct) = yr; 
    end    
end 
 
count_obs_1 = 0; 
count_obs_2 = 0; 
count_obs_3 = 0; 
red_1 = [0 0 0 0 0 0 0]; 
green_1 = [0 0 0 0 0 0 0]; 
blue_1 = [0 0 0 0 0 0 0]; 
red_2 = [0 0 0 0 0 0 0]; 
green_2 = [0 0 0 0 0 0 0]; 
blue_2 = [0 0 0 0 0 0 0]; 
red_3 = [0 0 0 0 0 0 0]; 
green_3 = [0 0 0 0 0 0 0]; 
blue_3 = [0 0 0 0 0 0 0]; 
 
fc_red = [0 0 0 0 0 0 0]; 
obs_red = [0 0 0 0 0 0 0]; 
fc_green = [0 0 0 0 0 0 0]; 
obs_green = [0 0 0 0 0 0 0]; 
fc_blue = [0 0 0 0 0 0 0]; 
obs_blue = [0 0 0 0 0 0 0]; 
 
 
for k = 1:yr 
    if k ~= ignore  
        if (sum(prob_obs(k,1:2))==1) 
            count_obs_1= count_obs_1 + 1; 
            if ((sum(prob_fcasts(k,1:2)))== 0) 
                red_1(1) = red_1(1) + 1; 
            elseif (0 < (sum(prob_fcasts(k,1:2)))) & ((sum(prob_fcasts(k,1:2))) <= .1) 
                red_1(2) = red_1(2) + 1; 
            elseif (.1 < (sum(prob_fcasts(k,1:2)))) & ((sum(prob_fcasts(k,1:2)))<=.25)  
                red_1(3) = red_1(3) + 1; 
            elseif (.25 < (sum(prob_fcasts(k,1:2)))) & ((sum(prob_fcasts(k,1:2))) <= .5) 
                red_1(4) = red_1(4) + 1; 
            elseif (.5 < (sum(prob_fcasts(k,1:2)))) & ((sum(prob_fcasts(k,1:2))) <= .75) 
                red_1(5) = red_1(5)+ 1; 
            elseif (.75 < (sum(prob_fcasts(k,1:2)))) & ((sum(prob_fcasts(k,1:2))) <= .90) 
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                red_1(6) = red_1(6)+ 1; 
            elseif (.9 < (sum(prob_fcasts(k,1:2)))) 
                red_1(7) = red_1(7) + 1; 
            end 
         
            if (sum(prob_fcasts(k,3:4)) == 0) 
                green_1(1) = green_1(1) + 1; 
            elseif (0 < (sum(prob_fcasts(k,3:4)))) & ((sum(prob_fcasts(k,3:4))) <= .1)  
                green_1(2) = green_1(2) + 1; 
            elseif (.1 < (sum(prob_fcasts(k,3:4)))) & ((sum(prob_fcasts(k,3:4))) <= .25) 
                green_1(3) = green_1(3) + 1; 
            elseif (.25 < (sum(prob_fcasts(k,3:4)))) & ((sum(prob_fcasts(k,3:4))) <= .5) 
                green_1(4) = green_1(4) + 1; 
            elseif (.5 < (sum(prob_fcasts(k,3:4)))) & ((sum(prob_fcasts(k,3:4))) <= .75)  
                green_1(5) = green_1(5)+ 1; 
            elseif (.75 < (sum(prob_fcasts(k,3:4)))) & ((sum(prob_fcasts(k,3:4))) <= .9)  
                green_1(6) = green_1(6)+ 1; 
            elseif (.9 < (sum(prob_fcasts(k,3:4)))) 
                green_1(7) = green_1(7) + 1; 
            end 
 
