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1. Problem of real-time verification
• Diagnostic metrics too cumbersome….
• ….not tailored to live forecast situation
• Biases of historic analogs = a guide to future

2. Real-time bias correction technique
• Non-parametric (precipitation, flow)

3. Some example results 
• GEFS precipitation and ESP streamflow

Contents
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1. Problem definition



Single-valued example
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Bias-corrected
forecast (based on 
past performance in
similar conditions).

All relevant verification 
info. is implicit in the 
corrected forecast.



Single-valued example

y = 0.9343x - 0.0731
R2 = 0.9388
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Past operational forecasts versus observations

1) If this were forecast for tomorrow, what 
could we learn from the past?

y = forecast
x = observed

f(x|y)?

Linear f:
y = 0.93x - 0.073
x = (y+0.073)/0.93

f(x|y= 1220)=
(1220 + 0.073)

0.93
=1312 cms

Unknown ‘truth’
= 1112 cms)

2) Historic analogs

4) How good is the model?!

3) Can we model biases and
thus correct them, 
i.e. what is x | y?



Two parts to problem
1. Modeling ‘truth’ (x) given forecast (y)
• How to model f(x|y)
• Do we need to add conditions, f(x|y,s)?
• Example: s could be ice blocking flow

2. Identifying/visualizing historic analogs
• How to identify and visualize analogs to y?
• Important because f(x|y,s) is only a model
• This is not easy.  So far, we focused on (1)…
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How to model f(x|y) if y is 
an ensemble forecast? 



Same basic concept:
X = observed (unknown for live forecast)

Y = {Z1,…,Zm} = live ensemble forecast

The aim is to model (from past data):
F(x|z1,…,zm) = Prob[X≤x|z1,…,zm]

i.e. what is observed (“true”) probability 
dist. given the real-time forecast (based on 
past relation between forecast and “truth”).

What if y is an ensemble?

x∀
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3) Using past relationship 
between X and Y, we 
refine our climatology: 
F(x|z1,…,zm). This is 
unbiased and captures 
resolution of Y.

1) Before we issue a 
forecast, climatology is 
our best bet: F(x)

2) We issue a forecast 
Y={z1,…,zm}, which is 
resolved but has 
biases.

What if y is an ensemble?



How to model?

• We need to model F(x|z1,…,zm)
• No single ‘parametric’ model for all 

forecast types (e.g. joint normal)…
• …data transform (e.g. normal-score 

transform) is often tricky
• What about a non-parametric model, 

driven by what the data tell us? 
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2. Indicator approach



Indicator approach

• What is the probability that a dice 
throw, X, is ≤ 3?

• Take n samples of X = {1,2,6,4,2,5,1,3}
• Answer: average no. of times X ≤ 3: 

• Expectation of an indicator function
• Repeat for all possible x, we get full pdf 
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Indicator approach
• Our problem is much tougher.  We 

cannot simply count samples. We 
have way too many indicator variables, 
so many combinations not observed.

• How to fill in the blanks?
• We use multiple indicator (linear) 

regression.  



Indicator approach
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c1 c2         c3 c4 c5 c6 c7 c8 c9 c10

Regression estimate at
fifth threshold, c5

Smooth curve fitted
through estimates. 

F(x≤c5|z1,…,zm)
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3. Results



GFS precipitation
• Ensemble precipitation (12-hourly) 

from operational GEFS, 2000-2005. 
• Precipitation is a tough test 

(intermittent and highly skewed).
• Verified raw GEFS ensembles with 

indicator-corrected forecasts in 
Juniata, PA (MAP used as observed).

• Split sample (independent) 
verification by rotating sample data.



Summary of results
• The raw GEFS ensembles were 

surprisingly good.
• Indicator-corrected ensembles were 

~30% better by CRPS.  (The indicator 
approach explicitly minimizes CRPS).

• The indicator-corrected ensembles 
were significantly more reliable.

• Very similar quality to EPP for days 1-
2, and much better beyond.



Summary of results







ESP flow
• ESP forecasts from 2003-2008 for 

QUAO2 in ABRFC. 
• Used RFC flow observations for 

indicator-correction/verification.
• Split sample (independent) 

verification by rotating sample data.



Summary of results
• The raw ESP ensembles were 

surprisingly bad (lack of hydro-
uncertainty).

• Indicator-corrected ensembles were 
up to ~70% better by CRPS.

• The indicator-corrected ensembles 
were much more reliable and 
resolved.











Conclusions and next steps
Indicator approach shows promise
+ It explicitly minimizes the MSE of the 

observed probabilities, i.e. CRPS. (an 
important verification statistic).

+ Leads to significant gains in CRPS and 
other verification statistics.

+ Good for cases where parametric 
assumptions are unrealistic (e.g. precip.).

- High-dimensional technique, i.e. it follows 
the data, so it requires good hindcasting



Conclusions and next steps
Need to test at an RFC
• Internal testing complete by FY09 Q2 
• Need a candidate RFC to field-test
• Envisage testing similar to HMOS (ABRFC)

Work on visualizing analog forecasts
• Visualizing analogs remains important
• Particularly important for “unusual” cases
• Need a tool to identofy/visualize analogs



Additional slides



Very similar to day 1-2 EPP results, 
but easier to produce.


