
Results of Performance Testing
Postgresql Version shef_decode_raw

For The
RFC Archive System1

April 14. 2006

1.0 Summary

Results indicate that the Postgresql version of shef_decode_raw application is much
slower than the current Informix version (ob6). This is primarily due to two factors; 1)
the difference in how the Informix Relational Database Management System (RDBMS)
works (i.e. multi-threading capability) versus how the Postgresql RDBMS works, and 2)
use of parameter settings as they were delivered with the Postgresql install package
(i.e., no “tuning”). Other factors that may have impacted the performance are the level
of RAID being used and the system hardware itself, the impacts of these factors are
beyond the scope of this paper.

While beyond the scope of this study, tuning of the Postgresql engine appears to be the
most likely way to significantly improve the speed of data posting to the archive
database. The increased performance that tuning the Postgresql engine can provide
has been examined for the IHFS DB in build ob6 at Northwest River Forecast Center;
see the report “AWIPS Test Authorization Note – Test Results, POB6_OHD_A100768”.

It is highly recommended that tuning of the Postgresql RDBMS be performed for the
RFC Archive Database.

2.0 Introduction

2.1 Background

In build ob6 all AWIPS systems except the River Forecast Center (RFC) Archive
System moved to Postgresql (from Informix) for the RDBMS. The RFC Archive System
moves to Postgresql (from Informix) for the RDBMS in build ob7.2. It was agreed that
information on the performance of Postgresql vs. Informix would be provided to the
RFCs during the development phase so that RFCs would have an idea of the relative
performance they could expect for different types of database-related tasks on the RFC
Archive System. Phase 1 of the testing was completed in the summer of 2005; see the
report “PostgreSQL V7.4.7 versus V8.0.3 For the RFC Archive System” dated August 8,
2005.

1 Report written by A. Juliann Meyer, RAXUM Team Leader, Sr. Hydrologist – Data Systems, Missouri
Basin River Forecast Center, Pleasant Hill, MO

The shef_decode_raw application is the program that processes the live data-feed of
Standard Hydro-Meteorological Exchange Format (SHEF) messages and posts data to
the suite of SHEF data value database tables. This is the main way observations and
forecast data get into the RFC Archive Database.

2.2 Purpose

The purpose of this test is to provide the RFCs with information on the performance of
the Postgresql version of the shef_decode_raw application as compared to the
performance of the current Informix version.

During the review of the initial test results it was suggested that a couple of additional
tests be done, these are: 1) perform a vacuum full on the database and then rerun test
3, and 2) collect information on how long a delete of a large number of rows can take.

3.0 Description of Test System

The testing was performed on two systems, ax1-nhdr for the ob6 Informix set-up and
ax2-nhdr for the ob7 Postgresql set-up. Note that the ax1-nhdr is not identical in
hardware to ax2-nhdr. The ax1-nhdr system was set-up in February/March 2005 as the
operational support system for the RAXUM team. The ax2-nhdr system (the
development system) is identical hardware to the rax systems in the field.

Note: The author is well aware that the testing conditions on ax2-nhdr are not ideal, as
development work is still ongoing for the ob7.2 software delivery.

3.1 Hardware

ax2-nhdr

 Dedicated system, Rack mounted

 Intel Xeon 2.4GHz/400MHz

 2 - 512MB PC2100 CL2.5 ECC DDR SDRAM RDIMM

 Ultra 320, ServeRAID-5i SCSI Controller (single channel)

 Six 73.4GB 10K rpm Ultra160 SCSI HS

 10/100/1000 Port Ethernet Server Adapter

 Tape drive - 40/80GB DLTVS HH Int. SCSI Drive (Half-High) and
Ultra 160 PCI Adapter (required for Tape device when using
ServeRAID5i

 DVD Drive/Recorder - DVR-A04 Pioneer DVR (4.7gb)

ax1-nhdr
 Tower style case

 Dual Intel Xeon 1.5 GHz

 2 Gig RAM

 No Raid

 1 Seagate Cheetah 10K 36GB U320 68pin SCSI Hard Drive and 1 IBM

Ultrastar 10K 36GB U160 68pin SCSI Hard Drive

 10/100 Port Ethernet Server Adapter

 No tape drive

 No DVD recorder

3.2 Software

ax2-nhdr

RDBMS: Postgresql version 7.4.8. Uses cooked file space for the database. No
logging and no replication.