            if ((sum(prob_fcasts(k,5:6))) == 0) 
                blue_1(1) = blue_1(1) + 1; 
            elseif (0 < (sum(prob_fcasts(k,5:6)))) & ((sum(prob_fcasts(k,5:6))) <= .1) 
                blue_1(2) = blue_1(2) + 1; 
            elseif (.1 < (sum(prob_fcasts(k,5:6)))) & ((sum(prob_fcasts(k,5:6))) <= .25) 
                blue_1(3) = blue_1(3) + 1; 
            elseif (.25 < (sum(prob_fcasts(k,5:6)))) & ((sum(prob_fcasts(k,5:6))) <= .5) 
                blue_1(4) = blue_1(4) + 1; 
            elseif (.5 < (sum(prob_fcasts(k,5:6)))) & ((sum(prob_fcasts(k,5:6))) <= .75)  
                blue_1(5) = blue_1(5)+ 1; 
            elseif (.75 < (sum(prob_fcasts(k,5:6)))) & ((sum(prob_fcasts(k,5:6))) <= .9)  
                blue_1(6) = blue_1(6)+ 1; 
            elseif (.9 < (sum(prob_fcasts(k,5:6)))) 
                blue_1(7) = blue_1(7) + 1; 
            end 
        end 
 
        if (sum((prob_obs(k,3:4))==1)) 
            count_obs_2 = count_obs_2 + 1; 
            if ((sum(prob_fcasts(k,1:2))) == 0) 
                red_2(1) = red_2(1) + 1; 
            elseif (0 < (sum(prob_fcasts(k,1:2)))) & ((sum(prob_fcasts(k,1:2))) <= .1) 
                red_2(2) = red_2(2) + 1; 
            elseif (.1 < (sum(prob_fcasts(k,1:2)))) & ((sum(prob_fcasts(k,1:2))) <= .25) 
                red_2(3) = red_2(3) + 1; 
            elseif (.25 < (sum(prob_fcasts(k,1:2)))) & ((sum(prob_fcasts(k,1:2))) <= .5)  
                red_2(4) = red_2(4) + 1; 
            elseif (.5 < (sum(prob_fcasts(k,1:2)))) & ((sum(prob_fcasts(k,1:2))) <= .75) 
                red_2(5) = red_2(5)+ 1; 
            elseif (.75 < (sum(prob_fcasts(k,1:2)))) & ((sum(prob_fcasts(k,1:2))) <= .90) 
                red_2(6) = red_2(6)+ 1; 
            elseif (.9 < (sum(prob_fcasts(k,1:2)))) 
                red_2(7) = red_2(7) + 1; 
            end 
 
            if (sum(prob_fcasts(k,3:4)) == 0) 
                green_2(1) = green_2(1) + 1; 
            elseif ( 0 < (sum(prob_fcasts(k,3:4)))) & ((sum(prob_fcasts(k,3:4))) <= .1) 
                green_2(2) = green_2(2) + 1; 
            elseif (.1 < (sum(prob_fcasts(k,3:4)))) & ((sum(prob_fcasts(k,3:4))) <= .25) 
                green_2(3) = green_2(3) + 1; 
            elseif (.25 < (sum(prob_fcasts(k,3:4)))) & ((sum(prob_fcasts(k,3:4))) <= .5)  
                green_2(4) = green_2(4) + 1; 
            elseif (.5 < (sum(prob_fcasts(k,3:4)))) & ((sum(prob_fcasts(k,3:4))) <= .75)  
                green_2(5) = green_2(5)+ 1; 
            elseif (.75 < (sum(prob_fcasts(k,3:4)))) & ((sum(prob_fcasts(k,3:4))) <= .90)  
                green_2(6) = green_2(6)+ 1; 
            elseif (.9 < (sum(prob_fcasts(k,3:4)))) 
                green_2(7) = green_2(7) + 1; 
            end 
 
