

Verification Refresher Part I

Julie Demargne, James Brown and Holly Hartmann

2nd RFC Verification Workshop, November 18-20 2008

What makes a forecast good?

Forecasts should agree with observations, with **Accuracy** few large errors

Forecast mean should agree with observed mean **Bias**

Linear relationship between forecasts and **Association** observations

Forecast should be more accurate than low-skilled **Skill** reference forecasts (e.g., random chance, persistence, or climatology)

What makes a forecast good?

Binned forecast values should agree with binned **Reliability** observations (agreement between categories)

Forecast can discriminate between events & **Resolution** non-events

Forecast can predict with strong probabilities (i.e., 100% for event, 0% for non-event)

Sharpness

Forecast represents the associated uncertainty

Spread (Variability)

Standard scalar measures

• Bias:

Forecast mean = observation mean

• Correlation:

Variance shared between forecast and observed (r²) Says nothing about bias or whether forecast variance = observed variance

Root Mean Squared Error

Distance between forecast and observation values Influenced by large errors for large events

• Mean Absolute Error:

Alternative to RMSE

Corresponds to CRPS for ensembles

- Contingency table: used to analyze the relationship between 2 categorical variables in a single dataset
- 2x2 contingency table shows categories relative to a single threshold

		Event observed		
		Yes	No	Total
Event forecasted	Yes	а	b	a+b
	No	С	d	c+d
	Total	a+c	b+d	a+b+c+d =n

- Probability of Detection POD = a/(a+c)
- Discrimination Conditional probability that given the event occurred, it was also forecast to occur
- How often were you not 'surprised'?

		Event observed		
		Yes	No	Total
Event forecasted	Yes	а	b	a+b
	No	С	d	c+d
	Total	a+c	b+d	n

- Probability of False Detection POFD = b/(b+d)
- Discrimination Conditional probability that given the event did not occur, it was forecast to occur
- False Alarm Rate

		Event observed		
		Yes	No	Total
Event forecasted	Yes	а	b	a+b
	No	С	d	c+d
	Total	a+c	b+d	n

- False Alarm Ratio FAR = b/(a+b)
- Reliability Conditional probability that given the event was forecast to occur, the event did not occur
- How often were you led astray?

		Event observed		
		Yes	No	Total
Event forecasted	Yes	а	b	a+b
	No	С	d	c+d
	Total	a+c	b+d	n

Questions?

