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1. Problem definition



Streamflow

Observed

Forecast

Bias-corrected
forecast (based on
past performance in
similar conditions).

All relevant verification
info. is implicit in the
corrected forecast.
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Single-valued example

Past operational forecasts versus observations

1) If this were forecast for tomorrow, what
could we learn from the past?

2) Historic analogs -
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Observed streamflow (cms)

2000

y = forecast
X = observed

f(xly)?

Linear f:

y =0.93x - 0.073
x = (y+0.073)/0.93

f(xly= 1220)=

(1220 + 0.073)
0.93

=1312 cms

Unknown ‘truth’
= 1112 cms)



Two parts to problem

Modeling ‘truth’ (x) given forecast (y)

How to model F(x]y)

Do we need to add conditions, f(x]y,s)?

Example: s could beiceb

ldentifying/visualizing

ocking flow

nistoric analogs

How to identify and visualize analogs to y?

Important because f(X]y

,S) Is only a model

This is not easy. So far, we focused on (1)...



How to model f(x|y)Ify Is
an ensemble forecast?



What if y Is an ensemble?

Same basic concept:

X = observed (unknown for live forecast)
Y = {Z,,..,Z,}y = live ensemble forecast

The aim Is to model (from past data):
F(xlz,,..,z,) = Prob[X<x]z,,..,z,] Vx

l.e. what Is observed (“true”) probability
dist. given the real-time forecast (based on
past relation between forecast and “truth”).
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Using past relationship
between X and Y, we
refine our climatology:
F(X|zy,...,Z,). Thisis
unbiased and captures
resolution of Y.
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How to model?

We need to model F(x])z,,..,Z,)

No single ‘parametric’ model for all
forecast types (e.g. joint normal)...

...data transform (e.g. normal-score
transform) is often tricky

What about a non-parametric model,
driven by what the data tell us?
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. Indicator approach
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Indicator approach

What is the probability that a dice
throw, X, Is <37

Take n samples of X ={1,2,6,4,2,5,1,3}
Answer: average no. of times X < 3.

,x;<3

1 n
Prob[X <3]~— ) I.(x.) where I.(x.)=
| | ng‘ x(%)) x(%;) {0,otherwise

Expectation of an indicator function
Repeat for all possible x, we get full pdf




Indicator approach

Our problem is much tougher. We
cannot simply count samples. We
have way too many indicator variables,
SO many combinations not observed.

How to fill in the blanks?

We use multiple indicator (linear)
regression.
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3. Results
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GFS precipitation

Ensemble precipitation (12-hourly)
from operational GEFS, 2000-2005.

Precipitation is a tough test
(intermittent and highly skewed).

Verified raw GEFS ensembles with
Indicator-corrected forecasts In
Juniata, PA (MAP used as observed).

Split sample (independent)
verification by rotating sample data.




Summary of results

The raw GEFS ensembles were
surprisingly good.

Indicator-corrected ensembles were
~30% better by CRPS. (The indicator
approach explicitly minimizes CRPS).

The indicator-corrected ensembles
were significantly more reliable.

Very similar quality to EPP for days 1-
2, and much better beyond.
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Forecast errors (forecast- observed) in IMNCH'

Modified box plot of ensemble forecast errors against observed value.
Real.Time.Verification.GFS_ensembles at lead hour 12
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Forecast errors (forecast- observed) in IMNCH'

Modified box plot of ensemble forecast errors against observed value.
Real.Time.Verification.Cond_obs_ GFS at lead hour 12
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ESP flow

ESP forecasts from 2003-2008 for
QUAOZ2 in ABRFC.

Used RFC flow observations for
Indicator-correction/verification.
Split sample (independent)
verification by rotating sample data.




Summary of results

The raw ESP ensembles were
surprisingly bad (lack of hydro-
uncertainty).

Indicator-corrected ensembles were
up to ~70% better by CRPS.

The indicator-corrected ensembles
were much more reliable and
resolved.




Cumulative Talagrand plot.
Real.Time.Verification.Ensemhles at lead hour 6
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Cumulative Talagrand plot.
Real.Time.Yerification.Cond_obs at lead hour 6
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Frabahility of Detection {true alarms)

Relative Operating Characteristic for different event { probability ) thresholds.
Real.Time.Yerification.Ensembles at lead hour 6
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Relative Operating Characteristic for different event { probability ) thresholds.
Real.Time.Yerification.Cond_obs at lead hour 6
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" Conclusions and next steps —

Indicator approach shows promise

+ It explicitly minimizes the MSE of the
observed probabilities, i.e. CRPS. (an
iImportant verification statistic).

+ Leads to significant gains in CRPS and
other verification statistics.

+ (Good for cases where parametric
assumptions are unrealistic (e.g. precip.).

- High-dimensional technique, I.e. it follows
the data, so it requires good hindcasting
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" Conclusions and next steps —

Need to test at an RFC

 Internal testing complete by FY09 Q2
« Need a candidate RFC to field-test
« Envisage testing similar to HMOS (ABRFC)

Work on visualizing analog forecasts
 Visualizing analogs remains important
 Particularly important for “unusual” cases
« Need atool to identofy/visualize analogs
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Additional slides



Correlation of the observations and ensemble mean forecast by forecast lead time.
Real.Time.Yerification.Cond_obs_GFS
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