            if ((sum(prob_fcasts(k,5:6))) == 0) 
            blue_2(1) = blue_2(1) + 1;   
            elseif (0 < (sum(prob_fcasts(k,5:6)))) & ((sum(prob_fcasts(k,5:6))) <= .1) 
                blue_2(2) = blue_2(2) + 1; 
            elseif (.1 < (sum(prob_fcasts(k,5:6)))) & ((sum(prob_fcasts(k,5:6))) <= .25) 
                blue_2(3) = blue_2(3) + 1; 
            elseif (.25 < (sum(prob_fcasts(k,5:6)))) & ((sum(prob_fcasts(k,5:6))) <= .5) 
                blue_2(4) = blue_2(4) + 1; 
            elseif (.5 < (sum(prob_fcasts(k,5:6)))) & ((sum(prob_fcasts(k,5:6))) <= .75) 
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                blue_2(5) = blue_2(5)+ 1; 
            elseif (.75 < (sum(prob_fcasts(k,5:6)))) & ((sum(prob_fcasts(k,5:6))) <= .9) 
                blue_2(6) = blue_2(6)+ 1; 
            elseif (.9 < (sum(prob_fcasts(k,5:6)))) 
                blue_2(7) = blue_2(7) + 1; 
            end 
        end 
 
 
        if ((sum(prob_obs(k,5:6)))==1) 
            count_obs_3 = count_obs_3 + 1; 
            if ((sum(prob_fcasts(k,1:2))) == 0) 
                red_3(1) = red_3(1) + 1; 
            elseif (0 < (sum(prob_fcasts(k,1:2)))) & ((sum(prob_fcasts(k,1:2))) <= .1)  
                red_3(2) = red_3(2) + 1; 
            elseif (.1 < (sum(prob_fcasts(k,1:2)))) & ((sum(prob_fcasts(k,1:2))) <= .25) 
                red_3(3) = red_3(3) + 1; 
            elseif (.25 < (sum(prob_fcasts(k,1:2)))) & ((sum(prob_fcasts(k,1:2))) <= .5) 
                red_3(4) = red_3(4) + 1; 
            elseif (.5 < (sum(prob_fcasts(k,1:2)))) & ((sum(prob_fcasts(k,1:2))) <= .75) 
                red_3(5) = red_3(5)+ 1; 
            elseif (.75 < (sum(prob_fcasts(k,1:2)))) & ((sum(prob_fcasts(k,1:2))) <= .9) 
                red_3(6) = red_3(6)+ 1; 
            elseif (.9 < (sum(prob_fcasts(k,1:2)))) 
                red_3(7) = red_3(7) + 1; 
            end 
         
            if ((prob_fcasts(k,3:4)) == 0) 
                green_3(1) = green_3(1) + 1; 
            elseif (0 < (sum(prob_fcasts(k,3:4)))) & ((sum(prob_fcasts(k,3:4))) <= .1) 
                green_3(2) = green_3(2) + 1; 
            elseif (.1 < (sum(prob_fcasts(k,3:4)))) & ((sum(prob_fcasts(k,3:4))) <= .25) 
                green_3(3) = green_3(3) + 1; 
            elseif (.25 < (sum(prob_fcasts(k,3:4)))) & ((sum(prob_fcasts(k,3:4))) <= .5)  
                green_3(4) = green_3(4) + 1; 
            elseif (.5 < (sum(prob_fcasts(k,3:4)))) & ((sum(prob_fcasts(k,3:4))) <= .75) 
                green_3(5) = green_3(5)+ 1; 
            elseif (.75 < (sum(prob_fcasts(k,3:4)))) & ((sum(prob_fcasts(k,3:4))) <= .9) 
                green_3(6) = green_3(6)+ 1; 
            elseif (.9 < (sum(prob_fcasts(k,3:4)))) 
                green_3(7) = green_3(7) + 1; 
            end 
         
