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How Well Can We Observe, Analyze, and 

Forecast Conditions Near the Surface?

• Forecasters clearly recognize large variations in surface 
temperature, wind, moisture, precipitation exist over short distances: 

– in regions of complex terrain

– when little lateral/vertical mixing

– due to convective precipitation

• To what extent can you rely on surface observations to define 
conditions within 2.5 x 2.5 or 5 x 5 km2 grid box?

• Do we have enough observations to do so?

• What is it going to take to get a national effort to collect, manage, 
and distribute mesonet observations necessary for verification as 
well as a myriad other applications?

• Need to support efforts to collect and manage metadata

• Need to recognize errors inherent in observations and use that error 
information for analyses, forecast preparation, & verification



Viewing the atmosphere in terms of grids vs. points

ASOS station

Forecast Prec = 0.2in

Actual Prec = 0.5in

Error = -0.3in 

Too Dry

What about away from ASOS stations?

Need an integrated analysis of 

observations



Developing Mesoscale Meteorological Observational 

Capabilities to Meet Multiple National Needs

• Committee charged to:
– develop an overarching vision for an integrated, flexible, adaptive, and multi-purpose 

mesoscale meteorological observation network

– seek to identify specific steps to help develop a network that meets multiple national needs in 

a cost-effective manner. 

• Starting from existing information: 

1. characterize the current state of mesoscale atmospheric observations 

and purposes;

2. compare the U.S. mesoscale atmospheric observing system to other 

observing system benchmarks; 

3. describe desirable attributes of an integrated national mesoscale

observing system; 

4. identify steps to enhance and extend mesoscale meteorological 

observing capabilities so they meet multiple national needs; and 

5. recommend practical steps to transform and modernize current, limited 

mesoscale meteorological observing capabilities to better meet the needs of 

a broad range of users and improve cost effectiveness. 

Report due soon…



Observations are not perfect…

– Metadata errors

– Gross errors

– Local siting errors (e.g., artificial heat source, overhanging 
vegetation, observation at variable height above ground due to 
snowpack)

– Instrument errors (e.g., exposure, maintenance, sampling)

– Representativeness errors: correct observations that are capturing 
phenomena that are not representative of surroundings on broader 
scale (e.g., observations in vegetation-free valleys and basins 
surrounded by forested mountains)

All that is labeled data Is NOT gold!

Lockhart (2003)



Are All Observations Equally Good?

• Why was the sensor installed? 
– Observing needs and sampling strategies vary 

(air quality, fire weather, road weather)

• Station siting results from pragmatic tradeoffs: 
power, communication, obstacles, access

• Use common sense and experience
– Wind sensor in the base of a mountain pass 

will likely blow from only two directions

– Errors depend upon conditions (e.g., 
temperature spikes common with calm winds)

– Pay attention to metadata

• Monitor quality control information
– Basic consistency checks

– Comparison to other stations



Real-Time Precipitation Data

• Hardest to manage due to differences in
– Equipment and measurement technique

– Measurement type (interval, sum)

– Reporting interval (5 min-24 hour)

• Hardest to quality control
– Unheated tipping buckets

– Representativeness issues

• Difficult to integrate QC procedures developed 
for hydrologic applications (e.g., 24-h total QC’d 
data from NRCS) into real-time data stream



Observing Precipitation: Remote Sensors

Vasiloff et al. (2007)

Sensor Time-Space Scales Strengths Weaknesses

Radar 5-10 min, 1km • High spatial and 

temporal resolution

• Good areal 

coverage*

• Range effects

•Coverage in complex 

terrain

•Z-R and Z-S 

uncertainties

•Target contamination

Geostationary

satellite

15 min, 4 km Continuous spatial

coverage

• Indirect 

measurement

• Sorting out 

nonprecipitating

clouds

Polar-orbiting satellite 

(passive microwave)

3-6h+, 15 km Continuous spatial 

coverage

• Poor 

spatial/temporal

resolution

• Indirect 

measurement

• Difficulty with non-

ice clouds



Observing Precipitation: Gauges 

Vasiloff et al. (2007) +

Sensor Time-Space Scales Strengths Weaknesses

Unheated/heated

tipping bucket, 

Belfort, ETI, Geonor

weighing gauges, 

snow pillows

10 min-1 day, network 

dependent

•Direct measurement • Nonuniform spatial 

distribution

• Latency in real-time 

data transfer

• Quality control

• Frozen 

hydrometeors

• Wind effects

• Calibration issues 

as function of 

rain/snow rate

• Integrating gauge observations is a challenge…

• Integrating gauges AND remote sensing information is even more of a challenge…

• Integrating all observations AND prior model forecast/analysis is the greatest challenge



GOES Platforms

• RAWS
– More agencies are using RAWS as a means to collect 

observations beyond simply fire weather applications 
(e.g., air quality)

• HADS: Accessing GOES DCPs
– 2500+ mostly precipitation reporting stations received 

via HADS

– We depend on WFOs (HADS focal points/service 
hydrologists) to manage station metadata updates via 
the NWSLI system



Some of the National & Regional Mesonet Data Collection Efforts
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RTMA Precipitation Analysis

• NCEP Stage 2  Multisensor Precipitation 

Analysis on 4 km grid remapped to 5 km 

NDFD grid

• Gauge and Radar data only



Reflectivity



RTMA Precipitation



Gauge & Radar



RTMA Precipitation



Observations vs. Truth?

• A Few Good Men

• Truth is unknown and depends on 
application: “expected value for 5 x 
5 km2 area”

• Assumption: average of many 
unbiased observations should be 
same as expected value of truth

• However, accurate observations 
may be biased or unrepresentative 
due to any number of factors

http://www.youtube.com/watch?v=UXoNE14U_zM


Representativeness Errors

• Observations may be accurate…

• But the phenomena they are 
measuring may not be resolvable on 
the scale of the analysis

– This is interpreted as an error of the 
observation not the analysis

• Common problem over complex terrain

• Also common when strong inversions

• Can happen anywhere

Sub-5km terrain variability (m) 

(Myrick and Horel, WAF 2006)



ME= Measurement error = O – hc (Truth)
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COMAP – April 16, 2008

Representative errors to be expected in mountains
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Alta Ski Area

2610m

2944m

3183m

Looking up the mountain Looking up Little Cottonwood Canyon



COMAP – April 16, 2008

Alta Ski Area
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Precipitation within grid box

ATBCLN



• Assuming an observation is “truth” may seem simpler if you have only 

that one observation

• Magnitudes of observational errors are only a piece of the puzzle

– Analyses assume observational errors at one location are 

independent of errors at another

– Observational biases (equipment, siting, etc.) especially during 

specific synoptic conditions (light winds, cold pools) can contribute to 

correlations between observational errors

• Verification procedures need to incorporate uncertainty information 

about the observational assets

– Don’t sweat the small stuff

– ASOS observations are far from perfect

– Monitor error characteristics of observations over space and time

Key Points