OS: Red Hat Enterprise 4.0

ax1-nhdr

RDBMS: IBM Informix IDS 9.3 UC1. Uses cooked file space for the database. No
logging and no replication.

OS: Red Hat 7.2

3.3 Database and Data-Feeds

Both ax1-nhdr and ax2-nhdr have RFC Archive Databases, but the information in the
databases is not identical and the databases are of slightly different sizes. However the
location and ingestfilter database tables are similar in that both contain definitions for
stations in Missouri Basin RFC (MBRFC) and Mid-Atlantic RFC (MARFC) areas of
responsibility. Messages for the non-live data-feed datasets utilize SHEF messages
from the author’s RFC Archive System (ax-krf). The live data-feed messages for the
ax1-nhdr and ax2-nhdr system are for MARFC’s area of responsibility. Because of the
way that the live data-feed is generated, some of the messages may not be SHEF
messages.

3.4 Database Cron Jobs

ax2-nhdr

Oper’s cron was running one script related to updating table statistics, “vacuumdb -v -z”.
This script was run 6 times per day during most of the testing, the average running time
was 30 minutes. Since mid-March the vacuumdb cron job was run twice each day, with
an average running time of 70 minutes. The cron also runs a pg_dump of the database
to disk nightly. This dump takes on average 2 hours and 15 minutes.

ax1-nhdr

Oper’s cron was running two scripts related to updating table statistics, update-low is
run at 1938Z daily and update-stats is run at 0738Z daily. Since there is no tape drive
on ax1-nhdr, level-0 archive is not being done routinely. In addition, the script
check_dpspaces was run at 1020z daily.

4.0 How Posting Works2

The focus of some of the tests performed was measuring the performance (speed) of
the shef_decode_raw program when it posts (inserts and updates) to pseudo array
tables versus single value per row tables. Descriptions of how the posting portion of the
shef_decode_raw program works for pseudo array and single value per row tables are
provided in this section.

In the descriptions that follow the three words RECORD, STRUCTURE, and ENTRY
have the following meaning:

RECORD - The information for a single data value parsed from a SHEF
message.

STRUCTURE - the data structure which holds all the information needed to
update/insert a row in the database.

ENTRY - a single row in a database table.

posting to a pseudo-array table

1) All data values in a SHEF message are parsed and stored individually in memory
in their own data RECORD.

2) The posting function loops through all data RECORDS that are in memory one

by one.

2 Most of the information in this section was provided by one of the programmers at OHD/HL.

3) For the first data RECORD, and whenever the primary key changes, a select is

made on the database to retrieve an ENTRY with the same primary key
information as in the data RECORD. If there is a match, the retrieved database
ENTRY is saved in a data STRUCTURE in memory, and the data value from the
data RECORD is "stuffed" into the correct slot in the data STRUCTURE. When
this STRUCTURE is written back to the database, it is done as an update. If
there is not a match between the primary key of the data RECORD and an
ENTRY in the database, then the data STRUCTURE in memory is initialized
using the information from the current data RECORD. When this STRUCTURE
is written back to the database, it is done as an insert.

4) For each data RECORD after that (2, 3, 4,...n), the primary key fields are

checked against the data RECORD which was previously processed. If the
primary key is the same, that RECORD value is "stuffed" into the correct slot in
the data STRUCTURE already in memory. If the primary key of the current data
RECORD is different, then the data STRUCTURE is written (insert or update) to
the database. A select is then made on the database using the primary key
information for the current data RECORD in memory, and the logic described in
step 3) above is followed.

Note: The data STRUCTURE in memory is written to the database each time the
primary key changes and when the last parsed data RECORD in memory is processed.

posting to a single value per row table

1) All data values in a SHEF message are parsed and stored individually in memory in

their own data RECORD.

2) The posting function loops through all data RECORDS that are in memory one by

one.

3) For each data RECORD, a select is made on the database to retrieve an ENTRY

with the same primary key information as in the data RECORD. If there is a match,
the database ENTRY retrieved is saved in a data STRUCTURE in memory, and the
data value from the data RECORD in memory is "stuffed" into the correct slot in the
data STRUCTURE. When this STRUCTURE is written back to the database, it is
written as an update. If no match is found, then no ENTRY exists in the database
for this RECORD, and the STRUCTURE for this RECORD is written to the
database as an insert.