            if ((sum(prob_fcasts(k,5:6))) == 0) 
                blue_3(1) = blue_3(1) + 1; 
            elseif (0 < (sum(prob_fcasts(k,5:6)))) & ((sum(prob_fcasts(k,5:6))) <= .1) 
                blue_3(2) = blue_3(2) + 1; 
            elseif (.1 < (sum(prob_fcasts(k,5:6)))) & ((sum(prob_fcasts(k,5:6))) <= .25) 
                blue_3(3) = blue_3(3) + 1; 
            elseif (.25 < (sum(prob_fcasts(k,5:6)))) & ((sum(prob_fcasts(k,5:6))) <= .5) 
                blue_3(4) = blue_3(4) + 1; 
            elseif (.5 < (sum(prob_fcasts(k,5:6)))) & ((sum(prob_fcasts(k,5:6))) <= .75) 
                blue_3(5) = blue_3(5)+ 1;    
            elseif (.75 < (sum(prob_fcasts(k,5:6)))) & ((sum(prob_fcasts(k,5:6))) <= .9) 
                blue_3(6) = blue_3(6)+ 1;    
            elseif (.9 < (sum(prob_fcasts(k,5:6))))  
                blue_3(7) = blue_3(7) + 1; 
            end 
        end 
    end 
 
end 
  
for k = 1:yr 
    if k~=ignore 
        if ((sum(prob_fcasts(k,1:2))) == 0) 
            fc_red(1) = fc_red(1) + 1; 
            if ((sum(prob_obs(k,1:2))) == 1) 
       obs_red(1) = obs_red(1) +1; 
            end 
        end 
          
        if  (0<(sum(prob_fcasts(k,1:2)))) & ((sum(prob_fcasts(k,1:2))) <= .10)  
            fc_red(2) = fc_red(2) + 1; 
            if ((sum(prob_obs(k,1:2))) == 1) 
                obs_red(2) = obs_red(2) + 1; 
            end 
        end 
  
        if  (.1<(sum(prob_fcasts(k,1:2)))) & ((sum(prob_fcasts(k,1:2))) <= .25)  
            fc_red(3) = fc_red(3) + 1; 
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            if ((sum(prob_obs(k,1:2))) == 1) 
                obs_red(3) = obs_red(3) + 1; 
            end 
        end 
  
        if  (.25 <(sum(prob_fcasts(k,1:2)))) & ((sum(prob_fcasts(k,1:2))) <= .50) 
            fc_red(4) = fc_red(4) + 1; 
            if ((sum(prob_obs(k,1:2))) == 1) 
                obs_red(4) = obs_red(4) + 1; 
            end 
        end 
  
        if  (.50 <(sum(prob_fcasts(k,1:2)))) & ((sum(prob_fcasts(k,1:2))) <= .75)  
            fc_red(5) = fc_red(5) + 1; 
            if ((sum(prob_obs(k,1:2))) == 1) 
                obs_red(5) = obs_red(5) + 1; 
            end 
        end 
  
         if  (.75 <(sum(prob_fcasts(k,1:2)))) & ((sum(prob_fcasts(k,1:2))) <= .90)  
            fc_red(6) = fc_red(6) + 1; 
            if ((sum(prob_obs(k,1:2))) == 1) 
                obs_red(6) = obs_red(6) + 1; 
            end 
        end 
         
        if  (.90<(sum(prob_fcasts(k,1:2)))) 
            fc_red(7) = fc_red(7) + 1; 
            if ((sum(prob_obs(k,1:2))) == 1) 
                obs_red(7) = obs_red(7) + 1; 
            end 
        end 
  
  
        if (sum(prob_fcasts(k,3:4)) == 0) 
            fc_green(1) = fc_green(1) + 1; 
            if ((sum(prob_obs(k,3:4))) == 1) 
                obs_green(1) = obs_green(1) +1; 
            end 
        end 
  
        if  (0<(sum(prob_fcasts(k,3:4)))) & ((sum(prob_fcasts(k,3:4))) <= .10) 
            fc_green(2) = fc_green(2) + 1; 
            if ((sum(prob_obs(k,3:4))) == 1) 
                obs_green(2) = obs_green(2) + 1; 
            end 
        end 
  
        if  (.1<(sum(prob_fcasts(k,3:4)))) & ((sum(prob_fcasts(k,3:4))) <= .25) 
            fc_green(3) = fc_green(3) + 1; 
            if ((sum(prob_obs(k,3:4))) == 1) 
                obs_green(3) = obs_green(3) + 1; 
            end 
        end 
         
        if  (.25<(sum(prob_fcasts(k,3:4)))) & ((sum(prob_fcasts(k,3:4))) <= .50) 
            fc_green(4) = fc_green(4) + 1; 
            if ((sum(prob_obs(k,3:4))) == 1) 
                obs_green(4) = obs_green(4) + 1; 
            end 
        end 
         
        if  (.50<(sum(prob_fcasts(k,3:4)))) & ((sum(prob_fcasts(k,3:4))) <= .75)  
            fc_green(5) = fc_green(5) + 1; 
            if ((sum(prob_obs(k,3:4))) == 1) 
                obs_green(5) = obs_green(5) + 1; 
            end 
        end 
         
        if  (.75 <(sum(prob_fcasts(k,3:4)))) & ((sum(prob_fcasts(k,3:4))) <= .90)  
            fc_green(6) = fc_green(6) + 1; 
            if ((sum(prob_obs(k,3:4))) == 1) 
                obs_green(6) = obs_green(6) + 1; 
            end 
        end 
         
        if  (.90<(sum(prob_fcasts(k,3:4))))  
            fc_green(7) = fc_green(7) + 1; 
            if ((sum(prob_obs(k,3:4))) == 1) 
                obs_green(7) = obs_green(7) + 1; 
            end 
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        end 
  
  
        if ((sum(prob_fcasts(k,5:6))) == 0) 
            fc_blue(1) = fc_blue(1) + 1; 
            if ((sum(prob_obs(k,5:6))) == 1) 
                obs_blue(1) = obs_blue(1) +1; 
            end 
        end 
         
        if  (0<(sum(prob_fcasts(k,5:6)))) & ((sum(prob_fcasts(k,5:6))) <= .10)  
            fc_blue(2) = fc_blue(2) + 1; 
            if ((sum(prob_obs(k,5:6))) == 1) 
                obs_blue(2) = obs_blue(2) + 1; 
            end 
        end 
  
        if  (.1<(sum(prob_fcasts(k,5:6)))) & ((sum(prob_fcasts(k,5:6))) <= .25)  
            fc_blue(3) = fc_blue(3) + 1; 
            if ((sum(prob_obs(k,5:6))) == 1) 
                obs_blue(3) = obs_blue(3) + 1; 
            end 
        end 
  
        if  (.25 <(sum(prob_fcasts(k,5:6)))) & ((sum(prob_fcasts(k,5:6))) <= .50)  
            fc_blue(4) = fc_blue(4) + 1; 
            if ((sum(prob_obs(k,5:6))) == 1) 
                obs_blue(4) = obs_blue(4) + 1; 
            end 
        end 
         
        if  (.50 <(sum(prob_fcasts(k,5:6)))) & ((sum(prob_fcasts(k,5:6))) <= .75)  
            fc_blue(5) = fc_blue(5) + 1; 
            if ((sum(prob_obs(k,5:6))) == 1) 
                obs_blue(5) = obs_blue(5) + 1; 
            end 
        end 
      
        if  (.75 <(sum(prob_fcasts(k,5:6)))) & ((sum(prob_fcasts(k,5:6))) <= .90)  
            fc_blue(6) = fc_blue(6) + 1; 
            if ((sum(prob_obs(k,5:6))) == 1) 
                obs_blue(6) = obs_blue(6) + 1; 
            end 
        end 
  
        if  (.90<(sum(prob_fcasts(k,5:6))))  
            fc_blue(7) = fc_blue(7) + 1; 
            if ((sum(prob_obs(k,5:6))) == 1) 
                obs_blue(7) = obs_blue(7) + 1; 
            end 
        end 
         