5.0 Testing Procedures

Three types of testing were run on the Postgresql RFC Archive System. The different
scenarios were selected based on discussions that have been going on this past year

over table structure, pseudo-array (multiple values per row) versus single value per row
and speculation over performance of Postgresql RDBMS inserts versus updates of a
row.

Test 1 - For this test not much is running on the system, there are no other users on the
system, oper’s cron is shutdown and only shef_decode_raw is running.

Test 2 – For this test other users may or may not be on the system, oper’s cron is
running, one of the level 1 processors is being run by a user, shef_decode_pro is
running and has been given a large number of files to process, and the
shef_decode_raw application is running.

For Tests 1 and 2, four scenarios were given to shef_decode_raw application in order to
collect information on inserts and updates to the two types of structures that make up
the SHEF data value tables. These scenarios are:

 inserts to pseudo arrays tables
 inserts to single value per row tables
 updates to pseudo array tables
 updates to single value per row tables

Test 3 – For this test a very large queue of messages is to be processed by the
shef_decode_raw application. (This could happen if a hardware problem stopped data
processing and a large queue was created.) For the test not much else is running on
the system, there are no other users on the system, oper’s cron is shutdown and only
shef_decode_raw is running.

For comparison purposes, tests 1 and 3 were also run on the Infomix system, ax1-nhdr.

The RFC Archive System application log_stats.tcl was used to collect performance
information from the shefdecoder’s daily log files. From this data, average posting time
of records (or values) per second can be computed.

Example output of log_stats.tcl

 Input file: /rfc_arc/logs/decoder/raw/logs/shef_decode_raw_log_1004

Number of Products = 2663
Number of records Processed = 264677
Avg Parse time = 0.00 seconds
Avg Post time = 3.83 seconds

Max Parse Time = 1 seconds
Max Post Time = 354 seconds

From the above information one can calculate the number of records posted per
second; (Number of records processed divided by Number of products) divided by
average post time. I.e.,

264677 = 99.39 records/products
2663

99.39 = 25.95 ~ 26 records/second posted
3.83

6.0 Test Results

6.1 Results of Tests 1 thru 3

Test 1 & 2, scenario 1: 10 messages with total of 50000 values all for the pecrsep table
(pseudo-array), all new data

Informix Postgresql
Test 1 Test 1 Test 2

posting
values/sec

total
run-time

posting
values/sec

total
run-time

posting
values/sec

total
run-time

158.7 6 min 32.0 27 min 26.5 32 min

Test 1 & 2, scenario 2: 14 messages with total of 52,931 values all for the pedrsep
table (single value per row), all new data

Informix Postgresql
Test 1 Test 1 Test 2

posting
values/sec

total
run-time

posting
values/sec

total
run-time

posting
values/sec

total
run-time

150.0 6 min 83.4 11 min 33.0 27 min

Test 1 & 2, scenario 3: 10 messages with total of 50000 values all for the pecrsep table
(pseudo-array), all data previously posted

Informix Postgresql
Test 1 Test 1 Test 2

posting
values/sec

total
run-time

posting
values/sec

total
run-time

posting
values/sec

total
run-time

162.3 6 min 30.0 28 min 23.3 36 min

Test 1 & 2, scenario 4: 14 messages with total of 52,931 values all for the pedrsep
table (single value per row), all data previously posted

Informix Postgresql
Test 1 Test 1 Test 2

posting
values/sec

total
run-time

posting
values/sec

total
run-time

posting
values/sec

total
run-time

152.5 6 min 67.0. 13 min 35.3 60 min

Test 3: 55,338 messages with total of 13,332,980 values. Messages are a variety of
SHEF products such as RR1, RR2, RR3, RR7, RVF and RRS.

Informix Postgresql
posting

values/sec
total run-time posting

values/sec
total run-time

142.5 7 hrs 16 min 45.5 value 23 hrs 20 min

(continues on next page)

In addition to these three tests, performance data for the Postgresql version of the
shef_decode_raw application was collected from the ax2-nhdr daily log files for several
days when the decoder was running with the live data-feed. During these periods there
may or may not have been other users on the system. Typically there may be one or
two programmers at OHD/HL, and one or two RAXUM support programmers, on ax2-
nhdr at any given time. Oper’s cron was running on these dates but it only had two
tasks, run_vacuumdb and purge_files. The following table contains a summary of this
information.