    end 
end 
 
dis_red_1 = (red_1/count_obs_1); 
dis_red_2 = (red_2/count_obs_2); 
dis_red_3 = (red_3/count_obs_3); 
dis_green_1 = (green_1/count_obs_1); 
dis_green_2 = (green_2/count_obs_2); 
dis_green_3 = (green_3/count_obs_3); 
dis_blue_1 = (blue_1/count_obs_1); 
dis_blue_2 = (blue_2/count_obs_2); 
dis_blue_3 = (blue_3/count_obs_3); 
 
rel_red  = (obs_red./fc_red); 
rel_green = (obs_green./fc_green); 
rel_blue = (obs_blue./fc_blue); 
 
fprintf(fid2,' %1.4f %1.4f %1.4f %1.4f %1.4f %1.4f %1.4f \n' , rel_red' ); 
fprintf(fid2,' %1.4f %1.4f %1.4f %1.4f %1.4f %1.4f %1.4f \n' , rel_green' ); 
fprintf(fid2,' %1.4f %1.4f %1.4f %1.4f %1.4f %1.4f %1.4f \n' , rel_blue' ); 
fprintf(fid1,' %1.4f %1.4f %1.4f %1.4f %1.4f %1.4f %1.4f \n' , dis_red_1' ); 
fprintf(fid1,' %1.4f %1.4f %1.4f %1.4f %1.4f %1.4f %1.4f \n' , dis_green_1' ); 
fprintf(fid1,' %1.4f %1.4f %1.4f %1.4f %1.4f %1.4f %1.4f \n' , dis_blue_1' ); 
fprintf(fid1,' %1.4f %1.4f %1.4f %1.4f %1.4f %1.4f %1.4f \n' , dis_red_2' ); 
fprintf(fid1,' %1.4f %1.4f %1.4f %1.4f %1.4f %1.4f %1.4f \n' , dis_green_2' ); 
fprintf(fid1,' %1.4f %1.4f %1.4f %1.4f %1.4f %1.4f %1.4f \n' , dis_blue_2' ); 
fprintf(fid1,' %1.4f %1.4f %1.4f %1.4f %1.4f %1.4f %1.4f \n' , dis_red_3' ); 
fprintf(fid1,' %1.4f %1.4f %1.4f %1.4f %1.4f %1.4f %1.4f \n' , dis_green_3' ); 
fprintf(fid1,' %1.4f %1.4f %1.4f %1.4f %1.4f %1.4f %1.4f \n' , dis_blue_3' ); 
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fclose(fid1); 
fclose(fid2); 
fprintf(fid3,'%3.0f %3.0f %3.0f \n',count_obs_1,count_obs_2,count_obs_3); 
fprintf(fid4,'%3.0f %3.0f %3.0f %3.0f %3.0f %3.0f %3.0f \n',fc_red'); 
fprintf(fid4,'%3.0f %3.0f %3.0f %3.0f %3.0f %3.0f %3.0f \n',fc_green'); 
fprintf(fid4,'%3.0f %3.0f %3.0f %3.0f %3.0f %3.0f %3.0f \n',fc_blue'); 
fclose(fid3);
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Appendix III 
 
 

Average RPS statistics for forecast points not included in this study.  
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RPS: weekly RPS: monthly
Forecast Point stage forecasts) stage forecasts
BELW2 1.21 1.04
BRAW2 1.24 1.14
CARI2 0.46 0.84
CLAT1 0.96 1.87
CLKW2 1.25 0.97
CLLP1 0.90 0.54
COKP1 1.07 0.47
ECMP1 0.72 0.47
ELRP1 0.85 0.78
FDLP1 0.73 0.47
FOMK2 2.16 1.14
FRKP1 0.88 0.76
HAIV2 0.69 1.22
LEAO1 1.24 1.23
MEDP1 1.20 0.87
NCSP1 0.80 0.84
OLNN6 1.33 1.21
PARP1 0.94 0.87
PHIW2 1.22 1.41
PINW2 1.51 0.70
PSNW2 0.99 1.61  