daily log
file date

total
number

messages

total
number
values

average
posting

time (sec)

maximum
posting

time (sec)

posting
values/sec

02/24/06 14571 546804 0.62 35 60.5

02/25/06 14610 523480 0.62 34 57.8

02/26/06 14661 530123 0.63 35 57.4

02/27/06 14706 529343 0.60 34 60

02/28/06 11140 430073 0.66 37 58.5

03/01/06 14921 563226 0.66 42 57.2

03/02/06 15076 561015 0.71 55 52.4

03/03/06 14972 563811 0.79 55 48.0

03/04/06 14886 578240 0.84 52 46.2

03/05/06 14729 568230 0.89 53 43.7

03/06/06 14129 536360 0.97 63 39.1

03/07/06 14712 605165 1.08 86 38.1

03/08/06 11153 437418 1.19 115 32.8

03/09/06 11036 831682 1.94 97 38.8

The declining posting rate (values/second) in the above table is due to the fact that the
vacuumdb cron job, which had been running several times a day, began failing in early
March. (This failure was due to a typo made when the script was being modified.) This
decline in posting rate demonstrates the importance of ensuring the database is
vacuumed routinely.

The “vacuum –z” cron job was corrected and testing with the vacuuming occurring twice
per day was conducted. Results are presented in the table below. Average time to
vacuum during this period was 70 minutes.

daily log
file date

total
number

messages

total
number
values

average
posting

time (sec)

maximum
posting

time (sec)

posting
values/sec

03/20/06 14884 569900 0.93 304 39

03/21/06 14921 588777 0.98 405 40.3

03/22/06 47443 479995 0.25 365 40.5

03/23/06 14602 557148 1.17 508 32.6

03/24/06 14888 561319 1.18 493 32

03/25/06 14829 561932 1.13 517 33.5

03/26/06 14685 561003 1.16 415 33

03/27/06 12368 460317 1.24 498 30

03/28/06 15088 560078 1.12 457 33.1

03/29/06 14722 561576 1.25 618 30.5

The question has been raised “If there is any benefit to doing a ‘vacuum full’
periodically?” to improve the performance of the raw shefdecoder. On 03/30/06 the
shefdecoders were shutdown and oper’s cron was stopped while a “vacuum full” was
performed on the test database, adb_ob7krf. It took 3 hours and 38 minutes to
complete. All processes were restarted and for this test “vacuum –z” was set to run 6
times per day (average runtime of 60 minutes). Test results are shown below.

daily log
file date

total
number

messages

total
number
values

average
posting

time (sec)

maximum
posting

time (sec)

posting
values/sec

03/31/06 5540 336056 1.13 108 46.7

04/01/06 14758 562111 0.89 260 42.8

04/02/06 14365 533894 0.82 173 45.3

04/03/06 14748 546906 0.86 223 43.1

04/04/06 14631 566089 1.01 281 38.7

04/05/06 14715 545979 0.86 327 43.1

04/06/06 14432 544314 0.93 240 40.6

04/0726/06 14509 560815 0.96 305 40.3

The results indicate a slight improvement, but it is somewhat unclear whether there was
actually any benefit from the “vacuum full”. The slight improvement could be due to
going back to 6 times per day for the “vacuum –z”.

While beyond the scope of this study, tuning of the Postgresql engine appears to be the
most likely way to significantly improve the speed of posting data to the archive
database. The increased performance that tuning the Postgresql engine can provide
has been examined for the IHFS DB in build ob6 at Northwest River Forecast Center;
see the report “AWIPS Test Authorization Note – Test Results, POB6_OHD_A100768”.

6.2 Information on Deletes

In Informix when rows are deleted from a table with a simple sql query the user must be
careful. If there are too many rows that fit the where clause, the query will fail with the
error that the transaction was too long. Deletes in Postgresql are done much differently,
i.e. the row is not actually removed but marked as deleted and becomes unviewable.
The question was raised about how long it takes Postgresql to do deletes for a fairly
large number of rows. For this test, all the rows older than “1982-01-01” in the pecrsep
table (pseudo-array) were deleted and all rows older than “1982-01-01 00:00:00” in the
pedrsep table (single value per row) were deleted. This test was performed only on the
Postgresql RFC Archive DB. The results are in the following table.

Table Table Type Number of rows deleted Time
pecrsep pseudo-array 3,794 3 sec

pedrsep single value per row 74,782 1 min 28 sec

